
Refactoring Aspect-Oriented Programs

Masanori Iwamoto
Department of Computer Science and

Engineering
Fukuoka Institute of Technology

3-30-1 Wajiro-Higashi, Higashi-ku
Fukuoka 811-0295, Japan

mfm03005@ws.ipc.fit.ac.jp

Jianjun Zhao
Department of Computer Science and

Engineering
Fukuoka Institute of Technology

3-30-1 Wajiro-Higashi, Higashi-ku
Fukuoka 811-0295, Japan

zhao@cs.fit.ac.jp

ABSTRACT
Refactoring is the process of changing a program to improve
its internal structure and reusability, without altering the
external behavior of the program. It is a disciplined way
to clean up code that minimizes the chances of introduc-
ing bugs. In this paper, we propose a systemic approach to
refactoring aspect-oriented programs. To this end, we �rst
investigate the impact of existing object-oriented refactor-
ings such as those proposed by Fowler [4] on aspect-oriented
programs. Then we propose some new aspect-oriented refac-
torings that are unique to aspect-oriented programs. Fi-
nally, we discuss tool support for automatic refactoring of
aspect-oriented programs. We use AspectJ, a general-purpose
AOP language to demonstrate our approach, but our ap-
proach is general enough to be applicable to other AOP
languages.

1. INTRODUCTION
Refactoring is the process of changing a program to improve
its internal structure and reusability, without altering the
external behavior of the program. It is a disciplined way
to clean up code that minimizes the chances of introducing
bugs. Essentially, when developers refactor they are improv-
ing the design of code while it is being written, and in fact,
during the entire software life cycle. Refactoring tools helps
software developers to safely and eÆciently restructure their
code to greatly improve its quality, reliability, and maintain-
ability.

AOP is a programming technique for expressing programs
involving encapsulated, crosscutting concerns through com-
position techniques, and through reuse of the crosscutting
code [2, 6, 8, 11]. The AOP is able to modularize cross-
cutting aspects of a software system. As objects in object-
oriented software, aspects in aspect-oriented software may
arise at any stage of the software life cycle, including require-
ments speci�cation, design, implementation, etc. Some ex-

amples of crosscutting aspects are exception handling, syn-
chronization, and resource sharing.

The current research so far in AOP is focused on problem
analysis, software design, and implementation techniques.
Even if refactoring is important to improve software qual-
ity, development of refactorings and their tool support for
aspect-oriented software is still ignored during the current
stage of the technical development. Since aspect-oriented
programming introduces some new kinds of modules such
as advice, introduction, pointcuts, and aspects that are dif-
ferent from methods in a class, existing approaches to refac-
toring procedural and object-oriented programs can not be
directly applied to the AOP domain. In order to improve the
code quality for aspect-oriented software, refactorings and
their tool support that are appropriate for aspect-oriented
programs are required.

However, although refactoring has been studied widely for
procedural and object-oriented software, The development
of refactoring patterns for aspect-oriented software is just
starting; we know that several researchers [3, 5, 9, 12] are
studying this problem recently, but neither of them has
demonstrated detail information on how to refactoring of
aspect-oriented software.

When performing refactoring on aspect-oriented programs,
we are interested in the following questions.

1. Can existing object-oriented refactorings such as those
proposed by Fowler [4] be adopted to aspect-oriented
programs? If not, how should we do when applying
these refactorings to aspect-oriented programs?

2. Are there some new refactorings that are unique to
aspect-oriented programs but di�erent from existing
object-oriented refactorings?

3. How to support automatic refactoring of aspect-oriented
programs?

In this paper, we propose a systemic approach to refactoring
aspect-oriented programs. We study this problem from three
aspects. First, we investigate whether the object-oriented
refactorings such as those proposed by Fowler [4] can be
applied to aspect-oriented code; we propose some modi�ca-
tion guidelines in order to adopt these refactorings to the

 ce0 public class Point {
 s1 protected int x, y;
 me2 public Point(int _x, int _y) {
 s3 x = _x;
 s4 y = _y;
 }
 me5 public int getX() {
 s6 return x;
 }
 me7 public int getY() {
 s8 return y;
 }
 me9 public void setX(int _x) {
 s10 x = _x;
 }
me11 public void setY(int _y) {
 s12 y = _y;
 }
me13 public void printPosition() {
 s14 System.out.println("Point at("+x+","+y+")");
 }
me15 public static void main(String[] args) {
 s16 Point p = new Point(1,1);
 s17 p.setX(2);
 s18 p.setY(2);
 }
 }

