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Abstract—In a dynamic environment where a process can migrate from one host to another host, communication state transfer is a

key issue of process coordination. This paper presents a set of data communication and process migration protocols to support

communication state transfer in a dynamic, distributed parallel environment. The protocols preserve the semantics of point-to-point

communication; they guarantee message delivery, maintain message ordering, and do not introduce deadlock when blocking send or

receive operations are performed during process migration. Analytical proofs and prototype implementation are conducted to confirm

the correctness of the protocols. Analytical and experimental results show the proposed design is valid and has a true potential in

network computing.

Index Terms—Communication protocol, process migration, distributed and parallel processing, point-to-point communication.
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1 INTRODUCTION

PROCESS migration is a basic function to support the
mobility of computation intensive applications. It

moves a running process from one computer to another.
The migration may be through the computer network
(distributed network migration) or over computers with
different hardware/software environments (heterogeneous
process migration). The motivations of process migration
include load balancing, fault tolerance, data access locality,
resource sharing, reconfigurable computing, and system
administration, etc. [1], [2], [3].Recent research showsprocess
migration is necessary for achieving high performance via
utilizing unused network resources [4], [5], [6], [7]. Process
migration can also be used for portability. For example, users
can migrate processes from a computing platform to an
upgraded one at runtime. Processmigration is a fundamental
technique needed for the next generation of Internet
computation [8].However, despite these advantages, process
migration has not been adopted in engineering practice due
to its design and implementation complexities, especially
under a network of heterogeneous computers.

The Scalable Network Of Workstations (SNOW) system
[3] and its enhanced version, the High Performance
Computing Mobility (HPCM) middleware [9], provide a
distributed environment supporting user-level process
migration. SNOW provides solutions for three problem
domains for transferring the computation state, memory
state, and communication state of a process, respectively.
First, it provides methods to transfer the execution state of a
process. A compiler analysis technique is proposed to select
locations that allow process migration in the source

program and to augment additional codes to carry process
migration automatically [10]. Since the selected locations and
the augmentation are performed to source code before
compilation, the state transfer can be performed across
heterogeneous machines. Second, we have developed me-
chanisms to transfer the memory state. A graph representa-
tion is introduced to model the data structures of a process.
Methods to transform the data structures and their contents
into machine independent information and vice versa are
provided [10]. Based on our successes on computation state
and memory state transfer, this paper presents a solution to
transfer the communication state of a migrating process in a
dynamic, heterogeneous, distributed environment.

Activities in a large-scale distributed environment are
dynamic in nature. Adding process migration functionality
makes data communication even more challenging. Three
fundamental problems have to be addressed. First, we need
to develop mechanisms to guarantee correct message
deliveries during process migration. Second, if a sequence
of messages is sent to a migrating process, correct message
ordering must be maintained. Third, mechanisms to update
location information of a migrating process have to be
efficient and scalable. After a process migrates, other
processes have to know its new location for future
communications. The updating mechanisms should be
efficient and scalable enough for large network environ-
ments. Moreover, in terms of software development, the
communication state transfer needs to be integrated into the
execution and memory state transfer seamlessly to form a
process migration enabled environment.

Mechanisms to support correct data communication can
be classified into two different approaches. The first
approach is using existing fault-tolerant, consistent check-
pointing techniques. To migrate a process, users can
“crash” a process intentionally and restart the process from
its last checkpoint on a new machine. Since global
consistency is provided by the checkpointing protocols,
safe data communication is guaranteed. Projects such as
CoCheck [11] follow this approach. On the other hand,
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mechanisms to maintain safe data communication during
process migration can be implemented directly into the data
communication protocol. SNOW, Charlotte [12], Freeze Free
[13], and the Migration Transparent version of Parallel
Virtual Machine (MPVM) project [14] are along the second
direction. These systems are message-based and rely on the
concept of communication channels. We follow the second
direction because it is more scalable and less costly than the
first. Process migration is important enough to receive an
efficient mechanism in its own right. Further comparisons
of related works are presented in Section 7.

