
1

Abstract
This paper discusses the need of patterns for concern-ori-
ented software architectures. It proposes a new pattern
that serves as a basis for understanding, using and discuss-
ing concern-oriented patterns.

1 Introduction
The number of modern software engineering practices
centered on the use of patterns is increasing. Patterns have
been adopted in object-oriented analysis [9] and design [11],
in advanced software development processes [16], in
software architecture practices [4][5][21] and domain-
specific architectures [8], and in component-based enterprise
applications and middleware [2][6][10].
These approaches provide common support for selecting
patterns from existing catalogues based on the forces at
hand; but, they also usually require that the software be
designed and implemented from the very beginning with the
right modularization. However, future evolution of software
is not predictable: even software implementations based on
patterns must evolve when requirements change; they must
be remodularized to comply with requirements evolution.
Unfortunately, current pattern-oriented approaches lack
support for identifying the forces in the solution schemas.
Forces should drive the use of a given pattern, but they
cannot be localized within the generic solution provided by
that pattern.
We believe that without support for localizing forces in
solution schemas, instantiating and reusing patterns will
remain difficult; remodularizing pattern instantiations is
even worse when the concerns related to individual forces
crosscut various components and interconnections.
However, to help improve the situation, we propose a

concern-oriented approach to software architecture [18].
To offer a basis for understanding, using and discussing
concern-oriented patterns, this paper introduces a new
pattern for concern-oriented software architecture which
enables remodularizations of existing and new software-
intensive systems on-demand. The paper is structured as
follows: Section 2 introduces a new notation for describing
concern-oriented software architecture patterns. Section 3
presents a concern-oriented software architecture pattern,
called On-Demand Remodularization. Section 4 describes
the related work and section 5 concludes the paper.

2 Notation
The notation used to describe the new pattern is summarized
in figure 1. With this notation, we propose another
perspective on an AssociationRole, which is different from
the standard UML definition. Essentially, our proposal
consists of two key notions: perspectival associations and
model slices [18]. The notion of perspectival association
aims at focusing on interactions (i.e., what happens between
instances of different Classifiers independently of the
instances themselves) rather than on computation (i.e., what
happens within an object). Thus, different perspectives on
associations allow one to understand and express various
aspects of an interaction among components. The notion of
model slice focuses on the modularization of concern
reification within software. For instance, different units (e.g.,
perspectival associations, methods and classes) that together
reify a stockholder's concern into software can be described
as a “perspectival module” represented by a model slice.
Moreover, figure 1 shown different kinds of relationships:
model slice to model slice (refinement and application) and
unit to unit (introduction and attachment).

Towards Patterns for Concern-Oriented Software Architecture

Mohamed Mancona Kandé1,2 and Valentin Crettaz1,2

1Department of Management of Technology and Entrepreneurship
Swiss Federal Institute of Technology Lausanne, CH - 1015 Lausanne, Switzerland

E-mail: {Mohamed.Kande,Valentin.Crettaz}@epfl.ch

2Condris Technologies, PSE C, CH - 1015 Lausanne, Switzerland
E-mail: {Mohamed.Kande,Valentin.Crettaz}@condris.com

2

3 The New Pattern
In what follows, we describe the details of the new On-
Demand Remodularization pattern using the pattern
description schema proposed in [5][21].

3.1 Also Known As
ODR Pattern [18]

3.2 Example
Consider the development of an application that uses various
components provided by independent software vendors

(ISV). A development problem that motivates the use of this
pattern consists of enabling such components to exchange
data without providing themselves the data transfer
capabilities.
For instance, the system to be built has five components of
two different types—four traffic lights and a timer; thus, the
requirements of the system are quite simple:
 • The timer component is responsible for triggering an

event at regular time intervals
 • A traffic light component should always switch on the

same light as its opposite peer
 • A traffic light component should never show the same

light as its direct neighbors
 • A traffic light component should not maintain any

knowledge of the state of its peers
The primary dimension of interest to address this problem is
the usability of the application components. The main
concern in that dimension is the transfer of data. A goal and
an aspect of the problem which together characterize this
concern are described as follows:
 • Goal: improve usability by facilitating information

exchange between two components
 • Aspect of the problem: enable data transfer from one

component to another in a non-invasive way
To solve the above problem, new functionalities need to be
added to the application in order to support data exchange
among the components. The ODR pattern allows one to
achieve this in a non-invasive way.

