
UML-based Approach for Documenting and Specializing
Frameworks Using Patterns and Concern Architectures

Imed Hammouda, Mika Pussinen, Mika Katara, and Tommi Mikkonen
Institute of Software Systems, Tampere University of Technology

P.O.Box 553, 33101, Tampere, Finland
emails: {imed, mtp, clark, tjm}@cs.tut.fi

ABSTRACT
Documenting an application framework is a non-trivial task.
The most challenging part is the specialization interface that
is used to derive specialized versions of the framework. Ap-
plication developers using the framework should be able to
grasp easily the associated classes and their collaborations.
Patterns have provided partial support but in the case of
highly complicated software platforms, with plethora of con-
ventions, we can easily recognize important concerns that
cut across the patterns. In order to better separate the con-
cerns related with specialization interfaces of frameworks,
we propose an approach based on concern architectures and
UML. Using the approach, the level of abstraction in frame-
work deployment is lifted from patterns to concerns, thus
contributing to shortened learning time and shortened appli-
cation development time. A real-world example illustrating
the approach is presented.

1. INTRODUCTION
Application frameworks, defining a common software archi-
tecture for a family of applications, are a proven software
development approach. A framework consists of predefined
classes, some of which may be abstract, and their relation-
ships that facilitate application development for some spe-
cific domain.

An important and essential step in application development
using a framework is to implement the specialization inter-
faces (abstractions) of the framework. An acknowledged way
of implementing these interfaces is to use patterns. First, the
individual patterns should be identified. Then, the patterns
are put in a unified scenario forming a pattern language for
using the framework (see for instance [13, 10]).

Moreover, a framework is meant to be reused. Therefore,
clear instructions on how to use it should be provided. A
good framework documentation should describe the follow-
ing three points of view: 1) the purpose of the framework,
2) how to use the framework, and 3) the overall structure of

the framework and its main interactions. In the following,
we will concentrate on the two latter points.

Concerns, or any conceptual matters of interest, related with
frameworks usually deal with features involving collabora-
tion of several objects. Therefore, we do not consider a clas-
sical object-oriented approach where classes would be used
as primary units of modularity in framework documentation
strong enough. This would not enable definition of collab-
oration between multiple classes, thus overlooking points 2)
and 3) above. The next logical step is to use patterns as
already mentioned. However, patterns describe concepts of
the solution domain rather those of the problem domain.
Thus, important concerns stemming from requirements, for
instance, can cut across several patterns. The use of pat-
terns thus alleviates the problem but does not solve it.

We propose lifting the level of abstraction from patterns to
concerns. Firstly, patterns are used to define the rules and
conventions pertaining to the software architecture enforced
by a framework. Secondly, to advance separation of con-
cerns, concern architectures [14] are used to structure sets
of patterns and their dependencies to match different con-
cerns. Then, in order to provide an implementation for a
concern, one only has to specialize the framework according
to the patterns associated with the concern. This enables
aspect-oriented architecting where each specialization step
produces a more detailed UML model of the application.

In this paper we introduce an approach following the above
scheme for application development using frameworks. The
main contributions of this paper are the use of concern level
concepts to document and specialize frameworks, and the
real-world example illustrating the approach. We also add
rigor to the related pattern descriptions and present our
vision for future tool support.

2. FROM PATTERNS TO CONCERNS
In this section, we start by discussing conventional uses of
patterns in software development and then move forward
to present a graphical notation for so called specialization
patterns. Finally, a new way of annotating the specialization
interfaces of frameworks using such patterns and concerns
is introduced.

2.1 Conventional Patterns
Patterns have been widely used in the software community
to share proven design solutions and coding standards. Usu-

Command

Execute()

ConcreteCommand

Execute()

Invoker

Receiver

Action()

receiver->Action()

Client

Figure 1: Structure of the Command Pattern

ally, when a new pattern is realized and has been success-
fully applied, it is published to the outside world in order
to be used by other software architects. For the pattern to
be correctly used, clear instructions on how to instantiate it
should be provided. In most of the cases, the pattern dia-
gram alone leaves the user with no clue on how to proceed
with the pattern instantiation process. This can be consid-
ered as a serious problem because any pattern misuse can
lead to serious design defects or program malfunctions.

Because patterns represent general, and proven design solu-
tions, they should not be bound to a particular implemen-
tation or restricted to a specific platform. Instead, a higher
level of abstraction is needed. Typically, patterns are docu-
mented in terms of UML class diagrams. The class diagram,
shown in Figure 1, for example, shows the structure of the
Command pattern [9]. The participants of the pattern are:
1) Invoker, it asks the command to perform the request, 2)
Receiver, it knows how to perform the right action, 3) Com-
mand, it declares the interface how to execute the operation,
4) ConcreteCommand, it implements the execute operation
and defines a binding between a Receiver object and an ac-
tion, 5) Client, creates a ConcreteCommand object and sets
its receiver. The pattern structure as shown in the figure
expresses the general pattern specification by listing the ba-
sic properties. However, for a person not familiar with the
pattern, it is hard to figure out how to use it.