We have developed data communication and process
migration protocols working cooperatively to solve the
aforementioned problems. Our protocol design is based on
the concept of point-to-point connection-oriented commu-
nication. It is aimed at providing a robust and general
solution for communication state transfer. Mechanisms to
handle process state transfer are implanted to a number of
communication operations, which could occur at data
communication end points. These operations include send
and receive operations in the data communication protocol
and migration operations in the process migration protocol.
They coordinate one another during the migration to
guarantee correct message passing. The protocols are
naturally suitable for large-scale distributed environment
due to their inherited properties. First, they are scalable.
During a migration, the protocols coordinate only those
processes directly connected to the migrating process.
Process migration operations are performed mostly at the
migrating process, while communication peer processes are
only interrupted shortly for the coordination. Moreover, the
protocols update location information of the migrating
process without the needs of broadcasting. Second, the
protocols do not block data communication. They allow
other processes to send messages to the migrating process
during process migration. These two properties are quite
beneficial for a large environment where the number of
participating processes is high. Third, our protocols do not
need old hosts to route messages to the migrating process.
This property is desirable for an environment where a host
can join or leave dynamically. Fourth, the protocols do not
create deadlock. They prevent circular wait while coordi-
nating a migrating process and its peers for migration.
Finally, the protocols are simple in implementation and are
practical for heterogeneous environments. They can be
implemented on top of existing connection-oriented com-
munication protocols such as Parallel Virtual Machine
(PVM) (direct communication mode) [15], Message Passing
Interface (MPI) [16], [17], and Transmission Control Proto-
col (TCP). We conduct empirical studies based on a
prototype implementation on PVM.

The rest of this paper is organized as follows: Section 2
discusses our basic assumptions on the distributed compu-
tation model and communication semantics. In Section 3,
we discuss the basic ideas of our protocols and present our
data communication and process migration algorithms.
Section 4 shows correctness proofs of the algorithms. We
discuss protocol implementation in Section 5. Section 6
shows our experiments by migrating a communicating
process while running a parallel benchmark. Section 7

discusses related works. Finally, Section 8 gives a summary

and discusses future research.

2 BACKGROUND

We consider a distributed computation as a set of

collaborative processes fP0; P1; � � � ; PNg executing under a

virtual machine environment. Each process is a user-level

process, which occupies a separate memory space. The

processes communicate via message passing.
In our design, a virtual machine environment is a

collection of software and hardware to support the

distributed computations. It has three basic components.

First, a network of workstations is the basic computing

resource. Second, a number of daemon processes residing

on the workstations comprise a virtual machine. These

daemons work collectively to provide resource accesses and

management. A process can access the virtual machine’s

services via programming interfaces provided in forms of

library routines. Finally, the third component is the

scheduler, a process or a number of processes that control

environmental-wide resource utilization. Its functionalities

include bookkeeping and decision-making. Unlike in static

distributed environments such as that supported by PVM

and MPI, a scheduler is a necessary component of a

dynamic distributed environment such as the Grid [18].
In our model, hosts can join or leave a virtual machine

environment dynamically. We assume that the virtual

machine daemon (or agent) is executed on a host when it

joins the environment and terminated when the host leaves.

These daemons can belong to a single user, like in the PVM

model, or multiple users, like in peer-to-peer systems. We

leave membership management to the virtual machine’s

implementation. Due to this dynamic nature, it is important

that process migration mechanisms do not create residual

dependency anddata communication between themigrating

process andothers canbedonewithout existence of oldhosts.
The scheduler is a software component that overlooks

distributed computation activities. In our protocol, the

scheduler is required to: 1) keep track of hosts and processes

in the virtual machine environment, 2) provide a scalable

lookup service to locate a process, and 3) coordinate process

migration operations on source and destination computers

(more details in Section 3). The scheduler could have a

centralized or distributed structure depending on the

applications’ needs. For example, mobile agent applications

may use a centralized server like in Sethi@home andNapster

to run the scheduler, while applications that run over

multiple administrative domains may use hierarchical

servers such as Domain Name Server (DNS), Lightweight

Directory Access Protocol (LDAP). Moreover, one may

extend scalable distributed location services used in peer-

to-peer systems suchasChord [19] to support our scheduler’s

requirements. Since this paper focuses on the communication

state transfer protocol, we refer to a centralized scheduler in

our design for the sake of simplicity. Other scheduler designs

can also be extended to support our protocol as long as they

meet the requirements above.
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2.1 Process Identification

We identify processes in distributed environment in two
levels of abstractions: application-level and virtual-machine-
level. In the application-level, a process is identified by a
rank number, a nonnegative integer assigned in sequence to
every process in a distributed computation.1 The rank
number allows us to refer to a process transparently of its
whereabouts. On the other hand, the virtual machine
includes location information of a process in its naming
scheme. A virtual-machine-lvel process identification (vmid) is
a coupling of workstation and process identification
numbers. They both are nonnegative integers assigned
sequentially to workstations and processes created on each
workstation, respectively. The mappings between rank and
vmid are maintained in a process location (PL) table, where
the PL table is stored inside the memory spaces of every
process and the scheduler. While the rank numbers are
given only to application-level processes, the vmid is
assigned to every process in the environment, including
the scheduler and virtual machine daemons. We assume
that the daemons do not migrate and the scheduler is
always reachable.

