
Aspects in Communications: Performance
M. E. Fayad

Computer Engineering Dept.,
College of Engineering

San Jose State University
One Washington Square, San Jose,

CA 95192-0180
(408) 924-7364

m.fayad@sjsu.edu

R. S. Pradeep
Computer Engineering Dept.,

College of Engineering
San Jose State University

One Washington Square, San Jose,
CA 95192-0180
(408) 247-4575

rohinisp@hotmail.com

F. Seddiqui
Computer Engineering Dept.,

College of Engineering
San Jose State University

One Washington Square, San Jose,
CA 95192-0180
(408) 296-6590

iqra@pacbell.net

ABSTRACT
This paper deals with the similarities between “Aspect Oriented
modeling” and “Software Stability modeling” techniques. The
design pattern for performance is considered to elaborate on these
issues. “Aspects”, which might arise at any stage of the software
lifecycle, have attributes that are similar to the “Enduring
Business Themes” and “Business Objects” used in the stable
modeling.

1. INTRODUCTION
Aspect oriented modeling is a modeling technique that attempts to
abstract out features common to many parts of the system beyond
functional modules, thus improving the quality of modeling [4,5].
Like objects, aspects may arise at any stage of the software
lifecycle, including requirements specification, design,
implementation, etc.

With the present systems and languages, the design for the
abstraction mechanisms, that includes defining and obtaining
aspects, involves breaking a system down into parameterized
components that can be called to perform a function. But many
systems have properties that don't necessarily align with the
system's functional components. The examples of such cases are
usually communication, failure handling, coordination, memory
management, or real-time constraints, that tend to cut across
groups of functional components. The issues these design
decisions address are “aspects”. Aspects are usually used for
improving the separation of goals and concerns in software design
and implementation.

On the other hand, Stable Modeling is a modeling technique that
uses the concepts of “enduring business themes” (EBTs) and
“business objects” (BOs) [1, 2]. These form the core of the system
that is modeled. Hence, this reduces the changes that need to be
made to the system when the requirements change. To obtain
EBTs and BOs of the system under consideration, those aspects of
the system that remain stable over a period of time are identified.
These usually require minimal reengineering and code
modifications when requirements change. The majority of

engineering done on a system modeled should be to fit the project
to those areas that remain stable. This yields a stable core design
and thus, a stable software product. Changes introduced to the
software product will then be in the periphery since the core
would be based on something that remains stable. Since any
changes that must be made to the software in the future will be in
this periphery, it will only be these small external modules that
will be engineered. Thus, the endless circle of reengineering the
entire system is avoided for any minor changes.
Let us examine how aspects have properties similar to EBTs and
BOs considering a performance design pattern. There are several
methodologies available for developing patterns. Unfortunately,
developing a good pattern with an appropriate methodology is
expensive and has drawbacks. The pattern that is developed may
not necessarily be applicable to multiple domains. This paper
considers a performance design pattern developed using Software
Stability Model [1, 2] and the concept of Stability Patterns [3].
The pattern is simple to learn and provides enough features to
hook to applications with minimal modifications. The pattern for
performance is dealt with in the following sections. We provide
the problem and the solution along with the applicability. This
pattern is also used as an example to show the similarities in
properties of aspects, EBTs, and BOs.

2. PATTERN EXAMPLE FOR STABLE
DESIGN MODELING
2.1 Pattern Name
AnyPerformance: This name indicates that the pattern
AnyPerformance is the process of accomplishing a task in
accordance with a set standard of accuracy and completeness.
Since it begins with “Any”, it indicates that this can be used by
any domain that has any kind of performance involved.

2.2 Problem
Since the pattern AnyPerformance spans many contexts that are
completely different in nature, modeling a generic concept that
can be applied to all domains is the problem at hand. This is due
to the fact that the requirements differ based on the domain or the
context.

 The performance of the system or a party can be different based
on the requirements, objectives, and measures. For example,
objectives for performing a task for wireless networks will be
different from that of a performer in a theatre, or an employee at
work. Hence, obtaining a generic model or a pattern in this case
that encompasses all the features of different domains can be a
difficult task to accomplish. How a single model addresses these

variations is the challenge faced by this model.
This leads to an area that requires a solution to
the problem of how a model that handles
performance for different applications be
obtained. But there are certain aspects of
performance that transcend all application
domains, which form the participants of the
pattern in the form of EBTs and BOs, These have
been identified and described in the solution
section for the pattern.