2.2 Pattern Role Diagrams
We utilize a pattern concept called a specialization pattern
[10]. This is a concrete implementation of the general pat-
tern concept. A specialization pattern is composed of several
roles. Each role corresponds to one concrete element (class,
method, field). Roles may have properties like dependencies
on other roles, cardinality, constraints, and templates. To
illustrate these properties, let us consider two pattern roles
A and B that stand for class roles. Role A is said to be de-
pendent upon role B if the binding (associating the role to
concrete classes) of the role A depends on the binding of the
role B. The cardinality of the role A specifies the number of
concrete elements that may play the role of the pattern role
A. An example constraint on the pattern role A could be an
“inheritance constraint” meaning that the class which plays
the pattern role A should extend the class which plays the
role B.

<< class >>

Invoker

Receiver
<< class >>

<< operation >>

action

<< class >>

Command

<< operation >>

execute

<< operation >>

execute

ConcreteCommand +
<< class >>

Application

saveAction

File

openAction

Command

execute

execute

execute

SaveFileCommand

OpenFileCommand

1

2

Dependency Containment

BindingPrerequisite for

Pattern role

Concrete element

overrides

inherits
invoked by

uses

corresponds to

Figure 2: Pattern casting diagram

Specialization patterns are put into a unified scenario anno-
tating the specialization interface of a given object-oriented
application framework. During framework specialization
phase, the pattern roles are either bound to new elements,
for example by creating a new UML class for a class role, or
bound to existing UML elements. The action of associating
pattern roles with concrete program elements represents a
task that the framework user should perform.

In order to elevate the comprehensiveness of the pattern
reuse, we introduce in Figure 2 a role diagram, that we call a
pattern casting diagram, of the command pattern discussed
earlier. Role diagrams have been used in several previous
works. In [20], role diagrams are used to document object
collaboration based patterns. The proposed notation, how-
ever, does not give the reader clear instructions on how to
instantiate the pattern. In [10], a role-based graph repre-
sentation is used to clarify the pattern instantiation steps.
The problem with this representation is the ambiguity of the
used notation. The arrow notation, for example, represents
both a dependency and a containment relation. Also the
type of the pattern roles is not indicated in the graph.

In Figure 2, we have used a “pseudo UML” notation on
purpose. Instead of using standard extension mechanisms
(stereotypes, tagged values and constraints) the goal has
been to better illustrate the concepts related with special-

ization patterns1. In the figure, the nodes, marked with a
white color, depict the pattern roles. The Invoker role, for
example, stands for any concrete element that may play the
class role Invoker in Figure 1. The type of the role is marked
by a stereotype. The edges in the upper part of the figure
denote the dependencies between the roles. There are two
kinds of dependencies: 1) the dependency from role execute
on the role Command, which is marked with a diamond-
ended line, represents the containment relationship between
the elements that may play these two roles, 2) the depen-
dency from the role execute to the role action, which is
marked with a light-arrow-ended dashed line stands for a
logical relationship. In this case, any element that plays
the role execute should call the corresponding element that
plays the role action. The multiplicity symbol (’1’ for ex-
actly one, ’?’ for optional, ’*’ for zero or more, ’+’ for at
least one), that comes along the role name, indicates the al-
lowed number of concrete elements that may play that role.
For instance, there should be at least one element that plays
the ConcreteCommand role. If not otherwise indicated, the
multiplicity of the role is 1.

The bottom part of Figure 2 shows the casting diagram of
the Command pattern. By casting, we mean the mechanism
of associating concrete elements to the pattern roles. The
dark-grey nodes depict the actual concrete elements that
are bound to the pattern roles. The concrete element Ap-
plication, represented by a dark-grey node, plays the role of
Invoker. This is marked by the double-arrowed line between
Application and Invoker. In addition, there are two elements
that play the role ConcreteCommand. This is a direct im-
plication of the ’+’ multiplicity symbol associated with this
role. As a next step, the user might want to provide a third
ConcreteCommand element, named NewFileCommand, for
creating new files. In this case, where several concrete ele-
ments play the same pattern role, the order of the binding
is indicated by an integer index. Moreover, the dark-headed
arrows in this part of the figure denote the order how the
bindings should be performed. For instance, the binding
between the concrete element Application and the role In-
voker is a prerequisite for the binding of the concrete element
Command and its role.

The pattern casting diagram explained above offers several
benefits over conventional approaches:

Simple task lists By task we mean a simple action that
adds an element or enforces a property on the model.
Tasks are kept simple enough so that their immediate
result is easy to track and can be changed if needed.
The directed edges in the casting diagram which map
concrete elements to pattern roles or to other concrete
elements can be seen as simple specialization tasks.

Expressiveness Properties such as dependencies between
pattern roles and cardinalities along with their impli-
cations can be easily read from and written to our
diagram notation.