ase27 aspect PointShadowProtocol {
 s28 private int shadowCount = 0;
 me29 public static int getShadowCount() {
 s30 return PointShadowProtocol.
 aspectOf().shadowCount;
 }
 s31 private Shadow Point.shadow;
 me32 public static void associate(Point p, Shadow s){
 s33 p.shadow = s;
 }
 me34 public static Shadow getShadow(Point p) {
 s35 return p.shadow;
 }

 pe36 pointcut setting(int x, int y, Point p):
 args(x,y) && call(Point.new(int,int));
 pe37 pointcut settingX(Point p):
 target(p) && call(void Point.setX(int));
 pe38 pointcut settingY(Point p):
 target(p) && call(void Point.setY(int));

 ae39 after(int x, int y, Point p) returning :
 setting(x, y, p) {
 s40 Shadow s = new Shadow(x,y);
 s41 associate(p,s);
 s42 shadowCount++;
 }
 ae43 after(Point p): settingX(p) {
 s44 Shadow s = new getShadow(p);
 s45 s.x = p.getX() + Shadow.offset;
 s46 p.printPosition();
 s47 s.printPosition();
 }
 ae48 after(Point p): settingY(p) {
 s49 Shadow s = new getShadow(p);
 s50 s.y = p.getY() + Shadow.offset;
 s51 p.printPosition();
 s52 s.printPosition();
 }
 }

ce19 class Shadow {
 s20 public static final int offset = 10;
 s21 public int x, y;

me22 Shadow(int x, int y) {
 s23 this.x = x;
 s24 this.y = y;
me25 public void printPosition() {
 s26 System.outprintln("Shadow at
 ("+x+","+y+")");
 }
 }

Figure 1: A sample AspectJ program.

domain of AOP. Second, by carefully studying the concept
and structure of aspect-oriented languages, we identify some
new refactorings that are unique to aspect-oriented code but
di�erent from existing object-oriented refactorings. Finally,
we discuss issues on automatic support for refactoring of
aspect-oriented programs based on control ow and data
ow analysis.

Because AOP is a new language paradigm that is di�er-
ent from procedural and object-oriented language, we really
need to develop a systemic approach to supporting refactor-
ing of aspect-oriented software. We hope that by examining
the ideas of aspect-oriented refactoring from several di�er-
ent viewpoints and through independently developed aspect-
oriented refactorings, we can have a better understanding of
what the refactoring is meant in the AOP domain and the
role that refactorings plays in the development of quality
aspect-oriented software. As the �rst step, this paper is to
report our primary results on refactoring of aspect-oriented
software.

The rest of the paper is organized as follows. Section 2
briey introduces AspectJ, a general aspect-oriented pro-
gramming language based on Java. Section 3 discusses how
existing object-oriented refactorings can be applied to aspect-
oriented programs. Section 4 proposes some new refac-
torings that are unique to aspect-oriented programming.
Section 5 discusses tool support for refactoring of aspect-
oriented programs. Section 6 discusses some related work,
and concluding remarks are given in Section 7.

2. ASPECT-ORIENTED PROGRAMMING
WITH ASPECTJ

We present our refactoring approach for aspect-oriented pro-
grams in the context of AspectJ, the most widely used aspect-
oriented programming language [1, 7]. Our basic techniques,
however, deal with the basic concepts of aspect-oriented pro-
gramming and therefore apply to the general class of aspect-
oriented languages.

AspectJ [1] is a seamless aspect-oriented extension to Java.
AspectJ adds to Java some new concepts and associated
constructs. These concepts and associated constructs are
called join point, pointcut, advice, introduction, and aspect.

Aspect is a modular unit of crosscutting implementation in
AspectJ. Each aspect encapsulates functionality that cross-
cuts other classes in a program. An aspect is de�ned by
aspect declaration, which has a similar form of class declara-
tion in Java. Similar to a class, an aspect can be instantiated
and can contain state and methods, and also may be special-
ized in its sub-aspects. An aspect is then combined with the
classes it crosscuts according to speci�cations given within
the aspect. Moreover, an aspect can introduce methods,
attributes, and interface implementation declarations into
types by using the introduction construct. Introduced mem-
bers may be made visible to all classes and aspects (public
introduction) or only within the aspect (private introduc-
tion), allowing one to avoid name conicts with pre-existing
members.

