
1

Software Testing Strategies
Chapter 18

Click here to review SW Testing Techniques

2

Review SW Testing Techniques

Chapter 17

3

Software Testing Techniques

• Provide system guidance for designing tests that:
– Exercise the internal logic of a program

• “White Box” test cases design techniques

– Exercise the input and output “Requirements” of a
program

• “Black Box”

To Uncover ERRORS / BUGS /
MISUNDERSTANDING OF REQUIREMNTS

ETC.

4

Software Testing Techniques

• Execute the program before the customer.
• To reduce the number of errors detected by

customers.
• In order to find the highest possible number

pf errors software testing techniques must
be used

5

Destructive PhaseConstructive Phases

Software Testing Techniques

Analysis Design Implementation Test

Requirement
Spic.

Design
Document

Code Test Cases

6

What is testing and why do we
do it?

• Testing is the filter to catch defects before
they are “discovered” by the customer
– Every time the program is run by a customer, it

generates a “test-case”.
– We want our test cases to find the defects first.

• Software development is a human activity
with huge potential for errors

• Testing before release helps assure quality
and saves money

7

Test Cases Design
• Test cases should be designed to have the highest
likelihood of finding problems

• Can test by either:
–Black-box - using the specifications of what the software
should do
•Tests are derived from the I/O specification.
•Used in most functional tests.
•Other names: data-driven, input/output-driven.

–White-Box - testing internal paths and working of the
software
•Examine internal program structure and derive tests from an
examination of the program’s logic.

•Used to develop test cases for unit and integration testing
•Other names: Glass-box, Logic-driven, Structural.

8

White-Box Testing

• Uses the control structure of the
program/design to derive test cases

• We can derive test cases that:
– Guarantee that all independent paths within a

module have been visited at least once.
– Exercise all logical decisions on their TRUE or

FALSE sides
– Execute all loops at their boundaries

9

A few White-Box Strategies

• Statement
– Requires each statement of the program to be executed

at least once.

• Branch
– Requires each branch to be traversed at least once.

• Multi-condition
– Requires each condition in a branch be evaluated.

10

More White-Box Strategies

• Basis Path
– Execute all control flow paths through the code. Based

on Graph Theory.
• Thomas McCabe’s Cyclomatic Complexity:
• V(g) : #edges - #nodes + 2

• Cyclomatic complexity is a SW metric that measures the
complexity of a program.

• The larger V(g) the more complex.

• Data Flow
– Selects test data based on the locations of definition and

the use of variables.

11

Statement Coverage

• The criterion is to require every statement in

the program to be executed at least once

• Weakest of the white-box tests.

• Specified by the F.D.A. as the minimum

level of testing.

12

Branch Coverage

• This criterion requires enough test cases such that

each decision has a TRUE and FALSE outcome at

least once.

• Another name: Decision coverage

• More comprehensive than statement coverage.

13

Branch Coverage
• Example:

void example(int a, int b, float *x)
{

1 if ((a>1) && (b==0))
2 x /= a;
3 if ((a==2) || (x > 1)
4 x++;

}
• Test case(s)
1. a=2, b=0, x=3
2. a=3, b=1, x=1

14

Branch Coverage

•Test Case

1. a=2, b=0 & x=3

2. a=3, b=1 & x=1

•Coverage

1. ace

2. abd

•What happens with data

that takes:

–abe, or

–acd

a > 1
&&

b==0

x /= a;

a

b

c

d

e

Yes

a==2
||

x > 1

No

x++

Yes

No

15

Basis Path

•Execute all independent flow paths through the code.
Based on a flow graph.

–An independent flow path is one that introduces at least 1 new
set of statements or conditions

–Must move along at least 1 new edge on flow graph
–Flow graph shows the logical control flow using following
notation:

Sequence If
while

until

16

Corresponding
Flow Graph

i=1;
total.input =

total.valid = 0;
sum = 0;

value[i] <> -
999

total.input <
100

total.input ++;

value[i] >=
min &&

value[i] <=
max

sum=sum+valu
e[i];

i++;

Enddo

total.valid >
0

aver = sum/
total.valid;aver=-999

no

N
o Yes

Y
es

No -

Done

1.

4.

3.

2.

5.

6.

7.

8.

9.

10.

11. 12.

13.

1

2

3

4

6

5

78

9

10

1112

13

17

Number of Paths
1

2

3

4

6

5

78

9

10

1112

13

V(g) = E - N + 2
17-13 + 2 = 6

R = 6
R1

R3

R2

R4

R5

R6

18

Black-Box Testing
• Focuses on functional requirements of the software

without regard to the internal structure.

• data-driven, input/output-driven or behavior testing

• Used in most system level testing
– Functional,

– Performance

– Recovery

– Security & stress

• Tests set up to exercise full functional requirements of
system

19

Black Box Testing Find Errors in ...

