
Chapter 9

Multidimensional Arrays

and the

ArrayList Class

Topics

• Declaring and Instantiating Multidimensional

Arrays

• Aggregate Two-Dimensional Array Operations

• Other Multidimensional Arrays

• The ArrayList Class

Two-Dimensional Arrays

• Allow organization of data in rows and columns in

a table-like representation.

• Example:

– Daily temperatures can be arranged as 52

weeks with 7 days each.

Declaring Multidimensional Arrays

• Declaring a two-dimensional array:
datatype [][] arrayName;

or
datatype [][] arrayName1, arrayName2, …;

• Declaring a three-dimensional array:

datatype [][][] arrayName;

or
datatype [][][] arrayName1, arrayName2, …;

• Examples:

double [][] dailyTemps, weeklyTemps;

Auto [][][] cars;

Instantiating MultiDimensional

Arrays
• Instantiating a two-dimensional array:

arrayName = new datatype [exp1][exp2];

where exp1 and exp2 are expressions that

evaluate to integers and specify,

respectively, the number of rows

and the number of columns in the array.

• Example:
dailyTemps = new double [52][7];

dailyTemps has 52 rows and 7 columns, for a

total of 364 elements.

Default Initial Values

• When an array is instantiated, the array elements

are given standard default values, identical to

default values of single-dimensional arrays:

nullAny object reference

(for example, a String)

falseboolean

spacechar

0.0float, double

0byte, short, int, long

Default valueArray data type

Assigning Initial Values

datatype [][] arrayName =

{ { value00, value01, … },

{ value10, value11, …}, … };
where valueMN is an expression that

evaluates to the data type of the array

and is the value to assign to the element

at row M and column N.

• The number of sublists is the number of rows in
the array.

• The number of values in each sublist determines
the number of columns in that row.

• Thus, a two-dimensional array can have a different
number of columns in each row.

Assigning Initial Values Example

• For example, this statement:

int [][] numbersList1 = { { 0, 5, 10 },

{ 0, 3, 6, 9 } };

instantiates this array:

An Array of Arrays

• As the preceding figure illustrates, a two-

dimensional array is an array of arrays.

– The first dimension of a two-dimensional array

is an array of array references, with each

reference pointing to a single-dimensional

array.

– Thus, a two-dimensional array is comprised of

an array of rows, where each row is a single-

dimensional array.

Instantiating Arrays with Rows of

Different Length
• To instantiate a two-dimensional array with a

different number of columns for each row:

1. instantiate the two-dimensional array

2. instantiate each row as a single-dimensional

array

//instantiate the array with 3 rows

char [][] grades = new char [3][];

// instantiate each row

grades[0] = new char [23]; // instantiate row 0

grades[1] = new char [16]; // instantiate row 1

grades[2] = new char [12]; // instantiate row 2

Accessing Array Elements

• Elements of a two-dimensional array are accessed
using this syntax:

arrayName[exp1][exp2]

• exp1 is the element's row position, or row index.

– row index of first row: 0

– row index of last row: number of rows - 1

• exp2 is the element's column position, or column
index.

– column index of first column: 0

– column index of last column: number of
columns in that row - 1

The Length of the Array

• The number of rows in a two-dimensional array

is:

arrayName.length

• The number of columns in row n in a two-

dimensional array is:

arrayName[n].length

array

Summary: Accessing Two-

Dimensional Array Elements

arrayName[i].lengthNumber of

columns in row i

arrayName.lengthNumber of rows

arrayName[arrayName.length – 1]

[arrayName

[arrayName.length -1].length – 1]

Last row, last

column

arrayName[arrayName.length – 1][j]Last row,

column j

arrayName[i][j]Row i, column j

arrayName[0][j]Row 0, column j

SyntaxArray element

Example: Family Cell Bills

• We want to analyze three months of cell phone

bills for a family of four:

• See Example 9.1 FamilyCellBills.java

Aggregate Array Operations

• To process all array elements in row order, we use a

nested for loop:

for (int i = 0; i < arrayName.length; i++)

{

for (int j = 0; j < arrayName[i].length; j++)

{

// process element arrayName[i][j]

}

}

– The outer loop processes the rows.