The essential mechanism provided for composing an aspect

/* Before refactoring */
aspect AspectSample {

before(): call(* Sample.pm()) {
System.out.println("pm ok");

}
}
class Sample {

public static void main(String args[]) {
new Sample().pm();

}
void pm() {

System.out.println("print method");
}

}

/* After refactoring */
aspect AspectSample {

before(): call(* Sample.pm()) {
System.out.println("pm ok");

}
}
class Sample {

public static void main(String args[]) {
new Sample().print_method();

}
void print_method() {

System.out.println("print method");
}

}

Figure 2: An OO-refactoring for renaming method.

with other classes is called a join point. A join point is a well-
de�ned point in the execution of a program, such as a call to
a method, an access to an attribute, an object initialization,
exception handler, etc. Sets of join points may be repre-
sented by pointcuts, implying that such sets may crosscut
the system. Pointcuts can be composed and new pointcut
designators can be de�ned according to these combinations.
AspectJ provides various pointcut designators that may be
combined through logical operators to build up complete de-
scriptions of pointcuts of interest. For a complete listing of
possible designators one can refer to [1].

An aspect can specify advice that is used to de�ne some
code that should be executed when a pointcut is reached.
Advice is a method-like mechanism which consists of code
that is executed before, after, or around a pointcut. around
advice executes in place of the indicated pointcut, allowing
a method to be replaced.

An AspectJ program can be divided into two parts: base

code part which includes classes, interfaces, and other lan-
guage constructs for implementing the basic functionality of
the program, and aspect code part which includes aspects
for modeling crosscutting concerns in the program. More-
over, any implementation of AspectJ should ensure that the
base and aspect code run together in a properly coordinated
fashion. Such a process is called aspect weaving and involves
making sure that applicable advice runs at the appropriate
join points. For detailed information about AspectJ, one
can refer to [1].

Example. Figure 1 shows an AspectJ program taken from
[1] that associates shadow points with every Point object.

/* Before refactoring */
aspect AspectSample {

before(): call(void Sample.setA(int)) {
System.out.println("method ok");

}
}
class Sample {

private int a;
public static void main(String args[]) {

new Sample().print_method(10);
}
void setA(int x) {

a = x;
}
void print_method(int x) {

setA(x);
System.out.println("setA");

}

/* After refactoring */
aspect AspectSample {

before(): call(void Sample.setA(int)) {
System.out.println("method ok");

}
}
class Sample {

private int a;
public static void main(String args[]) {

new Sample().print_method(10);
}
void print_method(int x) {

a = x;
System.out.println("setA");

}

Figure 3: An OO-refactoring for removing method.

The program contains one aspect PointShadowProtocol and
two classes Point and Shadow. The aspect has three meth-
ods getShadowCount, associate and getShadow, and three
pieces of advice related to pointcuts setting, settingX and
settingY respectively1. The aspect also has two attributes
shadowCount and shadow such that shadowCount is an at-
tribute of the aspect itself and shadow is an attribute that
is privately introduced to class Point.

3. OBJECT-ORIENTED REFACTORINGS
We study how existing object-oriented refactorings can be
applied to aspect-oriented programs.

3.1 Motivating Examples
We present two examples to explain the problems when ap-
plying existing object-oriented refactoring (OO-refactoring
for short) to aspect-oriented programs.

Figure 2 presents a program containing a class Sample in
which a main method and a pm method are declared, and
an aspect AspectSample in which a piece of before advice
is declared. The advice can be applied to each join point
where a target object of type Sample receives a call to its
method with signature call(* Sample.pm()).

Suppose we would like to perform an object-oriented refac-

1Unlike a method that has a unique name, advice in AspectJ
has no name. So for easy expression, we use the name of a
pointcut to stand for the name of advice it associated with.