2.2 Process Migration Software System

To develop migration-enabled distributed applications,
SNOW transforms source code into a migration-enabled
code [10]. Mechanisms to migrate the execution and
memory state of a process across heterogeneous machines
are annotated into the source code during the transforma-
tion. Source code annotation is a common approach in
heterogeneous process migration research [20], [21], [2],
[10]. We assumed that the migration-enabled code is
distributed to all possible source and destination computers
of process migration and then compiled and linked with
process migration supported libraries to generate migra-
tion-enabled executable. Our communication state transfer
mechanisms are implemented in one of these libraries.

With supervision of the scheduler, a process migration is
conducted directly via remote invocation and network data
transfers. When a user wants to migrate a process, he or she
sends a request to the scheduler, which, in turn, decides the
destination computer and remotely invokes the migration-
enabled executable to wait for process state transfer. We call
this invocation process initialization. Then, the scheduler
sends a migration signal to the migrating process. After the
migrating process intercepts the signal, it coordinates the
initialized process to transfer process state information. We

discuss more details in Section 3. Finally, while the

migrating process terminates, the initialized process re-

sumes execution.

2.3 Communication Characteristics

Our protocols support distributed applications that use

blocking point-to-point communication in buffered modes.

Assuming a message content is stored in a memory buffer,

the send operation blocks until the buffer can be reclaimed,

and the receive operation blocks until the transmitted

message is stored in the receiver’s memory. The sender

process does not coordinate with the receiver for data

transmission. Once the message is copied into internal

buffers of an underlying communication protocol, the

sender process can continue.
Fig. 1 shows the protocol stack layout of the commu-

nication system for the process migration environment. The

lowest layer is the OS-supported data communication

protocols between computers. The second layer includes

communication protocols provided by the virtual machine

built on top of the first communication layer. The virtual

machine provides three basic communication services:

. Connection-oriented Communication Service: Our pro-
tocols rely on connection-oriented communication to
create a bidirectional, First-In-First-Out (FIFO) com-
munication channel between two processes. We
assume that messages sent through the communica-
tion channel do not get lost and arrive in order. In
case messages are sent between machines with
different platforms, we also assume that the protocol
in this layer handles data conversion.

. Connectionless Communication Service: In our proto-
cols, connectionless communication is used to
deliver the connection request control message and
its acknowledgment (or rejection) between pro-
cesses. The message is routed from one process to
another through the virtual machine. In our design,
the virtual machine daemon is extended to handle
connection requests in process migration circum-
stances. We discuss more details in the next section.

. Signaling Service: We assume that a process can
reliably send a signal to another process on the
virtual machine regardless of their locations. We also
assume that signals are transmitted from a sender to
a receiver process in order. Finally, we assume that a
signal cannot interrupt communication (send or
receive) events. It only interrupts a computation
event. If the signal arrives at a process during
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communication events, its signal handler will be
invoked only after the communication events finish.

Most virtual machine environments such as PVM [15] and
MPI [16] support the three basic services. The third layer is
the focus of this work. It describes our communication state
transfer mechanism consisting of migration-supported data
communication and process migration protocols to be
discussed in the next section. The protocols provide
programming interfaces to support point-to-point commu-
nication and process migration of application processes in
the fourth layer.

3 COMMUNICATION STATE TRANSFER MECHANISM

This section presents basic ideas of mechanisms to migrate
the communication state and algorithms describing the data
communication and process migration protocols. Since data
communication at the application-level is performed on top
of the connection-oriented communication protocol, we
define the communication state of a process to include all
communication connections and messages in transit at any
moment in the process’s execution. To migrate the commu-
nication state, one has to capture the state information,
transfer it to a destination computer, and restore it
successfully.

3.1 Basic Ideas

Migrating a communication state is nontrivial since various
communication situations can occur during process migra-
tion. In our protocol designs, three basic circumstances are
considered.

3.1.1 Capturing and Transferring Messages in Transit

To capture messages in transit, processes on both ends of a
communication channel have to coordinate with each other
to receive all messages. The coordination mechanism is
based on the work of Chandy and Lamport [22] and will be
discussed later in the migration algorithm. As a result of the
coordination, messages in transit are drained from the
channels and stored in a temporary storage in process
memory space, namely, the received-message-list. The chan-
nels will also be closed down at the end of the coordination.