3.3 Context
Any situations, in which we need to modify, add or remove
functionalities to an existing system, transparently and in a
non-invasive way.

3.4 Problem
Complex software systems often need to be modified to
satisfy ever-evolving requirements coming from users,
customers, changing technologies and environments.
Addressing such modifications can be very difficult and
expensive to achieve. We need new mechanisms for
managing changes in complex systems.
The dimensions or driving forces relevant for solving this
problem are: modifiability, adaptability, modularization,
integrability, usability, reusability, understandability, and
decoupling.

3.5 Solution
The solution proposed by the ODR pattern provides the
ability to remodularize a software-intensive system
according to various dimensions, non-invasively, and
without eliminating concern reification based on prior
decompositions.
The ODR pattern provides three important elements that
work together to help remodularize an existing system into a
more coherent, maintainable one. Therefore, the ODR
pattern:
 • Provides a mechanism for managing the interaction

between participating components

Fig. 1. An Overview of the Notation used for Describing the Pattern

ODR Pattern Elements Visual
Representations

Description of Key
Characteristics

Classifier Role 9 Element of standard
UML representing a
participant of an
interaction

Perspectival Association (PA) 9 Mechanism for
representing interaction
concerns among a group
of collaborating parts

9 Consists of a collection
of connection points,
perspectival behavior,
and Introductions

9 Can be related with
another PA only in
precedence or
inheritance relationships

9 Cannot be understood in
isolation (from all
perspectives); requires
reference to a base
model

Connection point
 <<connectpoint>>

9 Locus for composing join
points to which
perspectival behavior
can be added.

9 Exposes its context in
terms of parameters that
can be used in the body
of the associated
perspectival behavior

Attachment 9 Attaches a role to a
connection point

Introduction
 <<introduces>>

9 Supports structural
amendments

9 Supports the declaration
of supplementary
behavioral features

9 Enables modification of
an existing hierarchy.

Relationships

Refinement
Application

 <<refines>>

 <<applies>>

9 Specify composition
rules among model
slices (see details of the
pattern structure)

Model slice 9 Mechanism for
representing the
reification of an
individual concern

9 Can be understood and
reused in isolation,
without reference to a
base model

9 Can be composed with
others, or be a
composition itself

The On-Demand Remodularization pattern provides the
ability to remodularize both existing and new software
systems along multiple kinds of concerns in a non-
invasive way, and with no detriment of existing concern
reifications.

3

 • Enables particular system components to play the roles
defined by the interaction protocol

 • Allows one to customize a generic behavior for specific
components types

3.6 Structure
The ODR pattern is structured into three different model
slices, connector, enabler and customizer, and the
relationships between these model slices. Figure 2 shows the
overall structure of the ODR pattern.

A brief description of the model slices and their relationships
is given in the following:
 • The connector model slice defines the protocol and man-

ages the interaction occurring among the participating
roles.

 • The enabler model slice provides mechanisms for
enabling concrete components of the system to play the
roles defined by the protocol of interaction in order to
allow the components to participate in the interaction.

 • The customizer model slice provides mechanisms for
allowing individual components (children), which spe-
cialize existing components of the system (parents), to
customize the generic behavior they inherit.

 • The relationships between model slices essentially
describe how to combine the model slices to make their
units work together.

3.7 The Connector Model Slice
The structure of the connector model slice (named e.g.,
ObserverConnector) is described as a composition of a
perspectival association and one or more interface type

declarations:
 • The protocol perspectival association (e.g., ObserverProto-

col) represents a new mechanism for realizing communi-
cation protocols and managing the interaction among the
collaborating roles (previously defined as interface
types). Its interface consists of two connection points
(e.g., newState and registerObserver). Each connection
point identifies a specific point in the system at which the
behavior of the participating roles should be glued with
the interaction behavior. The dashed line represents the
attachment between a connection point and a role that
manifests this gluing.

 • The interface types represent the roles to be fulfilled by
the interacting components. In general, the behavior they
declare must be provided by components playing the
given roles.

 • The connector model slice may also contain any other
utility types, such as classes, that would help the perspec-
tival association perform its job.