Table 1: Impact on applying OO refactorings to AOP

OO Refactorings Impact by Aspects OO Refactorings Impact by Aspects

Add Parameter Encapsulate Downcast

Extract Class

Extract Method Extract Interface

Extract Subclass Extract Superclass

Hide Method Inline Class

Inline Method Inline Temp 4

Introduce Explaining Variable Move Field

Move Method Move Setting Method

Parameterize Method Pull Up Constructor

Pull Up �eld Pull Up Method

Push Down Field Push Down Method

Rename Method Replace Array with Object

Replace Conditional with Polymorphism Replace Exception with Test

Replace Magic Number with Symbolic Constant 4 Replace Nested Conditional with Guard Clauses 4

Replace Parameter with Explicit Methods Replace Temp with Query

Remove Parameter Self Encapsulate Field

: Modi�cation is needed when applying to AOP 4: Applicable to AOP directly without modi�cation

toring on method pm to rename its name from pm to
print_method. We can simply change all the places that
pm is occurred in class Sample using an editor or a refactor-
ing tool. After that, however, we found that the program's
behavior has also been changed, which is not the case we
would like to. By carefully examining the source code. We
found the problem: since the before advice relies on the
method call join point that is related to method signature
pm, in addition to the above operations, we should also mod-
ify the pointcut to make it point to method print_method.
Otherwise, the program may produce an unexpected result.

Similar problems may occur in other refactoring cases. Fig-
ure 3 presents another program which contains a class Sample
and an aspect AspectSample. Class Sample declares three
methods: main, SetA, and print_method. Aspect AspectSample
declares a piece of before advice. The advice can be applied
to each join point where a target object of type Sample re-
ceives a call to its method with signature
call(void Sample.setA(int)). By examining the code, we
found that the code quality can be improved by a removing-
method refactoring operating on methods setA and print_method.
To do so, we put setA's content into print_method and re-
move setA entirely. After that, however, we found that when
ran the program we got an unexpected result. The reason
for this problem is that we ignored the impact from the as-
pect AspectSample during the refactoring, which leads to a
similar problem as we presented in the previous example.

Since existing object-oriented refactorings operate only on
classes (objects), they can not solve these problems demon-
strated above when applied to aspect-oriented programs. It
is therefore not reasonable to simply apply existing object-
oriented refactorings to aspect-oriented programs without
considering the impact from aspects. In order to use object-
oriented refactoring for aspect-oriented programs, modi�ca-
tions for these refactorings and some guidelines are needed.
In Section 3, we will discuss this issue in greater detail.

3.2 Discussions
Most of object-oriented refactorings, as we showed above,
are not valid when applying to AspectJ code. They have to
be adapted to consider the impact that the modi�cations on

/* Before refactoring */
class Class1 {

public static void main(String args[]) {
Class1 c1 = new Class1();
c1.method();

}
void void method() {

System.out.println("method");
}

}
aspect AspectSample {

before(): call(void Class1.method()) {
System.out.println("before method");

}
after(): call(void Class1.method()) {

System.out.println("after method");
}

}

/* After refactoring */
class Class1 {

public static void main(String args[]) {
Class1 c1 = new Class1();
c1.method();

}
void void method() {

System.out.println("method");
}

}
aspect AspectSample {

pointcut methodCall(): call(void Class1.method());
before(): methodCall() {

System.out.println("before method");
}
after(): methodCall() {

System.out.println("after method");
}

}

Figure 4: An AO-refactoring for extracting point-
cut.

/* Before refactoring */
public void rent(Customer customer) throws

IllegalArgumentException {
if (customer == null) {

throw new IllegalArgumentException
(``The argument is null'');

}
customer.addVideo(this);

}

/* After refactoring */
public void rent(Customer customer) throws

IllegalArgumentException {

customer.addVideo(this);
}

public aspect NullArgumentChecker {
pointcut check(Customer customer):

call(void Copy.rent(Customer customer));
before(): check(Customer customer) {

if (customer == null)
throw new IllegalArgumentException

("The argument is null");
}

}

Figure 5: An AO-refactoring for extracting advice.

the base code (i.e., Java code) may have e�ects on the cor-
responding aspect code. Therefore, any refactorings being
applied to aspect-oriented code must consider such e�ect.

Here we discuss some issues on applying existing object-
oriented refactorings proposed by Fowler [4] to AspectJ code
and give some guidelines for how to avoid invalid programs
when adapting these refactorings to AspectJ code. Table
1 lists the refactorings we adopted from Fowler's book [4];
we denote these refactorings as OO-refactorings for simpli-
fying explanation. In the table, the �rst column lists OO-
refactorings we chose for investigation; the second column
shows whether the impact from aspects should be considered
or not.

