
1

Chapter 11

Exceptions

and

Input/Output Operations

Date Chapter

11/6/2006 Chapter 10, start Chapter 11

11/13/2006 Chapter 11, start Chapter 12

11/20/2006 Chapter 12

11/27/2006 Chapter 13

12/4/2006 Final Exam

12/11/2006 Project Due

Topics

• Exception Handling

– Using try and catch Blocks

– Catching Multiple Exceptions

– User-Defined Exceptions

• The java.io Package

• Reading from the Java Console

• Reading and Writing Text Files

• Reading Structured Text Files Using StringTokenizer

• Reading and Writing Objects to a File

Exceptions

• Java is robust language and does not allow Illegal

operations at run time to occur, they generate

exceptions, for example:

– ArrayIndexOutOfBoundsException

– ArithmeticException

– NullPointerException

– InputMismatchException

– NumberFormatException

Handling Exceptions
• In a program without a Graphical User Interface,

exceptions cause the program to terminate.

• With this code:
12 String s = JOptionPane.showInputDialog(null,

13 "Enter an integer");

…

17 int n = Integer.parseInt(s);

• If the user enters "a", we get this exception:

• See Example 11.1 DialogBoxInput.java

2

Handling Exceptions

• We don't want invalid user input to terminate the
program!

• It is better to detect the problem and reprompt the
user for the input.

• We can intercept and handle some of these
exceptions using try and catch blocks.

– Inside the try block, we put the code that might
generate an exception.

– Inside catch blocks, we put the code to handle any
exceptions that could be generated.

• Java provides exception classes and try, catch, and finally
blocks to support exceptions

Minimum try/catch Syntax

try

{

// code that might generate an exception

}

catch(ExceptionClass exceptionObjRef)

{

// code to recover from the exception

}

• If an exception occurs in the try block, the try
block terminates and control jumps immediately to
the catch block.

• If no exceptions are generated in the try block, the
catch block is not executed.

Checked and Unchecked Exceptions

• Java distinguishes between two types of exceptions:

• Unchecked exceptions are those that are subclasses of Error

or RuntimeException

– It is not mandatory to use try and catch blocks to handle these

exceptions.

– If you omit try and catch blocks your code will compile.

– If they occur the JVM will catch and display the error message.

– ArithmeticException (caused by divide by zero),

NumberFormatException, NullPointerException

• Checked exceptions are any other exceptions.

– Code that might generate a checked exception must be put inside a try

block. Otherwise, the compiler will generate an error.

– IOException

3

Exception Class

• Is the super class of all exception classes, it

contains many predefined exceptions such as:

– Integer divide by zero

– Out-of-bound array index

– Illegal number format

– File does not exist

– Etc.

Exception Class Methods
• Inside the catch block, you can call any of these

methods of the Exception class:

printStackTrace()

prints the line number of the code that

caused the exception along with the sequence

of method calls leading up to the exception

void

toString()

returns a String containing the exception

class name and a message indicating the cause

of the exception

String

getMessage()

returns a message indicating the cause of the

exception

String

Method name and argument listReturn value

Catching a NumberFormatException

int n = 0; // declare and initialize variable

String s = JOptionPane.showInputDialog(null,

"Enter an integer");

try

{

n = Integer.parseInt(s);

System.out.println("You entered " + n);

}

catch (NumberFormatException nfe)

{

System.out.println("Incompatible data.");

}

• See Example 10.2 DialogBoxInput.java

public static int parseInt (String str) throws NumberFormatExeption

Initializing Variables for try/catch

Blocks
• Notice that we declare and initialize the input

variable before we enter the try block. If we do not
initialize the variable and then try to access it after
the try/catch blocks, we will receive the following
compiler error:

variable n might not have been initialized

The error indicates that the only place where n is
assigned a value is in the try block. If an exception
occurs, the try block will be interrupted and we might

not ever assign n a value.