Fig. 2. Structure of the On-Demand Remodularization Pattern

com.pack1

Timer

com.comp.patterns.observer

com.pack2com.comp.patterns.observer

ObserverEnabling

<<applies>>

TrafficLight
<<introduces>>

ObserverEnabler

ObserverConnector

<<introduces>>

com.pack2com.comp.patterns.observer

ObserverCustomization <<introduces>>

ObserverCustomizer
OneWayTrafficLight

TwoWayTrafficLight

<<introduces>>

ObserverProtocol

<<interface>>
Subject
<<interface>>
Subject

<<interface>>
Observer

notifyObserver()

<<interface>>
Observer

notifyObserver()

<<connectpoint>>
newState

<<connectpoint>>
registerObserver

<<refines>>

4

3.8 Enabler Model Slice
The structure of the enabler model slice (e.g.,
ObserverEnabler) consists of an enabling perspectival
association and components of the system. The perspectival
association and the components do not have to be defined in
the same package; thus, in this case, the model slice
crosscuts the boundaries of several packages (e.g.,
com.pack1, com.pack2 and com.comp.patterns.observer).
The key elements of the enabler model slice can be described
as follows:
 • The enabling perspectival association (e.g., ObserverEn-

abling) provides a mechanism for remodularizing a sys-
tem by binding existing components to the roles defined
in the connector model slice. The perspectival associa-
tion provides support for introducing an additional
behavior into participating components.

 • The components represent the individual parts of the sys-
tem (e.g., Timer and TrafficLight) that need to play the roles
defined in the connector model slice.

3.9 Customizer Model Slice
The customizer model slice (e.g., ObserverCustomizer) is
responsible for customizing and fine-tuning the behavior of
components whose parent has already been adapted in the
enabler model slice. This model slice can be optional when
the behavior of the parent component is suitable for its
children and does not necessitate any amendments. One or
more customizer model slices can be used to refine the same
enabler model slice: this allows us to dynamically change the
customization of the component interaction. Here again, the
customizer model slice composes various model elements
defined in different packages (e.g., com.comp.patterns.observer
and com.pack2).
The customizer model slice defines one or more
customization perspectival associations and one or more
specializations of the components defined in the enabler
model slice:
 • The customization perspectival association (e.g. Observ-

erCustomizer) allows one to specialize the generic behav-
ior of components defined in the enabler model slice.

 • The customized components inherit from the existing
components defined in the enabler slice.

3.10 Relationships

The model slices presented so far must be combined to pro-
vide the overall structure of the ODR pattern by using four
different kinds of relationships: applies, refines, introduces and
attaches.
Relationships among Model Slices
 • applies: This relationship applies a model slice to one or

more other model slices. It
1.exposes the public units (i.e., the interface types and

their behavioral elements, e.g., Subject, Observer and
notifyObserver()) of the connector model slice to the
enabler model slice.

2. requires the enabling perspectival association to
realize all the abstract connection points declared in

the perspectival association modeling the protocol
of interaction.

Visually, applies is shown as a dashed arrow in figure 2. It
defines a directed relationship, for instance, from an
enabler model slice to a connector model slice. As shown in
figure 2, it applies an interaction module (i.e., connector)
to a number of independent components that need to be
composed into a system (e.g., Timer and TrafficLight). The
connector interconnects the components and mediate their
interaction.

 • refines: defines a directed relationship (shown as a dashed
arrow in figure 2) between a customizer model slice and
an enabler model slice. It provides a means to the cus-
tomizer model slice to refine or modify the behavior
introduced by the enabling perspectival association into
the components defined in the enabler model slice (e.g.,
TrafficLight). The behavior refinement is performed by the
customization perspectival association (e.g., ObserverCus-
tomization) that introduces the new behavior into the com-
ponents defined in the customizer model slice (e.g.,
OneWayTrafficLight and TwoWayTrafficLight).

Relationships among Units of Model Slices
 • introduces: defines a directed relationship (shown as a

dashed arrow in figure 2) from a perspectival association
to components of the system. It permits a perspectival
association to introduce new features pertaining to the
interaction protocol into existing components (e.g., Timer
and TrafficLight). An introduction allows the components
of the system to participate in the interaction. This is
achieved by assigning the roles (e.g., Subject and
Observer) defined in the connector model slice to the
components defined in the enabler model slice (e.g.,
Timer and TrafficLight).

 • attaches: defines a binding relationship between a con-
nection point (e.g., newState) and an interface type repre-
senting a role (e.g., Subject) in the connector model slice.
It is shown as an unnamed dashed line in figure 2, which
in contrast to the other relationships has no stereotype.