• Incorrect or missing functions (compare to white
box)

• Interface errors
• Errors in External Data structures
• Behavior performance problems (Combinations of

input make it behave poorly).
• Initialization and Termination errors (Sensitive to

certain inputs (e.g., performance)
• Blackbox done much later in process than white

box.

20

A few Black-box Strategies

• Exhaustive input testing
– A test strategy that uses every possible input condition

as a test case.

– Ideal

– Not possible!

• Random
– Test cases are created from a pseudo random generator.

– Broad spectrum. Not focused.

– Hard to determine the result of the test.

21

Black-box Strategies

• Equivalence Partitioning
– A black-box testing method that divides the

input domain of a program into classes of data
which test cases can be derived.

• Boundary Value Analysis
– A test case design technique that complements

equivalence partitioning, by selecting test cases
at the “edges” of the class.

22

Boundary Value Analysis

• Experience shows that test cases exploring
boundary conditions have a high payoff.
– E.g., Most program errors occur in loop control.

• Different from equivalence partitioning:
– Rather than any element in class, BVA selects tests at

edge of the class.
– In addition to input condition, test cases can be derived

for output conditions.

• Similar to Equivalence partitioning. First identify
Equivalence classes, then look at the boundaries.

23

Test Case Documentation

• Minimum information for a test case
– Identifier
– Input data
– Expected output data

• Recommended to add the condition being tested
(hypothesis).

• Format of test case document changes depending
on what is being tested.

• Always include design worksheets.

24

Simple Test Case Format

Id Condition Input Data Expected

25

Test Case Formats

• Testing worksheet
– Test Case

• Identifier (serial number)
• Condition (narrative or predicate)
• Input (Stimuli data or action)
• Expected Output (Results)

– Test Results
• Actual Output (Results)
• Status (Pass/Fail)

26

Use this Test Case format for
your Project

Test Name/Number
Test Objective
Test Description

Test Conditions

Expected Results

Actual Results

27

ANSI/IEEE Test Case Outline

• Test-case-specification Identifier
– A unique identifier

• Test Items
– Identify and briefly describe the items and features to

be exercised by this case
• Input Specifications

– Specify each input required to execute the test case.
• Output Specifications

– Specify all of the outputs and features required of the
test items.

28

ANSI/IEEE Test Case Outline

• Environmental needs
– Hardware
– Software
– Other

• Special procedural requirements
– Describe any special constraints on the test procedures

which execute this test case.
• Interfaces dependencies

– List the id’s of test cases which must be executed prior
to this test case

29

Software Testing Strategies
Chapter 18

30

Software Testing Strategies

• A formal plan for your tests.
– What to test ?
– What to test when new components are added

to the system?
– When to start testing with customer?

• Testing is a set of activities that can be
planned in advance and conducted
systematically.

31

Software Testing Strategies

• Testing begins “in the small” and
progresses “to the large”.

• Start with a single component and move
upward until you test the whole system.

• Early tests detects design and
implementation errors, as move upward you
start uncover errors in requirements .

32

Software Testing Strategies

• Characteristics of testing strategies:
– Testing begins at the component level, for OO at the

class or object level, and works outward toward the
integration of the entire system.

– Different testing techniques, such as white-box and
black-box, are appropriate at different times in the
testing process.

– For small projects, testing is conducted by the
developers. For large projects, an independent testing
group is recommended.

– Testing and debugging are different activities, but
debugging must be included in any testing strategy.

33

Testing can be used for verification and
validation (V&V) of the Software:

• Verification - Are
we building the
product right?
– Did the software

correctly implements a
specific function.

• Validation - Are we
building the right
product?
– Has the software

been built to
customer
requirements “Trace-
ability”

The goal is to make sure that the software meets the
organization quality measures

34

Conventional SW Testing can be
viewed as a series of four steps:

Analysis Design Implementation

Integration
Testing

Unit
Testing

System
Testing &
Validation

Testing

System
Engineering

35

Unit Testing
• Testing focuses on each component “unit”

individually.
• Unit testing heavily depends on white-box

testing techniques.
– Tests of all components can be conducted in parallel.
– Use the component level design description, found in

the design document, as a guide to testing.

36

Unit Testing
• Things to consider as you write test cases for

each component:
– Interface to the module - does information flow in and out

properly?
– Local data structures - do local structures maintain data

correctly during the algorithms execution?
– Boundary conditions - all boundary conditions should be

tested. Look at loops, First and last record processed, limits of
arrays… This is where you will find most of your errors.

– Independent paths- Try to execute each statement at least
once. Look at all the paths through the module.

– Error Handling paths- Trigger all possible errors and see that
they are handled properly,

• messages are helpful and correct,
• exception-condition processing is correct and
• error messages identify the location of the true error.

37

Unit Testing
• Things to consider as you write test cases for

each component:
– Stubs and Drivers:

• Additional SW used to help test components.

– Driver –
• a main program that passes data to the component and

displays or prints the results.

– Stub -
• a "dummy" sub-component or sub-program used to replace

components/programs that are subordinate to the unit being
tested.