Computer-aided construction process The idea of ex-
pressing the pattern specialization steps as a simple

1It should be noted that these pattern descriptions are not
visible to the application developer using the framework.

task list has an important practical implication: A tool
could be used to maintain the task list implementing
the pattern role properties and checking possible con-
straint violations. Repairing constraint violations can
also be treated as specialization tasks. We found the
different types of pattern documentation discussed in
the other approaches too abstract to be implemented.
Without tool support, the pattern specialization pro-
cess could become too complex and risky in the sense
that wrong specialization steps can lead to serious de-
sign defects that may not be easily detected.

2.3 Specialization Patterns as Aspects
In aspect-oriented software development (AOSD) [2] the fo-
cus is on modularity. The idea is to provide means for encap-
sulation of concerns cutting across several classes or other
units of decomposition. The conventional way of building
software suffers from the so called ”tyranny of the dominant
decomposition” [23]. The tyranny is due to the fact that
there are always some concerns, i.e. conceptual matters of
interest, for instance features, that cut across the units of
decomposition.

The tyranny strikes when there is no way to provide one-to-
one match between concerns and the units of design and/or
code treating them. As an example, consider an imple-
mentation of a feature involving several objects of different
classes. On the one hand, when changes are needed con-
cerning the feature, the right classes must be identified so
that the changes can be done. On the other hand, as the ob-
jects may also implement other features, special care must
be taken not to break those.

In an object-oriented setting, because requirements are scat-
tered around the classes, the tyranny causes misalignment
between requirements, design and code. This has been spec-
ulated to cause problems with traceability, comprehensibil-
ity, maintainability, low reuse, high impacts of changes and
reduced concurrency in development [5].

A known solution [16, 15, 14] to these problems at the design
level is to consider architectural descriptions to have two
dimensions, one consisting of the classes of the system, and
another with the concerns cutting across the classes. On
the one hand, the former dimension defines what is usually
called the software architecture. On the other hand, the
latter dimension gives rise to a so called concern architecture
(also known as aspect architecture [14]).

In the UML context, the two-dimensional view on archi-
tecture was first deployed in [14]. A concern architecture
as defined in [14] consists of aspects and concerns modeled
as stereotyped packages, and dependencies between the as-
pects. Because some of the aspects may be shared by more
than one concern, concerns do not own the corresponding
aspects, instead they are all imported. For legibility, rather
than using standard package icons for concerns, they are
depicted as encircling lines surrounding the corresponding
aspects (see Figure 3).

Specialization patterns, as described in the previous sec-
tion, are used for annotating the specialization interfaces
of frameworks. When a pattern is instantiated, a more spe-

P2 P3

P1

FBFA

<<Pattern>>

<<Pattern>><<Pattern>>

Figure 3: Concern architecture of patterns

cialized version of the framework results. To provide better
separation of concerns for specialization interfaces, due to
the cross-cutting nature of specialization patterns, they are
treated like aspects in the concern architecture explained
above. In other words, we propose the concern architec-
ture documenting specialization interface of a framework to
consist of specialization patterns and dependencies between
them, as well as concerns grouping the patterns.

In more detail, a dependency arrow (see Figure 3) between
two patterns implies a partial order for instantiating them.
In principle, the patterns can be applied in any order. How-
ever, in practice, a well chosen order of application simplifies
the casting process involved. For instance, when a pattern
is instantiated, a new class can be defined to be bound to
a pattern role. If another pattern is instantiated after that
by binding its role to the same class, a dependency between
the patterns is formed.

To illustrate the use of patterns in defining the concern ar-
chitecture, an example of a very simple specialization inter-
face implementing two concerns corresponding to features
FA and FB is depicted in Figures 3 and 4. In Figure 3, the
patterns, their dependencies and the concerns are depicted.
In Figure 4, the corresponding UML models and their spe-
cialization relationships are shown. On the one hand, the
former figure relates the patterns to concerns in order to doc-
ument the abstractions used in a framework. On the other
hand, the latter figure documents the effects of applying the
patterns in the order implied by the dependencies depicted
in the former. The scheme is described in more detail in the
following.

Let us assume that the specialization process is started from
scratch, denoted by an empty UML model D in Figure 4.
First, pattern P1 is instantiated by defining the concrete
classes, objects, and methods etc. needed and binding those
to the pattern roles. Obviously, because we started from
scratch, there are no predefined elements to bind to the pat-
tern roles. The model obtained by instantiating the pattern
specializes D and is denoted by DP1.

Let us then consider the branch on the left hand side of the
Figure 4. Pattern P2 is instantiated by binding some of the
units defined by DP1 to P2’s roles. Additionally, new ele-

<<specialize>

P1P2

P1

<<specialize>

<<specialize>

<<specialize>

<<specialize>

FA

FB

FA+FB

Applying P1

Applying P3

Applying P3Applying P2

Applying P2

P1P3

<<model>>

<<model>>

<<model>>

<<model>>

<<model>>

D

D

D

D

P1P2P3D

Figure 4: UML models corresponding to the appli-
cation of the patterns

ments might need to be defined. Those are bound to the
remaining unbound roles. This way a new model DP1P2,
a specialization of DP1, is created. Similarly, pattern P3
is instantiated after P2, creating DP1P2P3 treating both fea-
tures. However, the instances of P2 and P3 are independent,
as seen from Figure 3. The independence implies that the
application order of the patterns could have been DP1P3P2

instead of DP1P2P3. This option is illustrated by the branch
on the right hand side of Figure 4.