3.11 Dynamics
This section provides a set of scenarios describing the
runtime behavior of the ODR pattern. By runtime behavior,
we mean the behavior of the system that results from the
weaving process. The weaving can be performed at different
times, including, but not limited to, compile-time, loading
time and run time. Each scenario is described in terms of two
types of diagrams: a concern-oriented collaboration diagram
and a concern-oriented sequence diagram.
Essentially, the dynamics consists of describing the
interaction behavior of the perspectival association defined
in the connector model slice. In this model slice, the
perspectival association provides the interaction behavior
required by the system to make the components
communicate.
To explain the dynamics of the structure shown in figure 2,
we consider two examples of scenarios starting when the
registerObserver and newState connection points are reached.

5

Scenario Associated to registerObserver
Figure 3 shows an concern-oriented collaboration diagram
that models the scenario describing the behavior of the
system when the execution flow reaches the registerObserver
connection point. When a component playing the Observer

role is created (e.g., a TrafficLight instance), it is registered by
the ObserverProtocol in order to be notified at a later time.

Figure 4 illustrates an concern-oriented collaboration
diagram that models the scenario describing the behavior of
the system when the execution flow reaches the newState
connection point. When a component playing the Subject role
updates its state (e.g., tick() invoked on a Timer instance), the

ObserverProtocol notifies all the registered Observers of the
state change (e.g., by invoking notifyObserver() on each
observer).

Figure 5 and figure 6 illustrate the concern-oriented
sequence diagrams providing a different view of the above
concern-oriented collaboration diagrams. In contrast to
Figure 3 and figure 4, the sequence diagrams do not show

the connection points. Instead, they graphically depict the
execution times (shown by the vertical lines, called time
lines) and the activations of instances (shown by the vertical
activation boxes).

Fig. 3. Concern-Oriented Collaboration Diagram for the registerObserver Connection Point

1: registerObserver(tl)

2: addObserver(tl)

: ObserverProtocol

tl / Observer : TrafficLight

new()

Fig. 4. Concern-Oriented Collaboration Diagram for the newState Connection Point

1: newState()
2*: notifyObserver()

: ObserverProtocol

t / Subject : Timer

tick()

t / Subject : Timer/ Observer : TrafficLightt / Subject : Timer/ Observer : TrafficLight

6

3.12 Implementation
The implementation of the On-Demand Remodularization
pattern can be realized in different ways using different
aspect-oriented programming languages. In the following,
we describe a sample realization of the ODR pattern by
means of the Observer pattern [11] using the AspectJ

programming language [3][12].
Figure 7 shows an AspectJ piece of code that implements the
ObserverProtocol perspectival association as an aspect with
the same name. The abstract pointcuts shown on lines 7 and
19 implement the connection points with the same names
shown in Figure 2. The AspectJ advice (lines 10-16 and 21-
24) realize the interaction behavior of the ObserverProtocol.

Fig. 5. Concern-Oriented Sequence Diagram for the registerObserver Connection Point

tl / Observer : TrafficLight
: ObserverProtocolnew()

registerObserver(tl)

addObserver(tl)

Fig. 6. Concern-Oriented Sequence Diagram for the newState Connection Point

t / Subject : Timer
: ObserverProtocol

tick()

newState()
notifyObserver()

t / Subject : Timer/ Observer : TrafficLightt / Subject : Timer/ Observer : TrafficLight

7

Figure 8 and Figure 9 present the interface types that provide
the AspectJ implementations of the roles (Observer and
Subject) to be played by the participating components.

Figure 10 illustrates the implementation of the
ObserverEnabling perspectival association. The
ObserverEnabling aspect specializes the ObserverProtocol
aspect; its pointcuts realize the abstract pointcuts of the
ObserverProtocol aspect. The ObserverEnabling aspect
implements the assignment of the Subject role to the Timer
component, and the Observer role to the TrafficLight

component. Furthermore, the ObserverEnabling aspect
implements an additional behavior and introduces it into the
TrafficLight component. This behavior consists of invoking the
changeLight() method when the notifyObserver() method of the
TrafficLight component is called.

Figure 11 summarizes the mapping strategy for realizing the
ODR pattern using the AspectJ programming language.