We found that almost all OO-refactorings we investigated
have the similar e�ect problem when applied directly to as-
pect code; only several refactorings seem no problem and
therefore applicable directly to AspectJ code without any
modi�cation. These refactorings include Consolidate Du-
plicate Conditional Fragments, Inline Temp, Remove As-
signments to Parameters, Replace Nested Conditional with
Guard Clauses, Replace Magic Number with Symbolic Con-
stant, and Split Temporary Variable.

Due to space limitation, however, we can not report our
results for all these OO-refactorings listed in Table 1; one
can refer to [13] to obtain greater detail information for these
OO-refactorings.

4. ASPECT-ORIENTED REFACTORINGS
We next present some new aspect-oriented refactorings that
are unique to aspect-oriented programs, but di�erent from
existing object-oriented refactorings.

4.1 Motivating Examples

We present two examples to explain the problems when per-
form aspect-oriented refactoring (AO-refactoring for short).

Figure 4 presents a program containing an aspect AspectSample
in which a piece of before advice and a piece of after advice
are declared, and a class Class1 in which a main method
and a method are declared. Both the before and after ad-
vice can be applied to the same join point where a target
object of type Sample receives a call to its method with sig-
nature call(* Sample.pm()). In order to reuse this join
point we may perform a refactoring to extract the pointcut
attached to both the before and after advice to form a new
pointcut methodCall. By doing so, the extracted pointcut
methodCall can be reused by other advice as well. We call
such a refactoring as Extract Pointcut.

Figure 5 presents another program containing a method
rent which has a precondition declared by if statement.
The code is taken from [9]. In order to reuse the precon-
dition, we may turn it into a piece of before advice whose
name reects the value that the advice gives. we also need
a pointcut check to represent the join point related to the
advice. This refactoring operation is called Extract Advice
[9].

Refactorings such as Extract Pointcut and Extract Advice
showed above are generally di�erent from existing object-
oriented refactorings, and we call them aspect-oriented refac-
torings. The di�erence between object-oriented and aspect-
oriented refactorings is that the former focuses only on ob-
jects (classes) whereas the later has to focus on both objects
and aspects.

4.2 A Catalog of Aspect-Oriented Refactor-
ings

Aspect-orientation introduces new aspect-aware refactorings
that di�er from existing object-oriented refactorings. These
aspect-oriented refactorings should be identi�ed, and a cat-
alog for these refactorings should be presented.

Table 1 lists aspect-oriented refactorings we proposed; we
denote these refactorings as AO-refactorings for simplify-
ing explanation. Note that this is just a primary list of
aspect-oriented refactorings we identi�ed, and more AO-
refactorings will be added to the list as we get some new
results.

Due to space limitation, however, we can not explain these
AO-refactorings listed in Table 2; one can refer to [13] to
obtain greater detail information for these AO-refactorings.

5. TOOL SUPPORT
Tool support is essential for any refactoring techniques. With-
out tool support, refactorings can not be applied to large-
scale systems, and therefore lose practices. In this sec-
tion, we describe our refactoring tool called AspectJ Refac-
toring Tool (ART for short), that supports refactoring of
AspectJ programs. Unlike most existing refactoring tools
for object-oriented code that mainly operate on the ab-
stract syntax trees (ASTs), ART uses the program depen-
dence graph (PDG) as a basic abstract data structure for
representing aspect-oriented programs. ART therefore op-

Table 2: A Catalog of aspect-oriented refactorings

AO Refactorings AO Refactorings

Extract Advice Extract Introduction

Extract Pointcut Inline Pointcut

Remove This Pointcut Remove Target Pointcut

Reference Pointcut Introduce Declare Parents

Introduce Abstract Aspect Pull Up Pertarget

Move to Advice Move to Introduction

Move Class Method to Aspect Move Aspect Method to Class

Move Class Field to Aspect Transform Class Introduction into Aspect Method

Transform Aspect Method into Class Introduction Transform Class Introduction into Aspect Field

Transform Aspect Field into Class Introduction Introduce Execution Pointcut

Introduce Call Pointcut Introduce Around Advice

Combine Pointcut Decompose Pointcut

erates on the PDG to perform refactoring on the programs.
The reason for using the PDG is that we can automatically
realize more refactoring patterns than with those AST-based
tools.