Concern architectures raise the level of abstraction from spe-
cialization patterns to concerns. For instance, if the feature
FB needs to be examined in isolation, the corresponding
model DP1P3 can be easily identified and P2 discarded. The
concerns help in identifying the corresponding patters when
needed. If FA needs to be changed and the changes occur
only in P2, we can replace P2 with some other pattern P4,
for instance. This enables us to solve the problem with-
out touching P3. However, if the changes occur in P1, the
overlapping concern FB tells us to be careful also with P3.

The concern architecture encapsulates the pattern relation-
ships in the sense that each dependency in the concern archi-
tecture can be mapped to some kind of pattern relationship.
This should facilitate the specialization of a framework. It
is important to acknowledge that one could define different
concern architectures for the same framework depending on
the angle of interest towards the framework. Each concern
architecture would then map to a different set of patterns.

The approach enables using concern level concept for doc-
umenting frameworks. In the case where patterns are used
to capture architectural conventions in UML, each special-
ization step produces a more detailed UML model of the
application conforming to the architecture. This will be il-
lustrated by the example in the next section.

CApaApplication

<<abstract>> CreateDocumentL()
<<abstract>> AppDllUid()

CApaDocument

CBase

CCoeControl

CEikApplication

CreateDocumentL()

CEikAppUi

iDocument : CEikDocument*

CEikDocument

<<abstract>> CreateAppUiL()

Figure 5: Symbian application architecture

3. EXAMPLE: SYMBIAN FRAMEWORK
The described approach is targeted to be applicable espe-
cially in highly complicated software platforms with plethora
of conventions. One this kind of a platform is Symbian
operating system [24] targeted for mobile devices such as
PDAs and smart phones. It contains lots of conventions and
mandatory relationships between classes that an application
has to conform to. The relationships are demonstrated in
the following with a simplified example of an application
built on the Symbian application framework. This includes
a deployment example of the domain specific version of the
more general Model-View-Controller (MVC) model.

3.1 Symbian Application Framework
Figure 5 depicts the framework classes that are used as a
base for a basic Symbian application architecture. An appli-
cation conforming to the architecture consists of five classes:
an application class (subclass of CEikApplication), an en-
gine class (subclass of CBase), a document class (subclass
of CEikDocument), a controller class (subclass of CEikAp-
pUi), and a view class (subclass of CCoeControl).

Symbian applications are compiled into Dynamic Link Li-
braries (DLLs). A basic application consists of two DLLs,
one for the engine class (and other classes needed by it)
and one for the application itself. The engine DLL contains
reusable and user interface independent application logic.
The use of DLLs enables also binary level reuse (with some
restrictions). Both DLLs must have a unique identifier that
is referenced in code via a predefined constant that must
conform to the Symbian naming conventions. There are also
other DLL related conventions not present in regular C++
applications. A few mandatory functions are not methods of
any class but should be compiled into a DLL. For instance,
each DLL must implement an entry point function called
E32Dll, and each application DLL an additional function
called NewApplication.

3.2 Concern Architecture
We have developed a set of useful specialization patterns by
examining basic Symbian applications. Based on those, one
possible concern architecture of the Symbian framework is
depicted in Figure 6. It consists of six patterns and sev-
eral dependencies. This structure has been split into several
patterns for better separation of concerns. The Symbian ap-
plication architecture (shown in detail in Figure 5) depicted
on the top of the figure describes the essential classes of the

Model
concern

MVC concern

Symbian

concern
application

<<Pattern>>

<<Pattern>>

<<Pattern>>

Symbian application architecture

<<Pattern>>

<<Pattern>>

Document

<<Pattern>>

Creation

Application

View

Engine

Controller

Figure 6: The concern architecture

application domain. These classes define the basis on which
the patterns will be instantiated on.

In the concern architecture, the Symbian application con-
cern itself can be seen to include all the patterns of the
framework. This is intuitive because if any of the patterns
would be left uninstantiated, the application would not con-
form to the Symbian architecture. The concern correspond-
ing to the MVC model consists of patterns Engine, Docu-
ment, View and Controller, of which the two former ones
constitute the Model concern.

The Creation pattern forms an interesting concern of its
own. Without it, the framework would be sound in the
object-oriented sense, but in the domain of the Symbian
platform, however, invalid. In the following, we show how
the patterns are instantiated and the framework is special-
ized concern-by-concern.

3.3 Model Concern
The Model concern includes patterns Engine and Document.
Figure 7 represents the pattern role diagram related to the
Engine pattern. The diagram in the figure (as well as the
rest of the diagrams in the section) uses the notation pre-
sented in Figure 2.

