
Transformation Based Approach for Weaving Use Case
Models in Aspect-Oriented Requirements Analysis

Motoshi Saeki
Dept. of Computer Science, Tokyo Institute of

Technology
Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8552,

Japan

saeki@se.cs.titech.ac.jp

Haruhiko Kaiya
Dept. of Computer Science, Shinshu University

Wakasato 4-17-1, Nagano 380-8553, Japan

kaiya@cs.shinshu-u.ac.jp

ABSTRACT
This paper discusses techniques for combining non-functional
requirements (NFRs) with functional requirements (FRs) in
requirements analysis phases, based on aspect-oriented ap-
proach. In our approach, we elicit both types of require-
ments by using goal-oriented analysis method, and then we
specify the relationships between the FRs and NFRs with a
cross-cutting table because an elicited NFR can be related
to multiple FRs. These relationships help us to evolve the
goal-graphs of FRs and NFRs in goal-oriented analysis pro-
cesses. We can identify use cases from the elicited FRs. To
weave the NFRs, from the cross-cutting table and the use
cases of the FRs, we design transformation rules to automat-
ically produce use case diagrams, use case descriptions and
use case maps that achieve the NFRs. The paper illustrates
a simple example to clarify our method.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications
– Methodologies

General Terms
Design

Keywords
Use Case, Aspect, Pattern, Reuse, Requirements Analysis,
Template

1. INTRODUCTION
In recent software development, many industrial practi-

tioners come to adopt object-oriented approach, especially
in the upper stream of development, e.g. requirements anal-
ysis and design, and they frequently use UML diagrams, use
case diagrams and class ones. However, generally speaking,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

it is difficult to identify use cases and objects, and to con-
struct diagrams in the early stage of requirements analysis,
e.g. requirements elicitation stage. To solve these difficul-
ties, several researchers and practitioners integrate require-
ments elicitation methods with use case modeling.

A family of goal-oriented requirements analysis(GORA)
methods [1, 2, 3, 4] is one of the promising approaches
to support requirements elicitation, and is a top-down ap-
proach for refining and decomposing the needs of customers
into more concrete goals that should be achieved for satisfy-
ing the customers’ needs. We can also find several researches
and case studies where use case modeling techniques are
combined with a goal-oriented method, in order to elabo-
rate both the identification of use cases and the decomposi-
tion of goals[5, 6, 7, 8]. Figure 1 depicts a general process
for completing a requirements specification document. In
this process, we can use a goal-oriented method for eliciting
requirements, and use case modeling technique to describe
requirements, and this style of combination is putting into
practice. Requirements are classified into two categories;

Requirements

Specification
Eliciting

Requirements

Describing

Requirements

Reviewing
&

Evaluating

InterviewsInterviews

QuestionnairesQuestionnaires

ManualsManuals

Past Specs.Past Specs.

Figure 1: Requirements Analysis

one is functional ones (FRs) and the other is non-functional
ones (NFRs) such as reliability, performance, security and
so on. In addition to elicitation of functional requirements,
a goal-oriented approach could be applied to the elicitation
of non-functional ones[9]. However, functional requirements
can be cleanly decomposed into components, e.g. sub-goals
and use cases that are units of the system functions, while
non functional requirements cross-cut the functional units
and are tangled on them. It leads to the difficulty in de-
composing cleanly functional requirements and non- func-
tional ones. As a result, it is hard to get reusable and
maintainable components as unit of requirements. Aspect-
oriented programming (AOP) [10, 11] is a programming

technique to have separated coding of functional parts from
non-functional ones, called aspects, and to weave them into
a final implementation. We apply this idea to requirements
specification in order to make the modularity of components
higher. That is to say, in our technique, we describe func-
tional requirements separating from non-functional require-
ments and after specifying both of them, we weave them
together into a final requirements specification written with
use cases. Their separation enables us to have components
of functional requirements and non-functional ones. In [12],
the aspects of componentware was considered as interfaces
of components in order to have the suitable and correct com-
bination of the components, but its aim and approach are
different from this paper and AOP.

