On The Longest Edge of Relative Neighborhood Graphs in Wireless Ad Hoc Networks

Presenter: Lixin Wang

Advisor: Professor Peng-Jun Wan
What is a wireless ad hoc network?

- a collection of wireless devices (transceivers) located in a geographic region
- each node is equipped with an omnidirectional antenna and has limited transmission power
- a communication session
 - a single-hop radio transmission
 - through relaying by intermediate devices
- no need for a fixed infrastructure
- can be flexibly deployed at low cost for varying missions
 - decision making in the battlefield
 - emergency disaster relief
 - environmental monitoring

Presenter: Lixin Wang
Advisor: Professor Peng-Jun Wan
Maximal Transmission Radius

- each node is associated with a maximal transmission radius
- network topology is a graph
 - two nodes have an edge if within each other’s transmission range
- assume all nodes have the same maximal transmission radius r
 - induced network topology is exactly an r-dsik graph
- in many applications, ad hoc wireless devices are randomly deployed
- it is natural to represent the vertex set by a random point process
- the induced r-disk graphs are called random geometric graphs
Virtual Backbones

- constructed for routing packets within networks traditionally
- topology control
 - construction and maintenance of virtual backbones
 - major tasks in wireless ad hoc networks
- widely used ingredients for constructing virtual backbones
 - *Euclidean Minimal Spanning Trees* (EMST)
 - *Relative Neighbor Graphs* (RNG)
 - *Gabriel Graphs* (GG)
 - *Delauney Triangulations* (DT)
 - *Yao's Graphs* (YG)
Relative Neighbor Graphs (RNG)

- two nodes u and v have an edge between them if and only if no other nodes in
 \[\text{Disk}(u, \|uv\|) \cap \text{Disk}(v, \|uv\|) \]
- assume all nodes have the same maximal transmission radius r
- to construct the RNG by only 1-hop information
 - r should be large enough s.t. the RNG is a subgraph of the r-disk graph
 - r is at least the maximal edge length of the RNG
- maximal edge length of the RNG is the critical transmission radius for construction the RNG by using only 1-hop information
- In this paper, we study the critical transmission radius of RNGs
Gilbert’s random geometric graph model (1961)

- devices are represented by an *infinite* random point process over the entire plane
- two devices are joined by an edge if and only if their distance is \(\leq r \)

Gupta and Kumar’s random geometric graph model (1998)

- devices are represented by a finite random uniform or Poisson point process over a disk
- two devices are joined by an edge if and only if their distance is \(\leq r \)
- if \(n \) nodes are placed in a unit-area disk, \(r(n) = \sqrt{\frac{\ln n + c_n}{\pi n}} \), then the resulting network is asymptotically connected *if and only if* \(c_n \rightarrow \infty \)
Related Works (cont.)

- Penrose (1997)
 - the probability of the event that the maximum edge length of the EMST is less than \(\sqrt{\frac{\ln n + \zeta}{\pi n}} \) for some constant \(\zeta \) is equal to \(\exp(-e^{-\zeta}) \) asymptotically.

- Kozma et al. (2004)
 - the maximal edge length of the DT of a uniform \(n \)-point process in a unit disk is \(O\left(\sqrt[3]{\frac{\ln n}{n}}\right) \).

- Wan et al. (2007)
 - derived the precise asymptotic distribution of the maximum edge length in the GG of a Poisson point process over a unit-area disk with density \(n \).
 - the probability of the event that the maximum edge length of the GG is at most \(2\sqrt{\frac{\ln n + \zeta}{\pi n}} \) for some constant \(\zeta \) is equal to \(\exp(-2e^{-\zeta}) \) asymptotically.
Our Results

- assume a wireless ad hoc network is represented by a Poisson point process over the unit-area disk \mathbb{D} with density n, which is denoted by \mathcal{P}_n
- all nodes have the same maximal transmission radius
- derived the precise asymptotic distribution of the maximum edge length in the RNG over \mathcal{P}_n
- the probability of the event that the maximum edge length of the RNG is at most $\beta_0 \sqrt{\frac{\ln n + \zeta}{\pi n}}$ for some constant ζ is equal to $\exp\left(-\frac{\beta_0^2}{2} e^{-\zeta}\right)$ asymptotically
 - where $\beta_0 = 1/\sqrt{\frac{2}{3} - \frac{\sqrt{3}}{2\pi}} \approx 1.6$
More precisely, we proved the following theorem