In order to instantiate the pattern, the application developer
has to first provide a concrete class for the role Engine. As
the role is bound to a concrete element (Figure 7), new tasks
offering alternative instantiation paths are provided. In the
next step, the user can either provide a name of the code
module that is used as the DLL entry point for the engine
DLL, or generate constructor or destructor for the Engine.
The third alternative is to perform a task that repairs an
inheritance constraint violation by adding inheritance rela-

<<class>>
Engine

<<operation>>
Constructor

<<operation>>
Destructor

<<operation>>
E32Dll

<<class>>
EngineDllEntryPoint

<<class>>
CBase

<<attribute>>
dllUID

client

CMyEngine MyEngine KUidMyEngine

CMyEngine()

<<dependency>>
DllEntryPointDependency

supplier

inherits

depends on

Figure 7: The Engine pattern and instantiation
steps

tionship between the concrete instance of the role Engine
and class CBase.

In the example casting scenario, shown also in Figure 7, the
user has decided to provide the DLL entry point and unique
identifier for the DLL, and moreover, the constructor for
the Engine. As the user performs the rest of the tasks,
this results in the UML model depicted in Figure 8. The
information related to EngineDllEntryPoint that is not a
part of any class is modeled as a separate class marked with
DllEntry stereotype.

The instantiation of the Document pattern depicted in Fig-
ure 9 starts by binding Engine role into a concrete class, in
order to relate the Document pattern with the already in-
stantiated Engine pattern. The user has to bind the Engine
role of the pattern into the already created instance (in this
example case into CMyEngine class). This is the reason for
the dependency between the patterns in Figure 6.

After the user has located the class playing the Engine role,
it is possible for the user to create a class for the Document
role and perform subsequent tasks that refer to the Engine
role. The Document role, for one, offers possibility for other
classes to get reference to Engine. This is provided by the
public method called Model that is represented by the Model
role, which returns a reference to the class playing the En-
gine role. Additionally, it is the responsibility of the docu-
ment class to create the engine class. However, this concern
is separated into the Creation pattern explained in subsec-
tion 3.7 and does not have to be considered at this stage.
The instantiation of the Document pattern completes the
binding of the Model concern into the Symbian application
architecture.

3.4 View Concern
The View concern corresponds to the View pattern. The
instantiation of the View pattern represented in Figure 9
is carried out in the similar fashion as in the earlier cases.
Noteworthy at this phase is that the View concern is only
bound to the Symbian application architecture and does not
yet have any references to other pattern instances (such as
those of the Model concern).

CEikApplication

CBase

CApaDocumentCApaApplication

CCoeControlCEikDocument

CEikAppUi

MyEngine

<<UID>> KUidMyEngine = {0x01000000}

<<export>> E32Dll(TDllReason) : TInt

<<DllEntry>>
CMyEngine

<<import>> ~CMyEngine()
CMyEngine()

Figure 8: The UML model after the instantiation of
the Engine pattern

3.5 Controller Concern
The Controller pattern implements the Controller concern.
Figure 9 represents the pattern that glues together the
Model and View concerns. The instantiation of the pattern
proceeds in a similar fashion as in the earlier phases.

It is the responsibility of the Controller pattern to act as an
intermediary between the Engine and View patterns. For
example, direct menu commands from the user of the ap-
plication are handled by Controller. Commands have direct
implications on the internal state of the application. The
state is usually stored into a separate class owned by Engine
or it can be queried directly from Engine. It is the respon-
sibility of the Controller to inform View if the user actions
will have implications on the user interface. Alternatively,
View can directly register to listen state changes happening
in Engine. As View gets informed about the changes in the
state of the application, it must have means to query the
current state from Engine. Other types of user actions, e.g.
keyboard and mouse events, are handled directly by View
which calls appropriate methods of Engine, and requests
state changes after user actions have been processed.

3.6 Application Concern
The Application pattern, handling the Application concern,
shown in Figure 9 does not bring much new compared to the
earlier patterns. The nature of the pattern is not very cross-
cutting and it is bound to other patterns only via the Sym-
bian application architecture (Figure 5). Because of that,
the Application pattern could have been bound before the
other patterns in the deployment order. However, in this
example we have selected this order, because it is more in-
tuitive to instantiate it on top of the MVC than the other
way around.

The Application pattern introduces a task of a new kind.
After the inheritance relationship between CEikApplication
and Application has been created, the user is asked to pro-
vide the AppDllUid method that implements the abstract
method defined in CApaApplication class (Figure 5).

3.7 Creation Concern
Creation pattern depicted in Figure 9 finalizes the Symbian
application concern and ties the class instances into the cre-
ation chain. The chain is started when the operating system