3.13 Example Resolved
In this section, we apply the ODR pattern on a Drag’n’Drop
architecture used in various development projects as
illustrated in figure 12. This figure consists of the following
model slices: DnDConnector, DnDEnabler, and DnDCustomizer.

Fig. 7. An Implementation of the ObserverProtocol Perspectival
Association

1 import java.util.*;
2
3 public abstract aspect ObserverProtocol {
4
5 private List observers = new LinkedList();
6
7 abstract pointcut newState();
8
9 //On new state, propagate it to all registered observers
10 after () : newState() {
11 Iterator it = this.observers.iterator();
12 while (it.hasNext()) {
13 System.out.println("notifying observers...");
14 ((Observer) it.next()).notifyObserver();
15 }
16 }
17
18 //register the observer with this connector
19 abstract pointcut registerObserver(Observer obs);
20
21 after (Observer obs) : registerObserver(obs) {
22 System.out.println("new observer...");
23 this.observers.add(obs);
24 }
25
26 //introduce do-nothing methods into the observer role
27 public void Observer.notifyObserver() {}
28 }

Fig. 8. An Implementation of the Observer Role

1 // Observer role
2 public interface Observer {
3 public void notifyObserver();
4 }

Fig. 9. An Implementation of the Subject Role

1 // Subject role
2 public interface Subject {
3 }

Fig. 10. An Implementation of the ObserverEnabling Perspectival
Association

1
2 public aspect ObserverEnabling extends ObserverProtocol {
3
4 declare parents: Timer implements Subject;
5 declare parents: TrafficLight implements Observer;
6
7 pointcut newState():
8 execution(void Timer.tick());
9
10 pointcut registerObserver(Observer obs):
11 this(obs) &&
12 execution(TrafficLight.new(..));
13
14 public void TrafficLight.notifyObserver() {
15 this.changeLight();
16 }
17 }

Fig. 11. Mapping the ODR Pattern Elements to AspectJ Constructs

ODR Pattern Elements AspectJ Language Elements Comments

Role interface Representing a role using an
interface is restrictive, since it
only allows role to declare the
obligations of a role in terms of
operations. The prohibitions
and the rights defined in the
role cannot be expressed.

Perspectival Association aspect In contrast to the aspect
construct of AspectJ, a
perspectival association can be
explicitly instantiated.

Connection point pointcut Each connection point can be
realized by a set of join points

Relationship (introduces,
applies, refines, attaches)

declares, extends, implements The attachment between a role
and a connection point is
realized by a type pattern within
a pointcut.

Model slice - May be implemented by many
packages or by inserting
custom tags in comments. The
model slices do not directly
correspond to programming-
level units.

8

The DnDConnector model slice contains a perspectival
association called DnDProtocol, and an interface type called
DnDParticipant. DnDParticipant defines the behavior any
component willing to participate in a Drag'n'Drop operation
has to provide. A brief overview of each method declared in
the DnDParticipant interface is given below:
 • initDnD(): sets up a participating component for a future

Drag'n'Drop operation
 • getTransferable(): returns an object to be transferred when

a Drag'n'Drop operation has been initiated on a partici-
pating component

 • setTransferable(Object): provides the object that has been
dropped on (transferred to) a participating component

 • acceptTransferable(Flavor): returns a boolean indicating
whether the participating component accepts the current
object (denoted by its flavor or type) being transferred

 • getDropLocation(): returns the exact point on the compo-
nent where the transferred object has been dropped.

 • setDropLocation(): sets the location where the transferred
object has been dropped.

In addition, DnDProtocol defines a connection point that will
detect when a new DnDParticipant is created within the
system. When such a creation is underway, the perspectival
association invokes initDnD() upon the participant in order to
set it up for upcoming Drag'n'Drop operations.