• Initializing the value before entering the try block
solves this problem.

4

Recovering From an Exception

• The previous code just printed a message when the

exception occurred.

• To continue processing and reprompt the user for

good input, we can put the try and catch blocks

inside a do/while loop.

• See Example 11.3 DialogBoxInput.java (next

Slide)

int n = 0;
boolean goodInput = false; // flag variable

String s = JOptionPane.showInputDialog(null,

"Enter an integer");

do {

try {

n = Integer.parseInt(s);

goodInput = true; //executed if no exception

}

catch (NumberFormatException nfe) {

s = JOptionPane.showInputDialog(null,

s + " is not an integer. "

+ "Enter an integer");

}

} while (! goodInput);

Software Engineering

Tip

Write code to catch and handle exceptions

generated by invalid user input.

Although the methods of the Exception class are

good debugging tools, they are not necessarily

appropriate to use in the final version of a

program.

Always try to write code that is user-friendly.

Catching Multiple Exceptions

• If the code in the try block might generate

multiple, different exceptions, we can provide

multiple catch blocks, one for each possible

exception.

• When an exception is generated, the JVM searches

the catch blocks in order. The first catch block

with a parameter that matches the exception

thrown will execute; any remaining catch blocks

will be skipped.

5

catch Block Order

• An exception will match any catch block with a

parameter that names any of its superclasses.

– For example, a NumberFormatException will match a

catch block with a RuntimeException parameter.

– All exceptions will match a catch block with an

Exception parameter.

• Thus, when coding several catch blocks, arrange

the catch blocks with the specialized exceptions

first, followed by more general exceptions.

The finally Block

• Optionally, you can follow the catch blocks with a

finally block.

• The finally block will be executed whether or not

an exception occurs. Thus:

– if an exception occurs, the finally block will be

executed when the appropriate catch block finishes

executing

– if no exception occurs, the finally block will be

executed when the try block finishes

• For example, a finally block might be used to

close an open file. We demonstrate this later.

Full try/catch/finally Syntax
try

{

// code that might generate an exception

}

catch(Exception1Class e1)

{

// code to handle an Exception1Class exception

}

…

catch(ExceptionNClass eN)

{

// code to handle an ExceptionNClass exception

}

finally

{

// code to execute in any case

}

Catching Multiple Exceptions

• We can write a program that catches several

exceptions.

• For example, we can prompt the user for a divisor.

– If the input is not an integer, we catch the

NumberFormatException and reprompt the user with an

appropriate message.

– If the input is 0, we catch an ArithmeticException when

we attempt to divide by 0, and reprompt the user with

an appropriate message.

• See Example 11.4 Divider.java

6

User-Defined Exceptions

• We can design our own exception class.

• Suppose we want to design a class encapsulating

email addresses (EmailAddress class).

– For simplicity, we say that a legal email address is a

String containing the @ character.

• Our EmailAddress constructor will throw an

exception if its email address argument is illegal.

• To do this, we design an exception class named

IllegalEmailException.

User-Defined Exception

• Java has an IllegalArgumentException class, so

our IllegalEmailException class can be a subclass

of the IllegalArgumentException class.

• By extending the IllegalArgumentException class:

– we inherit the functionality of an exception class, which

simplifies our coding of the exception

– we can associate a specific error message with the

exception

Extending an Existing Exception

• We need to code only the constructor, which
accepts the error message as a String.

• General pattern:
public class ExceptionName

extends ExistingExceptionClassName

{

public ExceptionName(String message)

{

super(message);

}

}

• See Example 11.5 IllegalEmailException.java

Throwing an Exception
• The pattern for a method that throws a user-defined

exception is:

accessModifier returnType methodName(parameters)

throws ExceptionName

{

if(parameter list is legal)

process the parameter list

else

throw new ExceptionName("Message here");

}

• The message passed to the constructor identifies the
error we detected. In a client's catch block, the
getMessage method will retrieve that message.