Although a goal-oriented method can support elicit NFRs
in the same way as FRs’ elicitation[9], it is a problem how we
can embed the elicited NFRs into the FRs and get an inte-
grated description based on use case modeling, because the
NFRs are scattered to the FRS, so called cross-cutting con-
cerns to the FRs. This paper provides one of the solutions
to deal with weaving FRs and NFRs to get the integrated
descriptions of the elicited use cases. The essential idea is
as follows; During the independent elicitation of FRs and
NFRs by using a goal-oriented method, we specify the rela-
tionship between sub-goals of FRs and those of NFRs. The
relationship is represented in a table form in the same way
as [13]. After completing a goal graph of FRs, we extract
use cases as a use case model for FRs. By transformation,
the FR use case model is evolved to a use case model where
the NFRs are satisfied, and what transformation can be ap-
plied is identified from the relationships between the FR and
NFR sub-goals. The rest of the paper is organized as follows.
The next section presents the overview of our approach. In
section 3, we show a transformational approach on use case
models to weave FRs and NFRs, in example-based style.

2. REQUIREMENTS ANALYSIS PROCESS

2.1 Goal-Oriented Analysis and Use Case Mod-
eling

Figure 1 depicts the flow of a requirements analysis pro-
cess based on our aspect-oriented requirements analysis with
goal-oriented method and use case modeling one. In the
first step, an analyst elicits requirements by using a goal-
oriented analysis method. In most cases, he or she has in-
terviews and/or questionnaires with stakeholders including
customers and users. In the case that a similar system had
been developed before, he investigates its documents such
as manuals and specifications. After gathering information,
he starts goal-decomposition activities, in some cases to-
gether with users and customers, to construct a goal-graph
for functional requirements (FR goal graph) and a graph for
non-functional ones (NFR goal graph) such as reliability,
performance, memory space and so on. In the FR goal-
graph, its leaves include operational descriptions, so we can
make them correspond use cases in use case modeling. A
use case description of the corresponding use case results
from the contents of the leaf goal. Figure 3 illustrates this
process. The example that we used in the figure is a tool
for supporting the task that program committee chairs (PC
chairs) of academic international conferences have to per-
form. The PC chairs should organize the committee to have
many high quality papers and to reduce the PC chairs’ tasks.

See the first decomposition in the goal graph of the figure.
The chairs receive the submitted papers and distribute them
to the reviewers, normally PC members. After getting the
review reports from the reviewers, they summarize them and
have PC meetings to decide which papers will be accepted
or rejected. The authors of the papers are notified of their
acceptance or rejection by the PC chairs. Since each leaf of
the decomposed graph includes operational descriptions, we
can identify it as a use case.

We adopt a use case diagram of UML and a use case de-
scription for specifying the behavior of each use case[14].
In addition them, to specify control dependencies, e.g. ex-
ecution order on use cases, and data dependencies on use
cases by using use map technique[15]. We adopt two addi-
tional dependencies among use cases; data dependency and
control dependency, and they are represented by using a
technique of use case map. For example, the use case “De-
ciding Acceptance or Rejection” of the submitted papers can
be performed only after “Receiving Review Reports” of the
papers from the reviewers. These two use cases have control
dependency.

2.2 Cross-Cutting Table
During or after the goal-decomposition processes, the an-

alyst can relate the sub-goals of the FR goal graph and
those of the NFR graph. Figure 4 shows the example of
the relationship between the FRs and NFRs, and the de-
scription in a table form, called cross-cutting table. This
table is useful to identify and to understand which FRs the
NFRs are cross-cutting over. The vertical axis of the table
stands for a list of the FR sub-goals, and on the other hand
the horizontal one is NFR sub-goals. For example, “Re-
ceiving Paper Submission” should satisfy high security and
reliability requirements. According to ISO9126, Reliability
can be decomposed into three sub-goals “Maturity”, “Fault-
tolerantness” and “Recoverability”. So we can have another
table, more detailed, that expresses the cross-cutting infor-
mation of the decomposed NFRs. For example, Maturity are
crossed over “Distributing Papers to Reviewers”, “Deciding
Acceptance or Rejection” and “Notifying Acceptance or Re-
jection”. It means that we should consider how Maturity
should be satisfied when we decompose these FR sub-goals
further or specify use cases of these three goals.