The DnDEnabler model slice contains the DnDEnabling
perspectival association whose primary goal is to allow any
JComponent (of javax.swing) to participate in a Drag'n'Drop
operation by giving to it the capability of playing the
DnDParticipant role (defined in the DnDConnector model slice).
Furthermore, DnDEnabling injects into JComponent behavior
that shall be common to any JComponent (i.e.,
getDropLocation(), and setDropLocation()). All other methods
need specific implementation that cannot be factored out into
this model slice.
The task of the DnDCustomizer model slice is precisely to
bridge that gap, and to introduce into subclasses of
JComponent specific behavior for each of the remaining
methods (i.e., initDnD(), getTransferable(), setTransferable(), and
acceptTransferable()). The DnDCustomization perspectival
association achieves this by inserting the implementation of
an appropriate behavior, specified by the interface type
DnDParticipant, into each of the participant components, such
as JTree, JTable or JList. This is necessary because these
components may realize the same role in different ways. For
instance, a JList does not handle the drop of an object in the
same way as a JTable or a JTree.
In summary, the DnDConnector model slice defines the
interaction protocol between components engaged in a
Drag’n’Drop operation (playing the DnDParticipant role). The
DnDEnabler model slice applies the DnDParticipant role to
components of the system. The DnDCustomizer model slice
customizes the Drag’n’Drop behavior to each participating
component. It is worth noting that this Drag’n’Drop ODR
instance encloses all Drag’n’Drop concerns; there are no

Fig. 12. An Application of the ODR pattern on the DnD Architecture

javax.swing

ch.epfl.mgrs.dnd

javax.swingch.epfl.mgrs.dnd

DnDEnabling

<<applies>>

JCom ponent
<<introduces>>

JList

JTree

JTable<<introduces>>DnDCustom ization

DnDProtocol

<<interface>>
DnDParticipant

in itDnD()
getTransferable()
setTransferable()
acceptTransferable()
getDropLocation()
setDropLocation()

<<interface>>
DnDParticipant

in itDnD()
getTransferable()
setTransferable()
acceptTransferable()
getDropLocation()
setDropLocation()

<<connectpoint>>
newParticipant

ch.epfl.mgrs.dnd

DnDCustom izer

DnDEnablerDnDEnabler

DnDConnectorDnDConnector

<<refines>>

9

other places in the system where Drag’n’Drop concerns are
present.

3.14 Variants
The Extensional ODR is a variant of the ODR pattern, which
provides no protocol of interaction among the participating
components. Its main purpose is to provide a mechanism for
enhancing existing components by adding new
functionalities. The interfaces defined in the connector
model slice do not represent interaction roles. Instead, they
stand for tag interfaces that can be filled with additional
behavior.

3.15 Known Uses
The ODR pattern has been used successfully in several real
world development projects by Condris Technologies and its
partners.

3.16 See Also
Adapter, Mediator, Observer [11], Interceptor [21].

4 Related Work
This paper is generally related to a large amount of work on
design and architectural patterns and to many efforts in the
area of aspect-oriented modeling [1][7][22].
In particular, Tarr and Ossher first introduced the notion of
on-demand remodularization [20] as a general-purpose
mechanism of MDSOC (Multi-Dimensional Separation of
Concerns) [23][24] that is required for encapsulating new
concerns as they are identified throughout the software
lifecycle. In practice, however, it is difficult to apply on-
demand remodularization as a general mechanism for
facilitating software evolution, reuse and integration without
powerful tools supporting the remodularization process. This
paper presents the ODR pattern as an “enabling tool” for on-
demand remodularization. In contrast to MDSOC, this
enabling tool represents a reusable architectural solution that
can be instantiated repeatedly, in different contexts, and in a
concern-oriented way.
Hannemann and Kiczales have proposed aspect-oriented
implementations of the GOF patterns in [13]. Their work
provides solutions for remodularizing pattern instantiations
at code level using AspectJ. However, it does not support on-
demand remodularization. Achieving remodularization in
AspectJ somewhat limits reuse: the code must be rewritten
whenever developers change the programming language.
Instead, a model would be just simply reused. This paper
provides a new pattern that enables remodularization on
demand, while supporting design by concerns at both
modeling and programming level.
Finally, the On-Demand Remodularization pattern presented
in this paper refines and formalizes the ODR pattern first
introduced in [18].

5 Summary
This position paper describes the advantages and limitations
of existing pattern approaches. It introduces a new approach
to describing and instantiating patterns at low-level design
and software architecture level, while providing a foundation
for using, creating and discussing concern-oriented patterns.
The ODR pattern enables remodularizations of existing and
new software-intensive systems on-demand, while allowing

one to achieve architectural design by concerns. Finally, we
hope that the new techniques proposed in this paper
contribute to advancing the state of the art in both software
architecture and aspect-oriented software development.

6 Acknowledgements
Work presented in this paper has been partially supported by
the Soft[net] program of the Swiss Federal Office for
Professional Education and Technology, SNS 6452.1.