• See Examples 11.6 & 11.7

7

java.io Package

A set of classes used for:

reading and writing from files

reading from console

System.in Object

Class BufferReader (returns String)

Class InputStreamReader (returns unicode characters)

Object InputStream System.in

Returns bytes

BufferedReader inStream = new BufferedReader(new InputStreamReader(System.in));

Selected Input Classes in

the java.io Package

Class to read/recover objects from a

file written using ObjectOutputStream

ObjectInputStream

Input stream to read raw bytes of data

from files

FileInputStream

Class providing more efficient reading

of character files

BufferedReader

Class to read character filesFileReader

Class to read input data streamsInputStreamReader

Abstract superclass representing a

stream of raw bytes

InputStream

Abstract superclass for input classesReader

DescriptionClass

Hierarchy for Input Classes

Class to read character files

Class to read input data streams

Input stream to read

raw bytes of data

from files

8

Selected java.io Output Classes

Class to write objects to a file ObjectOutputStream

Output stream for writing raw bytes of data

to files

FileOutputStream

Supports printing various data types

conveniently

PrintStream

Prints basic data types, Strings, and objectsPrintWriter

More efficient writing to character filesBufferedWriter

Class for writing to character filesFileWriter

Abstract superclass representing an output

stream of raw bytes

OutputStream

Class to write output data streamsOutputStreamWriter

Abstract superclass for output classesWriter

DescriptionClass

Hierarchy for Output Classes

Reading from the Java Console

• System.in is the default standard input device,

which is tied to the Java Console.

• We have read from the console by associating a

Scanner object with the standard input device:

Scanner scan = new Scanner(System.in);

• We can also read from the console using these

subclasses of Reader:

– InputStreamReader

– BufferedReader, uses buffering (read-ahead) for

efficient reading

Opening an InputStream

• When we construct an input stream or output

stream object, the JVM associates the file name,

standard input stream, or standard output stream

with our object. This is opening the file.

• When we are finished with a file, we optionally

call the close method to release the resources

associated with the file.

• In contrast, the standard input stream (System.in),

the standard output stream (System.out), and the

standard error stream (System.err) are open when

the program begins. They are intended to stay

open and should not be closed.

9

Software Engineering

Tip

Calling the close method is optional. When the

program finishes executing, all the resources of

any unclosed files are released.

It is good practice to call the close method,

especially if you will be opening a number of files

(or opening the same file multiple times.)

Do not close the standard input, output, or error

devices, however. They are intended to remain

open.

Console Input Class Constructors

BufferedReader(Reader r)

constructs a BufferedReader object from

a Reader object – here the Reader object

will be an InputStreamReader object.

BufferedReader

InputStreamReader(InputStream is)

constructs an InputStreamReader object

from an InputStream object. For console

input, the InputStream object is System.in.

InputStreamReader

ConstructorClass

Methods of the BufferedReader

Class

• Because an IOException is a checked exception, we must

call these methods within a try block.

• See Example 11.8 ConsoleInput.java

close()

releases resources associated with an open

input stream. Throws an IOException.

void

readLine()

reads a line of text from the current

InputStream object, and returns the text as a

String. Throws an IOException.

String

Method name and argument listReturn value

Alternative Coding

• This code:
InputStreamReader isr =

new InputStreamReader(System.in);

BufferedReader br = new BufferedReader(isr);

can also be coded as one statement using an

anonymous object:

BufferedReader br = new BufferedReader(

new InputStreamReader(System.in));

because the object reference isr is used only once.

10

Hiding the Complexity

• We can hide the complexity by encapsulating try
and catch blocks into a UserInput class, which is
similar in concept to the Scanner class.

• We write our class so that the client program can
retrieve user input with just one line of code.

• The UserInput class also validates that the user
enters only the appropriate data type and
reprompts the user if invalid data is entered.