The View Pattern

The Controller Pattern

<<class>>
View

<<class>>
CCoeControl

inherits

<<operation>>
Constructor

<<operation>>
Destructor

The Application Pattern

The Creation Pattern

The Document Pattern

<<class>>
Document

<<operation>>
Model

<<class>>
CEikDocument

inherits

<<class>>
Engine

<<attribute>>
iEngine

<<operation>>
Constructor

<<operation>>
Destructor

is of type

references

uses

references

<<class>>
CEikApplication

<<class>>
Controller

<<class>>
CEikAppUi

inherits

<<class>>
Engine

<<attribute>>
iView

<<operation>>
Constructor

<<operation>>
Destructor

<<class>>
View

<<attribute>>
iEngine

<<attribute>>
iEngine

is of type

is of typeis of type

<<operation>>
AppDllUid

<<dependency>>
DllEntryPointDependency

<<class>>
Application

<<operation>>
Constructor

<<operation>>
Destructor

<<operation>>
E32Dll

<<class>>
ApplicationDllEntryPoint

<<operation>>
AppDllUid

<<attribute>>
appUID

inherits

uses

overrides

client

supplier

<<class>>
CEikApplication

<<class>>
Controller

<<class>>
Engine

<<operation>>
ConstructL

<<class>>
View

<<class>>
Document

<<class>>
Application

<<operation>>
ConstructL

<<operation>>
ConstructL

<<operation>>
CreateAppUiL

<<operation>>
CreateDocumentL

<<operation>>
CEikDocument::CreateAppUiL

<<operation>>
CEikDocument::CreateDocumentL

<<operation>>
NewApplication

<<class>>
ApplicationDllEntryPoint

<<class>>
CApaApplication

<<operation>>
ConstructL

uses overrides

overridescreates

creates

creates creates

creates

references

Figure 9: The other patterns

creates Application using the NewApplication function im-
plemented in the application DLL. After that, Application

creates Document which, for one, creates Engine and Con-
troller. Finally, it is the responsibility of Controller to create
View. Naturally, this creation chain introduces relationships
between roles.

The Creation pattern is not built around any central role.
Instead, one has to first locate all the concrete class instances
that play the five main roles of the application. The rest of
the tasks just add methods that are needed in the creation
chain.

3.8 Concluding Remarks on the Example
The whole Symbian application concern is covered after all
the patterns have been instantiated. The resulting UML
model is depicted in Figure 10.

By specializing concern-by-concern the application devel-
oper gets a good grip on the framework. However, the pre-
sented example constituted of mandatory tasks which all
had default implementations i.e. tasks could have been per-
formed automatically by using default names and proper-
ties for the concrete implementations of the roles. Thus,
our approach empowers a generative approach for standard
portions. Naturally, this is not always the case, and even in
this example at least application specific unique identifiers
(appUID and dllUID) should be provided, and the names
of the classes should describe the target application.

Patterns can also be used to describe frameworks contain-
ing optional tasks that might be fulfilled or left undone.
Whether the application developer decides to perform those
tasks or not, the final application conforms to the architec-
tural restrictions and is a legal Symbian application. For
instance, our example could have been enhanced to include
optional tasks for overriding the default implementations of
some of the methods provided by class CCoeControl. In
more detail, the pattern developer could have added optional
tasks to the View pattern to guide the application devel-
oper to define his/her own implementation for handling key
events (OfferKeyEventL method), and for processing pointer
events (HandlePointerEventL method). The application de-
veloper could then implement both methods or just one of
them, depending on the needs of the application, and on the
capabilities of the target mobile device.

4. TOOL VISION
We have started a tool development project in order to proof
our concept. The UML model is represented in Rational
Rose [19] and the specialization itself is guided by tailor-
made views and dialogs. These views and dialogs are built
on the Eclipse environment [8].

Our target is to gain a reasonable level of case tool inde-
pendence. For runtime representation of the UML model
we use xUMLi [1] which conforms to the version 1.4 of the
UML meta model [18]. xUMLi provides services for trans-
ferring data to and from Rational Rose. Rose Extensibility
Interface (REI) is used for data transfer between Rose and
xUMLi models. The internal representation of the model is
not the same as used by the graphical representation, and
the selected case tool is controlled via a well-defined interface
that could be ported also for other case tools. Especially the
Eclipse community may provide an alternative to Rational

CEikApplication

CBase

CAp aDocume nt
CApaAppl ication

CCoeControl

CMyApplication

~CMyApplication()
CreateDocumentL() : CApaDocument*
AppDllUid() : TUid
CMyAppli cation()

CMyAppUi

iEngine : CMyEngi ne*
iVie w : CMyAp pVie w*

~CM yApp Ui()
Con structL() : void
CMyAppUi()

CMyAppView

iEngine : CMyEngine*

~CMyAppView()
ConstructL(aRect : TRect&, aEngine : CMyEngine*) : void
CMyAppView()

CMyEngine

<<import>> ~CMyEngine()
ConstructL() : void
CMyEngine()

CMyDocumen t

iEngine : CMyEngine*

~CMyDocument()
CMyDocument(aApp : CEikApplication&)
ConstructL() : void
CreateAppUiL() : CEikAppUi*
Model() : CMyEngine*

<<create>>

CEikDocument

CEikAppUi

<<create>>

<<create>>

<<create>>

MyApplication

<<UID>> KUid MyApp = {0x01000 001}

<<e xport>> E32Dl l (TDll Reason) : TInt
<<e xport>> NewAp plica tion() : CApaApplication *

<<DllEntry>>

MyEngine

<<UID>> KUidMyEngine = {0x01000000}

<<export>> E32Dll(TDllReason) : TInt

<<Dll Entry>>

Figure 10: The UML model after the instantiation of the Creation pattern

Rose that is better integrated to Eclipse and allows more
interactive use. Related to this, Rational XDE [22] could be
a future choice.