7 References
[1] O. Aldawud, T. Elrad and A. Bader. A UML Profile for

Aspect-Oriented Software Development. Workshop on
Aspect-Oriented Modeling with UML, AOSD'2003,
Boston, USA. (http://lglwww.epfl.ch/workshops/
aosd2003/).

[2] D. Alur, et al. Core J2EE Patterns: Best Practices and
Design Strategies. Prentice Hall PTR; 2nd edition
(2003).

[3] AspectJ Website: http://www.eclipse.org/aspectj.
[4] L. Bass, P. Clements, R. Kazman: Software Architecture

in Practice. Addison-Wesley (1998).
[5] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,

M. Stal: Pattern-Oriented Software Architecture - A Sys-
tem of Patterns. John Wiley and Sons Ltd (1996).

[6] J. Carey, et al. SanFrancisco Design Patterns: Blue-
prints for Business Software. Addison-Wesley (2000).

[7] S. Clarke and R. J. Walker. Composition Patterns: An
Approach to Designing Reusable Aspects. Proceedings
of the International Conference on Software Engineer-
ing - ICSE'2001 (May 2001).

[8] P. Clements, L. Northrop. Software Product Lines —
Practices and Patterns. SEI Series in Software Engi-
neering. Addison-Wesley (2002).

[9] M. Fowler. Anaylysis Patterns: Reusable Object Mod-
els. Addison-Wesley (1997).

[10] M. Fowler, et al. Patterns of Enterprise Application
Architecture. Addison-Wesley (2003).

[11] E. Gamma, R. Helm, J. Vlissides, R. Johnson: Design
Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley (1995).

[12] J. D. Gradecki, N. Lesiecki. Mastering AspectJ - Aspect-
Oriented Programming in Java. John Wiley Publishing
(2003)

[13] J. Hannemann and G. Kiczales. Design Pattern Imple-
mentation in Java and AspectJ. Proceedings of the 17th
Annual ACM conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOP-
SLA), pages 161-173, November 2002.

[14] HyperJ Website: http://researchweb.watson.ibm.com/
hyperspace/HyperJ/HyperJ.htm

[15] Institute of Electrical and Electronics Engineers (IEEE)
Standards Board. Recommended Practice for Architec-
tural Description of Software-Intensive Systems (ANSI/
IEEE-Std-1471). September 2000.

[16] I. Jacobson, G. Booch and J. Rumbaugh. The Unified
Software Development Process. Addison-Wesley
(1999).

[17] G. Kiczales, E. Hilsdale, J. Hugunin, K. Kersten, J. Palm
and W. G. Griswold. An Overview of AspectJ. in Proc. of
ECOOP'01 (Budapest, Hungary, June 2001), LNCS
2072, 327-252.

10

[18] M. M. Kandé. A Concern-Oriented Approach to Soft-
ware Architecture. Thèse n° 2796, 2003, EPFL, Lau-
sanne, Switzerland. http://ahdoc.epfl.ch/EPFL/theses/
2003/2796/EPFL_TH2796.pdf.

[19] OMG. Unified Modeling Language Specification ver-
sion 1.4. February 2001. OMG document formal/10-09-
67 available from http://www.omg.org/technology/doc-
uments/formal/uml.htm

[20] H. Ossher and P. Tarr. On the Need for On-Demand
Remodularization. ECOOP 2000 Workshop on Aspects
and Dimensions of Concerns.

[21] D. C. Schmidt, M. Stal, H. Rohnert and F. Buschmann.
Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects.Wiley and Sons,
2000.

[22] D. Stein, S. Hanenberg, and R. Unland. A UML-based
Aspect-Oriented Design Notation For AspectJ. In Pro-
ceedings of the 1st International Conference on Aspect-
Oriented Software Development - AOSD’2002 (April
2002).

[23] P. Tarr, H. Ossher, W. Harrison, and S. Sutton Jr. N
Degrees of Separation: Multi-Dimensional Separation
of Concerns. Proceedings of the International Confer-
ence on Software Engineering - ICSE'99 (May 1999).

[24] P. Tarr and H. Ossher. Multi-Dimensional Separation of
Concerns and The Hyperspace Approach. In Proceed-
ings of the Symposium on Software Architectures and
Component Technology: The State of the Art in Soft-
ware Development. Kluwer (January 2000).