• See Examples 11.9 and 11.10

Software Engineering

Tip

Encapsulate complex code into a reusable class.

This will simplify your applications and make the

logic clearer.

File Types

• Java supports two types of files:

– text files: data is stored as characters

– binary files: data is stored as raw bytes

• The type of a file is determined by the classes used

to write to the file.

• To read an existing file, you must know the file's

type in order to select the appropriate classes for

reading the file.

Reading Text Files

• A text file is treated as a stream of characters.

• FileReader is designed to read character files.

• A FileReader object does not use buffering, so we

will use the BufferedReader class and the

readLine method to read more efficiently from a

text file.

11

Constructors for Reading Text Files

BufferedReader(Reader r)

constructs a BufferedReader object from

a Reader object

BufferedReader

FileReader(String filename)

constructs a FileReader object from a

String representing the name of a file.

Throws a FileNotFoundException.

FileReader

ConstructorClass

Methods of the BufferedReader

Class

• See Example 11.11 ReadTextFile.java

close()

releases resources allocated to the

BufferedReader object. Throws an

IOException.

void

readLine()

reads a line of text from the current

InputStream object, and returns the text as a

String. Returns a null String when the end of

the file is reached. Throws an IOException.

String

Method name and argument listReturn value

Writing to Text Files

• Several situations can exist:

– the file does not exist

– the file exists and we want to replace the current

contents

– the file exists and we want to append to the current

contents

• We specify whether we want to replace the

contents or append to the current contents when

we construct our FileWriter object.

Constructors for Writing Text Files

BufferedWriter(Writer w)

constructs a BufferedWriter object from a

Writer object

BufferedWriter

FileWriter(String filename,

boolean mode)

constructs a FileWriter object from a String

representing the name of a file. If the file does

not exist, it is created. If mode is false, the

current contents of the file, if any, will be

replaced. If mode is true, writing will append

data to the end of the file. Throws an

IOException.

FileWriter

ConstructorClass

12

Methods of the BufferedWriter Class

• See Examples 11.12 & 11.13

newLine()

writes a line separator. Throws an

IOException.

void

close()

releases resources allocated to the

BufferedWriter object. Throws an IOException.

void

write(String s)

writes a String to the current OutputStream

object. This method is inherited from the Writer

class. Throws an IOException.

void

Method name and argument listReturn value

Reading Structured Text Files

• Some text files are organized into lines that

represent a record -- a set of data values

containing information about an item.

• The data values are separated by one or more

delimiters; that is, a special character or

characters separate one value from the next.

• As we read the file, we need to parse each line;

that is, separate the line into the individual data

values called tokens.

Example
• An airline company could store data in a file

where each line represents a flight segment
containing the following data:

– flight number

– origin airport

– destination airport

– number of passengers

– average ticket price

• Such a file could contain the following data:
AA123,BWI,SFO,235,239.5

AA200,BOS,JFK,150,89.3

AA900,LAX,CHI,201,201.8

…

• In this case, the delimiter is a comma.

The StringTokenizer Class

• The StringTokenizer class is designed to parse

Strings into tokens.

• StringTokenizer is in the java.util package.

• When we construct a StringTokenizer object, we

specify the delimiters that separate the data we

want to tokenize. The default delimiters are the

whitespace characters.

13

Two StringTokenizer Constructors

StringTokenizer(String str, String delim)

constructs a StringTokenizer object for the specified

String using delim as the delimiters

StringTokenizer(String str)

constructs a StringTokenizer object for the specified

String using space, tab, carriage return, newline, and form

feed as the default delimiters

Constructor name and argument list

Useful StringTokenizer Methods

nextToken()

returns the next token

String

hasMoreTokens()

returns true if more tokens are available to be

retrieved; returns false, otherwise.

boolean

countTokens()

returns the number of unretrieved tokens in this

object; the count is decremented as tokens are

retrieved.