2.3 Context
Performance is an important concept in any
domain that needs its party to perform some task
according to the standards desired. A reason as to
why the performance task needs to be carried out
may also be specified to the performer along
with the criterion for the desired performance. In general, this
term may be either a criterion objective or an enabling objective.
For example, the objective for an actor to perform on stage may
be to entertain people, or for a network, the objective for
performing a particular task may be specified by the domain
based on the type of the services desired. There might be some
actions or data that can be objectively observed, collected, and
measured to determine if a task performer has performed the task
to the prescribed standard or that which can be used for further
analysis and evaluation.
In some aspects, like telecommunication networks, performance
is an important concept for carrying out the task of delivering data
and voice in a wireless mode according to the set standard. There
can be other aspects, like specifying the channel allocation
strategy, protocols, architecture, or security features that form the
requirements for a particular performance. Performing a task will
also be required in industries that are involved in assembling or
manufacturing. Therefore, evaluating performance across
domains becomes easier using a stable pattern. This pattern can be
reused with many applications by using simple hooks that require
minimal changes without the entire system being rewritten.

2.4 Forces
The design pattern obtained for performance spans many contexts
that are completely different in nature. Performance of any task
can be done by one or more entities simultaneously that can be
requested by multiple parties. Thus, the pattern needs to handle
multiple parties and entities. How these multiple entities and
parties are handled is a challenge faced by this model. The pattern
is also not flexible enough to address the requirements of domain-
specific features. Criteria can be different based on the context it
occurs in. The features for criteria, defined by a party, are domain
specific and addressing these features is a limitation faced by this
model.

2.5 Solution
The solution that is proposed concentrates on obtaining a generic
pattern for performance that can be used with any domain, leaving
out the domain specific features. This allows any application to be
hooked to the pattern with a few changes.

Figure1 below shows the diagram of the AnyPerformance pattern

Figure 1: Performance Design Pattern
The pattern AnyPerformance consists of the following
participants:
Classes

• AnyPerformance: This is the core of the stable design mode
and represents the process of accomplishing a task in
accordance with a set standard of accuracy and
completeness.

Patterns:

• Measurement: This represents the EBT from which the
business object performance is derived. It utilizes the data
and the observations that are obtained as a result of some
task being performed and checks if the task is performed to
the set standard which is provided by the BO criteria.

• AnyParty: This represents parties that are involved in the
task of performance directly or indirectly. They can be
involved in the process of requesting a task to be performed
or in the process of observation and providing measures. For
example, the party can be an employer who requests the
performance or some task to be performed to make relevant
observations and data collections or it can also be an
audience in a theater. In more technical aspects, it can be an
operator requesting a network to transmit data.

• AnyEntity: This represents any entity that needs to perform a
task. It can be a wireless system, an engine part, etc., which
needs to finish or perform a task that is assigned to it. The
engines may perform the task of running some machinery in
an industry or a network, which can be wireless or wired,
may perform the task of transmitting data.

• AnyCriteria: This provides the details of all those issues that
affect performance. It can be a standard to be achieved, a
condition to be satisfied, or a reason for performance to be
carried out as a task. Its also specifies a criterion for the
desired performance by the performer. In general, this term
may either be a criterion or an enabling objective. It also
represents all separate acts or things that are required to
satisfactorily complete any party’s performance on the job. It
includes the act (behavior), the conditions under which the
behavior is performed, and the standard of performance
required by the incumbent.

• AnyMetrics: Describes the actions and data that can be
objectively observed, collected, and measured to determine if

a task that a performer has performed is to the prescribed
standard. In general, this represents all the assessment data
that can be collected, or the observations that can be made
after the completion of a performance. This metrics can be
further used for analysis and evaluation.

2.6 CRC Cards
The CRC cards give details on the responsibilities and
collaborations for each class in the pattern

Table 1: CRC Card for AnyPerformance

AnyPerformance (Performance facilitator)

Responsibility Collaboration

Client Services Defines the
process of

accomplishing a
task in

accordance with
a set standard of

accuracy and
completeness

AnyParty
AnyEntity

AnyCriteria
Measurement
AnyMetrics

definePerformance()
analyzeEntityPerformance()

performanceResult()
calculatePerformance()

criteria ()
metrics ()

Table 2: CRC Card for AnyEntity

AnyEntity (Performer)

Responsibility Collaboration

Client Services Performs a task
to a standard

set AnyPerformance
performTask()

providePerformanceData()

Table 3: CRC Card for AnyParty

AnyParty (Performance Requestor)