– The inner loop processes the columns within each row.

• See Example 9.3 OutputFamilyCellBills.java

Processing a Given Row

• If we want to find the maximum bill for a

particular month or the total bills for a month, we

need to process just one row.

• To process just row i, we use this standard form:
for (int j = 0; j < arrayName[i].length; j++)

{

// process element arrayName[i][j]

}

• See Example 9.4 SumRowFamilyCellBills.java

Processing a Given Column
• If we want to determine the highest cell bill for

one person, we need to process just one column.

• To process just column j, we use this standard
form:
for (int i = 0; i < arrayName.length; i++)

{

if (j < arrayName[i].length)

// process element arrayName[i][j]

}

• Because rows have variable lengths, we must
verify that the current row has a column j before
attempting to process the element.

• See Example 9.5 MaxMemberBill.java

Processing One Row at a Time

• If we want to determine the total of the cell bills for
each month, we need to process all rows, calculating a
total at the end of each row.

• We use this standard form:
for (int i = 0; i < arrayName.length; i++)

{

// initialize processing variables for row i

for (int j = 0; j < arrayName[i].length; j++)

{

// process element arrayName[i][j]

} // end inner for loop

// finish the processing of row i

} // end outer for loop

• See Example 9.6 SumEachRowFamilyCellBills.java

The ArrayList Class

• Arrays have a fixed size once they have been
instantiated.

• What if we don't know how many elements we
will need? For example, if we are

• reading values from a file

• returning search results

• We could create a very large array, but then we
waste space for all unused elements.

• A better idea is to use an ArrayList, which stores
elements of object references and automatically
expands its size, as needed.

The ArrayList Class

• Package: java.util

• All ArrayList elements are object references, so

we could have an ArrayList of Auto objects, Book

objects, Strings, etc.

• To store primitive types in an ArrayList, use the

wrapper classes (Integer, Double, Character,

Boolean, etc.)

Declaring an ArrayList

• Use this syntax:

ArrayList<E> arrayListName;

E is a class name that specifies the type of object

references that will be stored in the ArrayList

• For example:
ArrayList<String> listOfStrings;

ArrayList<Auto> listOfCars;

ArrayList<Integer> listOfInts;

• The ArrayList is a generic class. The ArrayList

class has been written so that it can store object

references of any type specified by the client.

ArrayList Constructors

• The capacity of an ArrayList is the total number
of elements allocated to the list.

• The size of an an ArrayList is the number of those
elements that are used.

ArrayList<E>(int initialCapacity)

constructs an ArrayList object of type E with the

specified initial capacity

ArrayList<E>

constructs an ArrayList object of type E with an

initial capacity of 10

Constructor name and argument list

Instantiating an ArrayList

• This list has a capacity of 10 Astronaut references,

but a size of 0.

ArrayList<Astronaut> listOfAstronauts =

new ArrayList<Astronaut>();

• This list has a capacity of 5 Strings, but has a size

of 0.

ArrayList<String> listOfStrings =

new ArrayList<String>(5);

ArrayList Methods

remove(int index)

removes the element at the specified

index position

E

size()

returns the number of elements

int

clear()

removes all the elements in the list

void

add(E element)

appends element to the end of the list

boolean

Method name and argument listReturn value

More ArrayList Methods

trimToSize()

sets the capacity of the list to its current size

void

set(int index, E element)

replaces the element at the specified index

position with the specified element

E

get(int index)

returns the element at the specified index

position; the element is not removed from the list.

E

Method name and argument listReturn value

Processing Array Lists

• Using a standard for loop:
ClassName currentObject;

for (int i = 0; i < arrayListName.size(); i++)

{

currentObject = arrayListName.get(i);

// process currentObject

}

• Example:
Auto currentAuto;

for (int i = 0; i < listOfAutos.size(); i++)

{

currentAuto = listOfAutos.get(i);

// process currentAuto

}

The Enhanced for Loop

• Simplifies processing of lists

• The standard form is:
for (ClassName currentObject : arrayListName)

{

// process currentObject

}

• This enhanced for loop prints all elements of an
ArrayList of Strings named list:

for (String s : list)

{

System.out.println(s);

}

• See Example 9.12 ArrayListOfIntegers.java

Using an ArrayList

• We want to write a program for a bookstore that
allows users to search for books using keywords.