Figure 11 depicts the user interface. The main user interface
consists of three views: Architecture, Pattern and Documen-
tation View. The Architecture View is used to create new,
export, organize and save existing software and concern ar-
chitectures, and patterns. The Pattern View is used to show
and perform tasks needed to instantiate the patterns devel-
oped for target software architecture. The Pattern View is
used for pattern development as well. The Documentation
View plays an important role in guiding the user and pro-
viding rationales for each task to be performed.

User interaction during the instantiation phase occurs
mainly via the Pattern View, illustrated in Figure 12. Roles
that have already been bound to concrete classes are shown
in the left pane whereas unperformed tasks related to the
selected role are shown in the right pane. Tasks may guide
the user to provide a concrete UML element to play a certain
role or to repair a constraint violation. A constraint viola-
tion task may, for example, inform the user that a certain
class must inherit some other class. This kind of constraint
violation is repaired automatically as the user performs the
task. Constraint violations that cannot be repaired auto-
matically, require model modifications from the user. For
instance, the user might be guided to correct the name of a
concrete element to conform to a name constraint.

Tasks that guide the user to bind roles to concrete elements
invoke dialogs. A couple of example dialogs are also repre-
sented in Figure 12. These kind of dialogs provide a way to
generate new UML elements or locate existing ones from a
model. The latter option is necessary because sometimes a
single concrete UML element may play multiple roles. Also,
the ability to locate elements enables the reuse of existing
UML models.

5. RELATED WORK
The idea of regarding patterns as task lists and checking
of pattern integrity originates from JavaFrames (previously
known as Fred [11, 10]). In that context, the emphasis was
on developing Java programs at the level of program code,
whereas here, we have lifted the level of abstraction to UML
and architecting with patterns instead of coding with ones.
We assume that this will give us improved possibilities to
use the approach in large scale systems.

An aspect-oriented technique for implementing design pat-
terns has been proposed in [17]. The authors propose a way
to separate concerns related with design patterns from those
of the application core. The design patterns are then im-
plemented using an aspect-oriented programming language.
We are applying a similar idea but at a higher abstraction
level. Their work is closer to the implementation world; the
design patterns are implemented using programming lan-
guages. In our approach, we express the design patterns in
terms of specialization patterns keeping closer to the design
world. Moreover, our technique is targeted to enhance the
documentation and specialization of frameworks. Besides,
we back our approach with a prototype tool support.

The most closely matching tool related to our proposal is
Rational XDE [22]. In XDE, patterns are modeled using
UML’s template collaborations. After the deployment of
the pattern, the product of the deployment is considered just
as a UML model and the integrity of a pattern is no more
supervised after the deployment phase. One can, for exam-
ple, check that a produced class diagram is a valid UML
model, but there is no way to ensure that after user modi-
fications the model still conforms to the previously applied
pattern. In our approach the conformance to the architec-
ture expressed by patterns is supervised all the time. As
a user makes a change that breaks pattern integrity a new
task will appear informing about the violation and telling
how to fix it.

Architecture View Documentation View

Pattern View

Figure 11: User interface

The Catalysis [7] method also has some common ideas with
our approach, most of which can be traced back to the DisCo
method [12, 6]. The specialization process used in our ap-
proach corresponds to refinement in Catalysis. However, we
have not adapted joint actions [3, 4] into UML. Further-
more, unlike Catalysis, we are able to separate important
concerns explicitly at the design level in the terms of pat-
terns by using the concern architecture, as shown in the
example. Similarly to Catalysis, experiences with formal
method DisCo have had an influence on our approach. In
particular, the way concern architectures are treated in this
paper closely resembles specification architectures used in
the DisCo method [15].

6. DISCUSSION
Using our approach, we see three kinds of advantages over
the conventional techniques for framework documentation.
Firstly, the explicitly defined concerns help in documenting
the purpose of the framework and the incorporated patterns.
Secondly, on the one hand, the pattern casting diagrams as-
sociated with the patterns describe how to instantiate them.
On the other hand, the dependencies between the patterns
in the concern architecture define their instantiation order.
Thirdly, the pattern casting diagrams specify the internal
structure of a pattern. These diagrams could be displayed
when the user “zooms-in” to the pattern included in the
concern architecture.

Furthermore, using specialization patterns for architecting
with frameworks and UML, we can deploy the advantages of
guided and task-based specialization support without forc-
ing an application developer to think strictly in terms of pro-
gramming languages. We believe that with this approach,
the design can advance so that we first use more platform-
independent patterns, and then move towards platform-
dependent ones. The latter ones can be annotated with
code templates that bind the pattern to a used programming
language. Then, the mapping to a programming language

Figure 12: Pattern view and dialogs for user input

occurs at code template level, and an application developer
can choose whether he/she wants to look deeper into the im-
plementation or refer to the more abstract models expressed
in UML instead. These code templates that bind model into
a certain language of choice are evaluated in a separate code
generation phase that provides the code skeleton for a spe-
cialized application.