Responsibility Collaboration

Client Services Setting the
rules under
which the

performance of
any entity is

measured

AnyPerformance
AnyCriteria

evaluateEntityPerformance
()

defineCriteria()

Table 4: CRC Card for AnyCriteria

AnyCriteria (Criteria Definer)

Responsibility Collaboration

Client Server Describes the rules,
standards and the

external factors that
need to be

considered before
any task can be

performed

AnyPerformance
Measurement

AnyParty

defineCriteria()
modifyCrietra()

Table 5: CRC Card for Measurement

Measurement (Measurement)

Responsibility Collaboration

Client Server Utilizes the data
and the

observations
obtained as a
result of some

task being
performed to

check if the task
is performed to
the set standard

AnyPerformance
AnyMetrics
AnyCritera

specifyMeasurement()
compareMetricsResults()

Table 6: CRC Card for AnyMetrics

AnyMetrics(Metric Provider)

Responsibility Collaboration

Client Server Describes the actions
and data that can be

objectively observed,
collected, and
measured to

determine if a task
that a performer has
performed is to the
prescribed standard

AnyPerformance
AnyEntity

Measurement

provideMetrics ()

2.7 Consequences
Performance pattern supports its objectives in the following ways:

• Generalized process for performance applicable to various
domains with sufficient flexibility is obtained.

• Scalable pattern in terms of parties and entities in various
domains that use performance is derived.

This pattern has the following benefits:Adaptable for different
kind of entities: The performance pattern has high level of
adaptability making it possible to adapt this pattern for different
kinds of entities. For example, from base standards like the IEEE
802.3 and IEEE 802.11, different protocols are developed. This
performance pattern is used to check the efficiency of all the
protocols developed from these standards.
• Easy to use: The performance pattern developed is a general

pattern that can be adapted for different parties and metrics.
This provides a high level of extensibility to handle adding
new and complex features to this model.

2.8 Tradeoffs
Performance pattern has following tradeoffs:

• Generalization: Generalization across domains is obtained at
the cost of flexibility.

• Feature extraction: Different features exist for different
types of domains and contexts, i.e., the features for industries
will be different from the features for wireless networks and
hence it is difficult to extract the common features and make
them applicable in this pattern in an in-depth manner.

2.9 Results
The results obtained from the pattern are listed below:

• Obtained a generic pattern for performance evaluation
applicable across various domains.

• Obtained a stable, reusable pattern for performance, to which
various applications can be hooked.

• Obtained a scalable pattern, in terms of entities, metrics,
participants, and media

2.10 Applicability with Illustrated Examples
2.10.1 Problem Description
The pattern can be used for performance of the task of
transmission of data in networks.

2.10.2 Problem Description
The diagram below depicts the class diagram for the scenario of
data transmission in networks. The stable parts of the system, i.e.,
the EBTs and BOs are shown in different columns of the table.

Figure 2: Stability model class diagram for Performance
Let us now examine how this example helps in evaluating the
similarities between the aspects, EBTs and BOs.

3. COMPARISON OF ASPECT, EBT AND
BO
This section provides information on various properties of aspects
and compares it with the EBTs and BOs from stable modeling.
Figure 1 gives the design pattern, obtained using stable modeling
technique for performance of any task, in any system, by any

party or entity, in any domain. Figure 2 describes how this pattern
can be applied to one of the domains that use performance.
Using AOAD (Aspect Oriented Analysis and Design), has many
advantages. The following list illustrates the properties of aspects
and how they are similar to the EBTs and the BOs obtained by
stable modeling.
• Stable: Aspect modules can usually be unaware of the

crosscutting concerns, and hence it is easier to add new
functionalities and introduce new aspects without altering the
system. Furthermore, when new modules and aspects are
added, existing aspects crosscut them, creating a coherent
evolution. As a result, the system remains stable over a
period of time handling new requirements without requiring
the entire system to be redesigned. Similarly, with the EBTs
forming the core of any model, which identifies those
aspects of the system that will not change and still remain
flexible to handle future requirements, the model developed,
remains stable. The part of the system that is likely to change
over a period of time forms the periphery of the model in the
form of “industrial objects”. Thus, the property of stability

can be applied to aspects,
EBTs and BOs.

• Reusable: Aspects can be
easily reused since each
aspect forms a separate,
individual module.
Similarly, each EBT along
with its related BOs can be
reused in any application
that uses the concept
mentioned by the EBT. For
e.g., in figure.1, any
application using
performance can reuse the
BO “AnyPerformance”, as
a design pattern with minor
modifications done to hook
required applications.