• The stub may do minimal data manipulation, print or display
something when it is called and then return control to the unit
being tested.

38

Stubs and Drivers

Driver

Module to be
tested

StubStub

Results

39

Conventional SW Testing can be
viewed as a series of four steps:

Analysis Design Implementation

Integration
Testing

Unit
Testing

System
Testing &
Validation

Testing

System
Engineering

40

Integration Testing

• Testing focuses on the design and the
construction of the SW architecture.
– This is when we fit the units together.

• Integration testing includes both
– verification and
– program construction.

• Black-box testing techniques are mostly used.
Some white-box testing may be used for major control paths.

– Look to the SW design specification for
information to build test cases.

41

Integration Testing

• Different approaches to Integration:

– Top-down
– Bottom-up
– Sandwich
– Big Bang!

42

Top-down Approach

• Modules are integrated by moving down
through the control hierarchy, beginning with
the main program.

• Two approaches to Top-down integration:
– Depth-first integration –

• Integrate all components on a major control path.

– Breadth-first integration –
• Integrates all components at a level and then moves

down.

43

Top-down Integration Steps

• Main is used as a test driver and stubs are
used for all other components

• Replace sub-ordinate stubs one at a time (the
order depends on approach used depth or
breadth) with actual components.

• retest as each component is integrated.
• On completion of a set of tests replace stubs
• To regret ion testing to make sure new

modules didn't introduce new errors

44

Depth-first Example

M1

M2

M6M5

M3 M4

45

Breadth-first integration

M1

M2

M6M5

M3 M4

Stub As You Go

46

Top-down Integration

• Advantages:
– Major control is tested

first, since decision
making is usually found
in upper levels of the
hierarchy.

– If depth-first is used, a
complete function of the
SW will be available for
demonstration.

• Disadvantages:
– Many stubs may be

needed.
– Testing may be limited

because stubs are
simple. They do not
perform functionality of
true modules.

47

Integration Testing

• Different approaches to Integration:

– Top-down
– Bottom-up
– Sandwich
– Big Bang!

48

Bottom-up Approach

• Construction and testing begins at the lowest
levels in the program structure.

• Implemented through the following steps:
1. Low level components are combined into clusters or

builds that perform a specific SW function.
2. A Driver is written to control the test case input and

output.
3. The cluster or build is tested.
4. Drivers are removed and the clusters or builds are

combined moving upward in the program structure.
– GOTO TEXTBOOK PAGE 491

49

Bottom-up Approach

• Advantages:
– Not need or for

stubs.

• Disadvantage:
– Controllers needed

50

Integration Testing

• Different approaches to Integration:

– Top-down
– Bottom-up
– Sandwich
– Big Bang!

51

Sandwich approach

• The sandwich approach is the best of
both worlds, and minimizes the need for
drivers and stubs.

• A top-down approach is used for the top
components and bottom-up is used for
the lower levels.

52

Big Bang approach

• Put the whole system together and
watch the fire works!
– (Approach used by may under-grads.)
– Avoid this, and choose a strategy.

53

Regression Testing

• Each time the software changes I.e when
new component is added.

• To make sure that new changes didn’t break
existing functionality that used to work fine.

• Re-Execute some tests to capture errors as a
result of side effects of new changes.

54

Validation Testing

Validation of the requirements

55

Validation Testing

• Testing ensures that all functional, behavioral
and performance requirements of the system
were satisfied.
– These were detailed in the SW requirements

specification.
– Look in the validation criteria section.

• Only Black-box testing techniques are used.
• The goal is to prove conformity with the

requirements.

56

Validation Testing

• For each test case, one of two possibilities
conditions will exist:

1. The test for the function or performance criteria
will conform to the specification and is accepted.

2. A deviation will exist and a deficiency is
uncovered.

– This could be an error in the SW or a
deviation from the specification

– SW works but it does not do what was
expected.

57

Validation Testing

• Alpha and Beta Testing
– A series of acceptance tests to enable the

customer to validate all requirements.
– Conducted by the end users and not the

developer/tester/system engineer.
• Alpha

– At the developer site by customer
• Bets

– At the customer site by the end user.
– Live testing

58

System Testing

Verifies that the new SW system
integrates with the existing

environment. This may include
other systems, hardware, people

and databases.

59

System Testing

• Black-box testing techniques are used.
• Put your software in action with the reset of

the system.
• Many types of errors could be detected but

who will accept responsibility?

60

System Testing Types

• Recovery Testing - force the SW to fail in a
number of ways and verify that it recovers properly
and in the appropriate amount of time.

• Security Testing - attempt to break the security
of the system.

• Stress Testing- execute the system in a way that
requires an abnormal demand on the quantity,
frequency or volume of resources.

• Performance Testing- For real-time and
embedded systems, test the run-time performance of
the system.

61

System Testing Types

• Regression Testing again
– re-executing a subset of all test cases that

have already been conducted to make sure we
have not introduced new defects.

62

Click here for OO Testing

Chapter 23