Theorem

For any constant ξ, we have

$$\lim_{n \to \infty} \Pr \left[\lambda \left(\text{RNG} \left(\mathcal{P}_n \right) \right) \leq \beta_0 \sqrt{\frac{\ln n + \xi}{\pi n}} \right] = e^{-\frac{\beta_0^2}{2} e^{-\xi}}.$$

- $\text{RNG} \left(\mathcal{P}_n \right)$ denote the Relative Neighborhood Graph over \mathcal{P}_n
- $\lambda \left(\text{RNG} \left(\mathcal{P}_n \right) \right)$ denote the maximum edge length of the graph $\text{RNG} \left(\mathcal{P}_n \right)$
A brief overview on our approach to prove the theorem

- Let

\[r_n = \beta_0 \sqrt{\frac{\ln n + \zeta}{\pi n}}, \quad R_n = \beta_0 \sqrt{\frac{\ln n + \zeta n}{\pi n}} \quad \text{and} \quad R'_n = 1.1 \beta_0 \sqrt{\frac{\ln n}{\pi n}}.\]

\[
M_n = \left| \left\{ e \in \text{RNG} (\mathcal{P}_n) : r_n < \| e \| \leq R_n \right\} \right|
\]

\[
M'_n = \left| \left\{ e \in \text{RNG} (\mathcal{P}_n) : R_n < \| e \| \leq R'_n \right\} \right|
\]

\[
M''_n = \left| \left\{ e \in \text{RNG} (\mathcal{P}_n) : R'_n < \| e \| < +\infty \right\} \right|
\]

- Then \(\lambda (\text{RNG} (\mathcal{P}_n)) \leq r_n \) if and only if \(M_n + M'_n + M''_n = 0 \) a.a.s.

- We proved the following asymptotical equalities using different techniques
 - \(M'_n = 0 \) a.a.s.
 - \(M''_n = 0 \) a.a.s.
 - \(M_n \) is asymptotically Poisson with mean \(\frac{\beta^2}{2} e^{-\zeta} \)
Techniques used to prove the results

- $M_n' = 0$ a.a.s.
 - Palm Theory on the Poisson point process
- $M_n'' = 0$ a.a.s.
 - a technique tool called minimal scan statistics
- M_n is asymptotically Poisson with mean $\frac{\beta^2}{2} e^{-\xi}
 - Brun’s sieve theorem on the Poisson point process
Techniques used to prove the results (cont.)

- Palm Theory on the Poisson point process

Theorem

Suppose that \(h(U, V) \) is a bounded measurable function defined on all pairs of the form \((U, V)\) with \(V \) being a finite planar set and \(U \) being a subset of \(V \). Then any positive integer \(k \),

\[
\mathbb{E} \left[\sum_{U \subseteq \mathcal{P}_n, |U|=k} h(U, \mathcal{P}_n) \right] = \frac{n^k}{k!} \mathbb{E} \left[h(\mathcal{X}_k, \mathcal{X}_k \cup \mathcal{P}_n) \right].
\]
Techniques used to prove the results (cont.)

- Brun’s sieve theorem on the Poisson point process

Theorem

Suppose that N is a non-negative integer random variable, and B_1, \cdots, B_N are N Bernoulli random variables. If there is a constant μ such that for every fixed positive integer k,

$$
\mathbb{E} \left[\sum_{I \subseteq \{1, \cdots, N\}, |I| = k} \prod_{i \in I} B_i \right] \sim \frac{1}{k!} \mu^k,
$$

then $\sum_{i=1}^N B_i$ is asymptotically Poisson with mean μ.

Presenter: Lixin Wang
Advisor: Professor Peng-Jun Wan

Thanks and Questions?