2.3 Aspect Weaving
We capture aspect weaving as transformation of the use

case structures into one that can hold the non-functional re-
quirements. The analyst considers the transformations that
are suitable for the NFRs, and apply them to the use case
model of the functional requirements. New use cases may
be added and/or the structure of the use case description
may be changed so that the NFRs are satisfied. Figure 5
summarizes the process of weaving the aspects (transform-
ing). Suppose that the analyst finds “high reliability” re-
quirements is imposed on a use case #2 of the figure. The
use case #1 has a dependency relationship to the use case
#2, which is represented with a gray arrow in the figure. If
the relationship is a control dependency, the use case #1 is
executed and then the use case #2 is activated. The arrows
stand for an instance of execution sequence of the whole of
the system, i.e. a scenario.

To get high reliability, we often take a duplicate style of
performing tasks. In this example, we allocate the same

AnalystCustomer

User

Functional Requirements

Non-functional Requirements

Weaving

Use Case Diagram

Use Case Description

Use Case Map

Use Case Diagram

Use Case Description

Use Case Map

Cross-cutting Table

Goal-oriented Analysis

Goal-oriented Analysis

Figure 2: Aspect-Oriented Requirements Analysis

or similar ”task” to another actor and after the two ac-
tors’ completing the task, their results are checked against
each other. This is a typical strategy of working to keep
its high reliability. We can have this strategy as a weaving
knowledge and it can be represented with a transformation
of a use case ”task” into the duplicated ones ”task#1” and
”task#2” as shown in Figure 5. In the transformation, a new
use case ”check”, a new actor and their interactions are also
added. The analyst selects a suitable aspect pattern for the
non-functional requirements and applies it to the use case
description. Finally he or she gets the final use case descrip-
tions that are satisfied with the functional requirements and
the non-functional ones. This weaving technique can be cat-
alogued as patterns that are formally defined with the rules
on graph grammar since a use case diagram is considered
as a graph. By separating NFRs with FRs, maintainability
and traceability of requirements are improved.

Let’s turn back our example. According to the cross-
cutting table shown in Figure 4, Reliability can be related
to five use cases. Thus we should apply this transformation
to these five use cases if we adopt the “duplicate” strategy.

3. WEAVING EXAMPLES
In this section, we discuss more examples of transforma-

tion based weaving to get the use case model from FR use
case model, by using the example problem of the PC chair’s
task. And we will discuss briefly the possibility of trans-
formations as rules to get reusable weaving knowledge. In
this example, we can consider the reliability and fairness of
making a program as examples of the NFRs. The strate-
gies for achieving these non-functional requirements are 1)
sending a confirmation whenever authors contact to the PC
chair, 2) having two PC chairs, and so on. These can be
added to the task of the PC chairs. The transformation

rules are shown in Figures 6 and 7. Figure 6 is for adding
an activity ”sending a confirmation for the receipt” to the
abstract use case whose type is ”receiving something”. The
examples of the use cases to which this rule can be applied,
i.e. to which the activity can be added are ”Appointing PC
members”, ”Receiving Paper Submissions”, ”Receiving Re-
view Reports” and so on. Note that the pattern of Figure 6
is parameterized and the parameters are parenthesized with
”[” and ”]”. They can be considered as hot spots within
a use case description. In the sense that the parameterized
use case ”Receiving [Something]” includes hot spots, it is an
abstract use case and a pattern of a use case.

Figure 7 is for introducing another PC chair in order to
make high reliability and fairness of making a program. The
pattern adds a new use case to check the results of the tasks
performed by them. If we apply the pattern to the use
case ”Deciding Acceptance or Rejection”, we can get a sys-
tem where two PC chairs would decide the acceptance or
rejection of papers independently and after that they dis-
cuss their results to get a conclusion. The system seems to
improve the reliability. Note that the use case ”Deciding Ac-
ceptance or Rejection” has data dependency to ”Receiving
Review Report”, i.e. the received review reports are input
data to ”Deciding Acceptance or Rejection”. This depen-
dency should inherit to the duplicate-generated use cases.

4. DISCUSSION AND FUTURE WORK
This paper discusses transformation based weaving as-

pects in requirements analysis. Weaving can be formalized
with transformation rules or transformation patterns to de-
rive the use cases and their structures that are satisfied with
non-functional requirements.