int

Method name and argument listReturn value

Using StringTokenizer
import java.util.StringTokenizer;

public class UsingStringTokenizer

{

public static void main(String [] args)

{

String flightRecord1 = "AA123,BWI,SFO,235,239.5";

StringTokenizer stfr1 =

new StringTokenizer(flightRecord1, ",");

// the delimiter is a comma

while (stfr1.hasMoreTokens())

System.out.println(stfr1.nextToken());

}

}

• See Example 11.14 UsingStringTokenizer.java

Common Error

Trap

Why didn't we use a for loop and the countTokens

method?

for (int i = 0; i < strfr1.countTokens(); i++)

System.out.println(stfr1.nextToken());

This code won't work because the return value of

countTokens is the number of tokens remaining to be

retrieved.

The body of the loop retrieves one token, so each time we

evaluate the loop condition by calling the countTokens

method, the return value is 1 fewer.

The result is that we retrieve only half of the tokens.

14

Example Using StringTokenizer

• The file flight.txt contains the following comma-

separated flight data on each line:
flight number, origin airport, destination airport,

number of passengers, average ticket price

• The FlightRecord class defines instance variables

for each flight data value

• The ReadFlights class reads data from flights.txt,

instantiates FlightRecord objects, and adds them

to an ArrayList.

• See Examples 11.15 & 11.16

Writing Primitive Types

to Text Files

• FileOutputStream, a subclass of the
OutputStream class, is designed to write a
stream of bytes to a file.

• The PrintWriter class is designed for
converting primitive data types to characters
and writing them to a text file.

– print method, writes data to the file without a
newline

– println method, writes data to the file, then adds a
newline

Constructors for Writing Structured

Text Files

PrintWriter(OutputStream os)

constructs a PrintWriter object from an

OutputStream object

PrintWriter

FileOutputStream(String filename,

boolean mode)

constructs a FileOutputStream object from

a String representing the name of a file. If

the file does not exist, it is created. If mode is

false, the current contents of the file, if any,

will be replaced. If mode is true, writing will

append data to the end of the file. Throws a

FileNotFoundException.

FileOutputStream

ConstructorClass

Useful PrintWriter Methods

• The argument can be any primitive data type
(except byte or short), a char array, or an object.

• See Example 11.18 WriteGradeFile.java

close()

releases the resources associated with the

PrintWriter object

void

println(dataType argument)

writes a String representation of the

argument to the file followed by a newline.

void

print(dataType argument)

writes a String representation of the

argument to the file.

void

Method name and argument listReturn value

15

Reading and Writing Objects

• Java also supports writing objects to a file and

reading them as objects.

• This is convenient for two reasons:

– We can write these objects directly to a file without

having to convert the objects to primitive data types or

Strings.

– We can read the objects directly from a file, without

having to read Strings and convert these Strings to

primitive data types in order to instantiate objects.

• To read objects from a file, the objects must have

been written to that file as objects.

Writing Objects to a File

• To write an object to a file, its class must

implement the Serializable interface, which

indicates that:

– the object can be converted to a byte stream to be

written to a file

– that byte stream can be converted back into a copy of

the object when read from the file.

• The Serializable interface has no methods to

implement. All we need to do is:

– import the java.io.Serializable interface

– add implements Serializable to the class header

The ObjectOutputStream Class

• The ObjectOutputStream class, coupled with

the FileOutputStream class, provides the

functionality to write objects to a file.

• The ObjectOutputStream class provides a

convenient way to write objects to a file.

– Its writeObject method takes one argument: the

object to be written.

Constructors for Writing Objects

ObjectOutputStream(OutputStream

out)

creates an ObjectOutputStream that

writes to the OutputStream out. Throws an

IOException.

ObjectOutputStream

FileOutputStream(String filename,

boolean mode)

creates a FileOutputStream object from a

String representing the name of a file. If the

file does not exist, it is created. If mode is

false, the current contents of the file, if any,

will be replaced. If mode is true, writing

will append data to the end of the file.