Figure 6 shows the basic structure of ART which mainly
consists of two components, i.e., refactoring component and
user interface component. The refactoring component is fur-
ther consists of a parser for AspectJ code, a dependence an-
alyzer, a code transformer, a refactoring operator, and an
operation sequence indexing part.

6. RELATED WORK
We discuss related work in the area of refactoring for object-
oriented and aspect-oriented programs.

During the last decade, refactoring object-oriented programs
has become a very active research area in software engineer-
ing community, and many refactorings and their support
tools for object-oriented programs have been developed [4,
10]. However, as we discussed in Sections 3 and 3, most
of these refactorings can not be directly applied to aspect-
oriented programs because they can not handle the impact
problem arose from refactoring of aspect-oriented software.

Several research groups are studying the problem of refactor-
ing aspect-oriented software with di�erent approaches and
from di�erent viewpoints. Wloka [12] explored the relation-
ship between refactoring and aspect-orientation, but did not
directly address the issue on how to perform refactorings on
aspect-oriented programs. Borba and Soares [3] proposed a
program transformation based approach to developing refac-
toring and code generation tools for AspectJ. , but did not
provide details on their approach. Hannemann [5] is working
on dialogue-based aspect-oriented refactoring which focuses
on study aspect-oriented design pattern refactorings. How-
ever, no detail about his approach is available now. Miller
[9] proposed two aspect-oriented refactorings called Extract
Advice and Extract Introduction which is a very small subset
of our catalog for aspect-oriented refactorings.

7. CONCLUDING REMARKS
In this paper we proposed a systemic approach to refactoring
aspect-oriented software. To this end, we �rst investigated
the impact of existing object-oriented refactorings such as
those proposed by Fowler [4] on aspect-oriented programs
and gave some guidelines for solving these problems. We

then proposed some new aspect-oriented refactorings that
are unique to aspect-oriented programs but di�erent from
existing object-oriented refactorings. Finally, we discussed
some implementation issues on our tool for supporting au-
tomatic refactoring of AspectJ programs.

8. REFERENCES
[1] The AspectJ Team. The AspectJ Programming Guide.

2002.

[2] L. Bergmans and M. Aksits. Composing crosscutting
Concerns Using Composition Filters. Communications

of the ACM, Vol.44, No.10, pp.51-57, October 2001.

[3] P. Borba and S. Soares. Refactoring and Code
Generation Tools for AspectJ. October 2002.

[4] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley Longman, 1999.

[5] J. Hannemann. Dialogue-Based Aspect-Oriented
Refactoring.
http://www.cs.ubc.ca/labs/spl/projects/ao-refactoring.html

[6] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J. M. Loingtier, and J. Irwin. Aspect-Oriented
Programming. Proceedings of the 11th European
Conference on Object-Oriented Programming,
pp.220-242, LNCS, Vol.1241, Springer-Verlag, June
1997.

[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J. M. Loingtier, and J. Irwin, \An Overview of
AspectJ," proc. 13th European Conference on
Object-Oriented Programming, pp.220-242, LNCS,
Vol.1241, Springer-Verlag, June 2000.

[8] K. Lieberher, D. Orleans, and J. Ovlinger.
Aspect-Oriented Programming with Adaptive Methods.
Communications of the ACM, Vol.44, No.10, pp.39-41,
October 2001.

[9] G. Miller. Refactoring with Aspects. Proc. 4th
International Conference on Extreme Programming,
Genova, Italy, May 2003.

[10] W. F. Opdyke. Refactoring Object-Oriented
Frameworks. Ph.D. Thesis, University of Illinois at
Urbana-Champaign, 1992.

AspectJ program
before refactoring parser

CFG
generator

Dependence
analyzer

PDG
generator

Refactoring
Operator Code transfor

Operation
sequence

Index of
operation
sequences

History of
Operation
sequences

AspectJ program
after refactoring

GUI

Programmer

Figure 6: The structure of AspectJ Refactoring Tool (ART).

[11] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton. N
Degrees of Separation: Multi-Dimensional Separation
of Concerns. Proceedings of the International
Conference on Software Engineering, pp.107-119, 1999.

[12] J. Wloka. Refactoring in the Presence of Aspects.
ECOOP2003 PhD workshop, July 2003.

[13] M. Iwamoto and J. Zhao. A Systemic Approach to
Refactoring Aspect-oriented Programs. August 2003.
(In Preparation)