Cross-cutting tables are really useful to design how trans-
formations should be applied, and also to proceed the de-

Appointing

PC members
Distributing

Papers to

Reviewers

Receiving

Paper

Submission

Receiving

Review

Reports

Notifying

Acceptance

or Rejection

Composing &

Distributing

a Program

Deciding

Acceptance

Or Rejection

PC Chairs’ Task

Reviewing Papers

By PC Chairs

Reviewing Papers

By PC Committee

Review Papers

Reducing PC Chairs’ Task

Having Many

Participants

Having Many

High Quality Papers

Use case ``Deciding Acceptance or rejection”

conflict

OR

Figure 3: Goal-Oriented Analysis and Use Cases

composition of sub-goals. In particular, the tables suggest
which set of use cases should be transformed so as to satisfy
the NFRs. The examples in the paper were very simple and
the transformations were applied once, not multiple applica-
tions of different transformations. In practical setting, the
analyst applies multiple transformations to several use cases.
In this situation, we should consider the order of transform
application and how to specify the order.

This paper picked up only one example in a specific do-
main. Therefore, to construct a practical pattern base sys-
tem that stores the use case patterns and aspect patterns,
we should explore much more case studies and extract pat-
terns from various kind of problem domain. Exploring how
to construct class diagrams from use case descriptions is also
one of the future work.

5. REFERENCES
[1] Annie I. Anton. Goal-based requirements analysis. In

Proceedings of the Second IEEE International
Conference on Requirements Engineering(ICRE’96),
1996.

[2] Anne Dardenne, Axel van Lamsweerde, and Stephen
Fickas. Goal-directed requirements acquisition. Science
of Computer Programming, 20(1-2):3–50, 1993.

[3] Axel van Lamsweerde. Goal-oriented requirements
engineering: A guided tour. In Proceedings of the 5th
IEEE International Symposium on Requirements
Engineering(RE’01), pages 249–263, 2001.

[4] Haruhiko Kaiya, Hisayuki Horai, and Motoshi Saeki.
AGORA : Atributed Goal-Oriented Requirements
Analysis Method. In Proceedings of the 10th
Anniversary IEEE Joint International Requirements
Engineering Conference(RE’02), pages 13–22, Sep
2002.

[5] Annie I. Anton, W. Michael McCracken, and Colin
Potts. Goal decomposition and scenario analysis in
business process reengineering. In Proceedings of the
6th International Conference of Advanced Information
Systems Engineering (CAiSE 94), pages 94–104, June
1994.

[6] C. Rolland, C. Souveyet, and C. Ben Achour. Guiding
goal modelling using scenarios. IEEE Transaction on
Software Engineering, 24(12):1055–1071, December
1998.

[7] Annie I. Anton, Ryan A. Carter, Aldo Dagnino,
John H. Dempster, and Devon F. Siege. Deriving goals
from a use-case based requirements specification.
Requirements Engineering Journal, 6:63–73, 2001.

[8] Victor F.A. Santander and Jaelson F.B. Castro.
Deriving use cases from organizational modeling. In
Proceedings of the 10th Anniversary IEEE Joint
International Conference on Requirements
Engineering(RE’02), pages 32–39, 2002.

[9] Lawrence Chung, Brian A. Nixon, Eric Yu, and John
Mylopoulos. Non-Functional Requirements in Software
Engineering. Kluwer Academic, 1999.

Security

Composing &

Distributing a

Program

XXNotifying

Acceptance or

Rejection

XXDeciding Acceptance

or rejection

XXReceiving Review

Reports

XXDistributing Papers to

Reviewers

XXReceiving Paper

Submissions

Appoint PC members

ReliabilityFunctionality

Security

Composing &

Distributing a

Program

XXNotifying

Acceptance or

Rejection

XXDeciding Acceptance

or rejection

XXReceiving Review

Reports

XXDistributing Papers to

Reviewers

XXReceiving Paper

Submissions

Appoint PC members

ReliabilityFunctionality

Composing &

Distributing a

Program

XXNotifying

Acceptance or

Rejection

XXDeciding

Acceptance or

Rejection

XXReceiving

Review Reports

XXDistributing

Papers to

Reviewers

XXReceiving Paper

Submissions

Appoint PC

members

RecoverabilityFault-

tolerantness

Maturity

Composing &

Distributing a

Program

XXNotifying

Acceptance or

Rejection

XXDeciding

Acceptance or

Rejection

XXReceiving

Review Reports

XXDistributing

Papers to

Reviewers

XXReceiving Paper

Submissions

Appoint PC

members

RecoverabilityFault-

tolerantness

Maturity

Figure 4: Cross-Cutting Table

[10] G. et. al. Kiczales. Aspect-Oriented Programming. In
Lecture Notes in Computer Science (Proc. of
ECOOP’97), volume 1241, pages 220–242, 1997.