• We will have three classes in this program:

– A Book class, with instance variables
representing the title, author, and price

– A BookStore class that stores Book objects in an
ArrayList and provides a searchForTitle
method

– A BookSearchEngine class, which provides the
user interface and the main method

• See Examples 9.13, 9.14, & 9.15

Backup Slides

Common Error

Trap

• Failing to initialize the row processing variables

before processing each row is a logic error and

will generate incorrect results.

Processing A Column at a Time

• Suppose we want to store test grades for three

courses. Each course has a different number of

tests, so each row has a different number of

columns:

int [][] grades = { { 89, 75 },

{ 84, 76, 92, 96 },

{ 80, 88, 95 } };

• First, we need to find the number of columns in

the largest row. We use that in our loop condition.

• Then before attempting to process the array

element, we check whether the column exists in

the current row.

Processing A Column at a Time(con't)
• We have stored the maximum number of columns

in maxNumberOfColumns; the general pattern for
processing elements one column at a time is:
for (int j = 0; j < maxNumberOfColumns; j++)

{

for (int i = 0; i < arrayName.length; i++)

{

// does column j exist in this row?

if (j < arrayName[i].length)

{

// process element arrayName[i][j]

}

}

}

See Example 9.7 GradesProcessing.java

Displaying Array Data as a Bar

Chart
• We use our standard nested for

loops and the fillRect method of

the Graphics class for the bars

and the drawString method

to print each element's value.

• To change colors for each row, we

use an array of Color objects, and

loop through the array to set the

color for each row.

• Each time we process a row, we must reset the x

and y values for the first bar.

• See Example 9.8 BarChartApplet.java

Other Multidimensional Arrays

• If we want to keep track of sales on a per-year,

per-week, and per-day basis, we could use a three-

dimensional array:

– 1st dimension: year

– 2nd dimension: week

– 3rd dimension: day of the week

Sample Code

// declare a three-dimensional array

double [][][] sales;

// instantiate the array for 10 years, 52 weeks,

// and 7 days

sales = new double [10][52][7];

// set the value of the first element

sales[0][0][0] = 638.50;

// set the value for year 4, week 22, day 3

sales [4][22][3] = 928.20;

// set the last value in the array

sales [9][51][6] = 1234.90;

Structure of an n-Dimensional Array

arrayName[i1][i2][i3][..][in-1][in] is an

array element

nth

arrayName[i1][i2][i3][..][in-1] is a single-

dimensional array

(n-1)th

arrayName[i1][i2][i3][..][ik] is an (n-k)-

dimensional array

kth

arrayName[i1][i2] is an (n-2)-dimensional

array

second

arrayName[i1] is an (n-1)-dimensional
array

first

Array ElementDimension

General Pattern for Processing a

Three-Dimensional Array

for (int i = 0; i < arrayName.length; i++)

{

for (int j = 0; j < arrayName[i].length; j++)

{

for (int k = 0; k < arrayName[i][j].length; k++)

{

// process the element arrayName[i][j][k]

}

}

}

Code to Print sales Array

for (int i = 0; i < sales.length; i++)

{

for (int j = 0; j < sales[i].length; j++)

{

for (int k = 0; k < sales[i][j].length; k++)

{

// print the element at sales[i][j][k]

System.out.print(sales[i][j][k] + "\t");

}

// skip a line after each week

System.out.println();

}

// skip a line after each month

System.out.println();

}

A Four-Dimensional Array

• If we want to keep track of sales on a per-state,

per-year, per-week, and per-day basis, we could use

a four-dimensional array:

– 1st dimension: state

– 2nd dimension: year

– 3rd dimension: week

– 4th dimension: day of the week

double[][][][] sales = new double [50][10][52][7];

General Pattern for Processing a

Four-Dimensional Array
for (int i = 0; i < arrayName.length; i++)

{

for (int j = 0; j < arrayName[i].length; j++)

{

for (int k = 0; k < arrayName[i][j].length; k++)

{

for (int l = 0; l < arrayName[i][j][k].length; l++)

{

// process element arrayName[i][j][k][l]

}

}

}

}