In a more formal sense, we also see an option to define a
pattern calculus, which could be used to conjoin patterns
even without a base design on top of which they are applied.
A step to this direction has been sketched in [21, 14]. Also,
our approach should be fairly easy to generalize to other
kinds of pattern systems as well.

The expected benefits of the introduced approach come from
the better separation of concerns at a higher level of abstrac-
tion. This is combined with accurate knowledge about the
target software architecture together with its rules and con-
ventions. We use specialization patterns to capture archi-
tectural knowledge, and aspect-oriented design practices to
document explicitly the (possibly overlapping) sets of pat-
terns treating each concern. The UML model that is gener-
ated during the specialization process offers a communica-
tion media for developers, and can be studied at any level of
specialization. We believe that the benefits of the approach
can be seen as shortened learning time and shortened appli-
cation development time. Also, there are good chances for
better quality and maintainability of the application soft-
ware.

7. REFERENCES
[1] J. Airaksinen, K. Koskimies, J. Koskinen, J. Peltonen,

P. Selonen, M. Siikarla, and T. Systä. xUMLi, towards
a tool-independent UML processing platform. In Proc.
NWPER, Copenhagen, Denmark, August 2002.

[2] Aspect-oriented software development WWW site. at

URL http://aosd.net.

[3] R.J.R. Back and R. Kurki-Suonio. Distributed
cooperation with action systems. TOPLAS,
10(4):513–554, Oct 1988.

[4] R.J.R. Back and R. Kurki-Suonio. Decentralization of
process nets with centralized control. Distributed
Computing, 3:73–87, June 1989.

[5] S. Clarke, W. Harrison, H. Ossher, and P. Tarr.
Subject-oriented design: towards improved alignment
of requirements, design, and code. ACM SIGPLAN
Notices, 34(10):325–339, October 1999.

[6] DisCo WWW site. at URL http://disco.cs.tut.fi.

[7] Desmond F. D’Souza and Alan C. Wills. Objects,
Components and Frameworks with UML: The
Catalysis Approach. Addison-Wesley, 1998.

[8] Eclipse WWW site. At URL
http://www.eclipse.org.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

[10] M. Hakala, J. Hautamäki, K. Koskimies, J. Paakki,
A. Viljamaa, and J. Viljamaa. Annotating reusable
software architectures with specialization patterns. In
Proc. the Working IEEE/IFIP Conference on Software
Architecture, pages 171–180, Amsterdam, 2001.

[11] M. Hakala, J. Hautamäki, K. Koskimies, J. Paakki,
A. Viljamaa, and J. Viljamaa. Generating application
development environments for Java frameworks. In
Proc. of the 3rd International Conference on
Generative and Component-Based Software
Engineering, pages 163–176, Erfurt, Germany, 2001.
Springer-Verlag.

[12] H.-M. Järvinen, R. Kurki-Suonio, M. Sakkinen, and
K. Systä. Object-oriented specification of reactive
systems. In Proc. ICSE’90, pages 63–71. IEEE CS
Press, 1990.

[13] Ralph E. Johnson. Documenting frameworks using
patterns. In Proc. OOPSLA’92, pages 63–76. ACM
Press, 1992.

[14] M. Katara and S. Katz. Architectural views of
aspects. In Proc. AOSD 2003, Boston, MA, USA,
March 2003. ACM Press.

[15] M. Katara and T. Mikkonen. Aspect-oriented
specification architectures for distributed real-time
systems. In Proc. the Seventh IEEE International
Conference on Engineering of Complex Computer
Systems, pages 180–190, Skövde, Sweden, June 2001.
IEEE CS Press.

[16] T. Mikkonen. The two dimensions of an architecture.
A position paper in the First Working IFIP
Conference on Software Architecture, February 1999.
San Antonio, Texas, USA.

[17] N. Noda and T. Kishi. Implementing design patterns
using advanced separation of concerns. In OOPSLA
2001 Workshop on Advanced Separation of Concerns
in Object-Oriented Systems, Tampa Bay, FL, USA,
2001.

[18] OMG. Unified Modeling Language Specification,
Version 1.4, September 2001.

[19] Rational Rose WWW site. at URL http:

//www.rational.com/products/rose/index.jsp.

[20] Dirk Riehle. Composite design patterns. In Proc.
OOPSLA 1997, pages 218–228, 1997.

[21] M. Sihman and S. Katz. A calculus of
superimpositions for distributed systems. In Proc.
AOSD 2002, pages 28–40, Enschede, The Netherlands,
April 2002.

[22] IBM Rational Software. Rational XDE. At URL
http://www.rational.com/products/xde/index.jsp.

[23] Peri Tarr, Harold Ossher, William Harrison, and
Stanley M. Sutton, Jr. N degrees of separation:
Multi-dimensional separation of concerns. In Proc.
ICSE’99, pages 107–119, Los Angeles, CA, USA, May
1999. ACM Press.

[24] M. Tasker, J. Allin, J. Dixon, M. Shackman,
T. Richardson, and J. Forrest. Professional Symbian
Programming: Mobile Solutions on the EPOC
Platform. Wrox Press Inc, 2000.