[11] L. Bergmans and M. Aksit. Composing Crosscutting
Concerns Using Composition Filters. CACM,
44(10):51–57, 2001.

[12] J. Grundy. Aspect-Oriented Requirements
Engineering for Component-Based Software Systems.
In Proc. of 4th IEEE International Symposium on
Requirements Engineering (RE’99), pages 84–91, 1999.

[13] A. Rashid, A. Moreira, and J. Araujo. Modularisation
and Composition of Aspectual Requirements. In Proc.
of 2nd International Conference on Aspect-Oriented
Software Development (AOSD2003), pages 11–20,
2003.

[14] Alistair Cockburn. Writing Effective Use Case.
Addison-Wesley, 2000.

[15] D. Amyot, L. Logrippo, R. Bruhr, and T. Gray. Use
Case Maps for the Capture and Validation of
Distributed Systems Requirements. In Proc. of 4th
IEEE International Symposium on Requirements
Engineering (RE’99), pages 44–53, 1999.

Task

Task#1 Task#2

Check

Task#1 Task#2

Check

Use Case Diagram and Map

Reliability Aspect

weave

dependency
(control and data etc.)

transform

A B#2

#1

#1

Figure 5: Transformation Based Weaving

Receiver Receiving [Something] Sender

Receiver Receiving [Something] Sender

Sending a
confirmation

Receiving [Something]

Objective, Actors, Activation Condition

Activity Flow

1. Receiving [Something] from [Sender].

2. Checking [Something].

Alternative or Exceptional Flow

2.5 Inform [Sender] if incomplete.

Receiving [Something]

Objective, Actors, Activation Condition

Activity Flow

1. Receiving [Something] from [Sender].

2. Checking [Something].

3. Sending a Confirmation to [Sender].

Alternative or Exceptional Flow

2.5 Inform [Sender] if incomplete.

Transform (add an activity in

a use case)

Receiver Receiving [Something] Sender

Receiver Receiving [Something] Sender

Sending a
confirmation

Receiving [Something]

Objective, Actors, Activation Condition

Activity Flow

1. Receiving [Something] from [Sender].

2. Checking [Something].

Alternative or Exceptional Flow

2.5 Inform [Sender] if incomplete.

Receiving [Something]

Objective, Actors, Activation Condition

Activity Flow

1. Receiving [Something] from [Sender].

2. Checking [Something].

3. Sending a Confirmation to [Sender].

Alternative or Exceptional Flow

2.5 Inform [Sender] if incomplete.

Transform (add an activity in

a use case)

Figure 6: Weaving Use Case Descriptions

Data Dependency

Aspect Pattern Instantiation

transform

(weave with the aspect)

transform

(weave with the aspect)

[Actor] [Task]

[Check]

[Task#2]

[Actor#2]

PC chairDeciding Acceptance or
Rejection

Making a Proposal#1

PC Chair

Discussing Acceptance or
Rejection

[Actor#1]

[Task#1]
Making a Proposal#2

PC Vice-Chair

Data Dependency

Data Dependency

Aspect Pattern Instantiation

transform

(weave with the aspect)

transform

(weave with the aspect)

[Actor] [Task]

[Check]

[Task#2]

[Actor#2]

PC chairDeciding Acceptance or
Rejection

Making a Proposal#1

PC Chair

Discussing Acceptance or
Rejection

[Actor#1]

[Task#1]
Making a Proposal#2

PC Vice-Chair

[Actor] [Task]

[Check]

[Task#2]

[Actor#2]

PC chairDeciding Acceptance or
Rejection

Making a Proposal#1

PC Chair

Discussing Acceptance or
Rejection

[Actor#1]

[Task#1]
Making a Proposal#2

PC Vice-Chair

Data Dependency

Figure 7: Weaving Use Case Diagram and Maps