Throws a FileNotFoundException.

FileOutputStream

ConstructorClass

16

The writeObject Method

• See Examples 11.19 & 11.20

writeObject(Object o)

writes the object argument to a file. That

object must be an instance of a class that

implements the Serializable interface.

Otherwise, a run-time exception will be

generated. Throws an IOException.

void

Method name and argument listReturn value

Omitting Data from the File

• The writeObject method does not write any object

fields declared to be static or transient.

• You can declare a field as transient if you can

easily reproduce its value or if its value is 0.

– Syntax to declare a field as transient:

accessModifier transient dataType fieldName

– Example:

private transient double totalRevenue;

Software Engineering

Tip

To save disk space when writing to an object file,

declare the class's fields as static or transient,

where appropriate.

Reading Objects from a File

• The ObjectInputStream class, coupled with
FileInputStream, provides the functionality to read
objects from a file.

• The readObject method of the ObjectInputStream
class is designed to read objects from a file.

• Because the readObject method returns a generic
Object, we must type cast the returned object to
the appropriate class.

• When the end of the file is reached, the
readObject method throws an EOFException, so
we detect the end of the file when we catch that
exception.

17

Constructors for Reading Objects

ObjectInputStream(InputStream in)

creates an ObjectInputStream from the

InputStream in. Throws an IOException.

ObjectInputStream

FileInputStream(String filename)

constructs a FileInputStream object from a

String representing the name of a file.

Throws a FileNotFoundException.

FileInputStream

ConstructorClass

The readObject Method

• See Example 11.21 ReadingObjects.java

– Note that we use a finally block to close the file.

readObject()

reads the next object and returns it. The

object must be an instance of a class that

implements the Serializable interface. When

the end of the file is reached, an

EOFException is thrown. Also throws an

IOException and ClassNotFoundException

Object

Method name and argument listReturn value

Backup

System.in Object

Class BufferReader (returns String)

Class InputStreamReader (returns unicode characters)

Object InputStream System.in

Returns bytes

BufferedReader inStream = new BufferedReader(new InputStreamReader(System.in));

18

Input Streams

• Stream is flow of data

– Reader at one end

– Writer at the other end

• Stream generalizes input & output

– Keyboard electronics different from disk

– Input stream makes keyboard look like a disk

ReaderWriter Stream

Input Streams: System.in

• System.in: the standard input stream

– By default, reads characters from the keyboard

• Can use System.in many ways

– Directly (low-level access)

– Through layers of abstraction (high-level access)

ProgramSystem.in

Input Streams: Read Characters

• Can read characters from System.in with read()
// Reads a single character from the keyboard and displays it
class DemonstrateRead
{

public static void main(String[] args)
throws java.io.IOException
{

char character;

// Prompt for a character and read it
System.out.print("Enter a character: ");
System.out.flush();
character = (char) System.in.read();

// Display the character typed
System.out.println();
System.out.println("You typed " + character);

}
}

System.in

'f'

InputStream.read()

'f','i','r','s','t','\n','1','2','3','\n','4','2',' ','5','8','\n', ...

Input Streams: Read Numbers

• Can combine reading, parsing, conversion steps
import java.io.*;

import java.text.NumberFormat;

class ReadAnInt2 {

public static void main(String[] args)

throws java.io.IOException, java.text.ParseException {

// Create an input stream and attach it to the standard input stream

BufferedReader inStream

= new BufferedReader(new InputStreamReader(System.in));

// Create a number formatter object

NumberFormat aNumberFormatter = NumberFormat.getInstance();

System.out.print("Enter an integer: ");

// Read the response from the user, convert to Number,then convert to int

int intNumber

= aNumberFormatter.parse(inStream.readLine()).intValue();

System.out.println("You typed " + intNumber);

}

}

Note

ParseException!