• Domain independent:
Aspects are domain
independent. They provide
solutions that can be applied
to multiple domains, by
providing domain-specific
mechanisms to solve a
particular problem. Cross-
cutting concerns are
addressed in a modularized
way. Figure.1 depicts how

stability modeling, when applied to a problem, addresses the
issue in a domain independent way. The pattern for
performance obtained is general enough to be applied to any
domain that uses performance.

• Patterns: Since most of the systems developed have cross
cutting concerns that result in code tangling and code
scattering, a few new techniques that handle modularization
have evolved to handle these issues. Patterns are one such
technique that enables deferring implementation. It also
provides the features of modularization and code
optimization. Aspect oriented modeling and stable modeling

support analysis and design patterns that are general enough
to address and handle future requirements. Since a pattern
needs to be reusable, avoiding the redesign of the entire
system, it becomes important to develop a good pattern that
can be applicable to multiple applications and domains.
Figure.1 gives an example of a pattern developed using
stable modeling techniques for performance in which the BO
“AnyPerformance”, remains stable changing only internally.

• Dynamic: Aspects are dynamic, which means that the
properties of an aspect can change over a period of time
internally to encompass the changing requirements.
Similarly, the BOs in a stable model are dynamic, changing
internally to handle any changes that are done to the system,
but remain stable externally, keeping the model stable. This
is the reason why they are partially tangible and will remain
externally stable throughout the existence of the problem.

• Handles goals and purposes: An aspect or a concern,
handles a particular concept, goal, or area of interest. EBTs,
in a similar way, focus on the goal of developing the system.
This concept helps in obtaining the answer to the question of
why the system under consideration is being modeled. In the
example considered in figure.1, the question of why
performance is done is answered in the form of the EBT,
“Measurement”, which states that performance is a type of
measurement. The BO “AnyMetrics”, provides the result of
any performance as a measurement. Hence, the purpose of
performing a task by any party or entity in this case is to
obtain measurement for that performance which can be used
for further analysis.

• Quality: Aspects are modeled in such a way that they avoid
poor code quality when implemented. This is accomplished
by keeping away hidden problems caused due to code
tangling. It also handles issues related to targeting too many
concerns at once, which results in one or more concerns
receiving less attention and thus, resulting in a poor concern
or aspect. Quality is assured in a similar way when EBTs and
BOs are used in modeling. The layering of EBTs and BOs, in

the system being modeled, along with the IOs forming the
peripheral, takes care of this issue.

4. CONCLUSION
In conclusion, aspects in aspect oriented modeling and EBTs,
along with the BOs, in the stable modeling, present a good system
design and architecture that considers the present and the future
requirements. This ultimately avoids a patchy-looking
implementation due to a number of problems related to system
design rework, reuse, quality, and stability. The similarities in
properties mentioned earlier provide evidence of the similarities
in features between aspects, EBTs, and BOs.

5. REFERENCES
[1] M.E. Fayad, and A. Altman. “Introduction to Software

Stability”. Communications of the ACM, Vo.44, No. 9,
September 2001, pp 95-98.

[2] M.E Fayad. “Accomplishing Software Stability.”
Communications of the ACM, Vol.45, No. 1, January 2002.

[3] H. Hamza and M.E. Fayad. "A Pattern Language for
Building Stable Analysis Patterns”, 9th Conferenceon
Pattern Language of Programs (PLoP 02), Illinois, USA,
September 2002.

[4] Ramnivas Laddad. “I want my AOP”, retrieved on July 15,
2003. http://www.javaworld.com/javaworld/jw-01-2002/jw-
0118-aspect_p.html

[5] Gregor Kiczales, John Lamping, Anurag Mandhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, John
Irwin. “Aspect-Oriented Programming”. European
Conference on Object-Oriented Programming (ECOOP),
Finland. Springer-Verlang LNCS 1241. June 1997

[6] R.S. Pradeep and M.E. Fayad. “The Pattern Language for
Performance Evaluation of Wireless Networks” In Progress.

	INTRODUCTION
	PATTERN EXAMPLE FOR STABLE DESIGN MODELING
	Pattern Name
	Problem
	Context
	Forces
	Solution
	CRC Cards
	Consequences
	Tradeoffs
	Results
	Applicability with Illustrated Examples
	Problem Description
	Problem Description

	COMPARISON OF ASPECT, EBT AND BO
	CONCLUSION
	REFERENCES