The use of the received-message-list effects the design of
our receive operation. Since messages could be stored in the
receive-message-list before needed, the receive operation has
to search for a wanted message from the list before taking a
newmessage froma communication channel. In case the new
messages are not wanted, they would be appended to the list
until the wanted message is found. After messages in transit
are captured and existing communication connections are
closed down, one may consider the messages stored in the
received-message-list of themigrating process as a part of the
process’s communication state,which has to be transferred to
the destination computer.

3.1.2 Migration-Aware Connection Establishment

To handle data communication between unconnected
processes, the connection establishment mechanisms have
to be able to detect migration activities on the connecting
processes and automatically resolve the problem. Since our
message passing operations only employ send and receive

primitives and do not support explicit commands for
connection establishment, the establishment mechanisms
are installed inside the send and receive operations hidden
from the application process. To establish connections, we
employ the sender-initiated technique, where a sender
sends a connection request to its intended receiver process.
Having process migration in the picture, the establishment
mechanisms must be able to detect the migration (or past
occurrences of the migration). In our design, the migration
is detected once the sender receives a denial to its
connection request. The rejection message could come
either from the virtual machine or the migrating process.
The virtual machine sends a rejection message in case the
migrating process has already been migrated. On the other
hand, the migrating process rejects connection requests if it
is performing migration operations. The migrating process
starts migration operations when it receives a migration
instruction from the scheduler and finishes the operations
when process state transfer completes. If the migrating
process receives connection requests during that time, it
will send denial messages back to the requestors. Once the
migration is detected, the sender consults the scheduler to
locate the receiver. After getting a new location, the sender
updates the receiver’s location, establishes a connection,
and sends messages. Thus, the sender updates the location
of a migrating process “on demand” when it wants to send
a message there.

In our design, the sender process will always be able to
send messages to a receiver regardless of process migration
situations. If the receiver process has already migrated, the
sender will normally establish a connection with the
receiver and send the messages. In case the receiver is
migrating, the sender will establish a connection with the
receiver’s initialized process, which always receives the
transmitted messages into its receive-message-list. There-
fore, the sending operation is not blocked during the
receiver’s migration.

3.1.3 Communication State Restoration

The scheme for the restoration of communication state on a
new (or initialized) process can be addressed in two parts.
First, contents of the receive-message-list forwarded from
the migrating process are inserted to the front of the
receive-message-list of the new process. This scheme
restores the messages, which are in transit during the
migration. Second, messages sent from a newly connected
process to the new process are appended to the end of the
list. This scheme ensures message ordering.

3.2 Algorithms

We have developed a number of algorithms based on the
previously mentioned conceptual designs. The data com-
munication algorithms consist of send and receive algo-
rithms which take care of the connection establishment and
the receive-message-list, while the process migration algo-
rithms consist of two algorithms which run concurrently on
the migrating and new processes to carry process migra-
tion. A global variable Connected represents a set of rank
numbers of connected peer processes. An array pl repre-
sents the PL table. The vmid of process Pi is stored in pl½i�. A
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global variable Closed conn is used for process coordination
and has a zero value from the start.

3.2.1 Data Communication Algorithms

In our design, the send algorithm initiates data commu-
nication between processes by sending a request for
connection establishment to the receivers. In case the
receiver cannot be found due to process migration, the
send algorithm will consult the scheduler to locate the
receiver. Once the receiver’s location is known, the sender
establishes connection and sends messages to the receiver
process. Fig. 2 shows the send algorithm, where a
communication connection must be created before message
transmission.

The connection establishment mechanisms are described
in the connectðÞ function in Fig. 3. This function will
terminate after it has successfully established a commu-
nication connection with a receiver process dest or has been
notified of the receiver’s termination. The function starts by
sending the connection request con_req to a receiver
process (line 2). If the receiver is ready to receive messages,
it will send con_ack back in return (line 3). The connectðÞ
function will then call make connection withðÞ to create a
new communication channel with the receiver. On the other
hand, if the receiver has already migrated or is migrating,
the rejection (conn_nack) message will be delivered back
to the sender (line 9). As a result, connectðÞ will consult the
scheduler and update the receiver’s location in the sender’s
PL table or terminate the function if it learned from the
scheduler that the receiver has terminated (lines 9 to 15).

The connectðÞ function also contains mechanisms to
establish connections between parallel processes. While
waiting for a response to its connection request, if the
function receives a conn_req (line 6), it will call the
grant connection toðÞ function to return the conn_ack and
wait until the requestor executes make connection withðÞ to
complete the creation of a new communication channel.

In responding to conn_req, if the receiver process is
migrating, it will send a conn_nack message back to the
requestor. On the other hand, in case the receiver process
has already migrated, the conn_nack is sent back to the
migrating process by the virtual machine. In our design, we
extend the virtual machine daemon to keep records of
connection requests being routed through it. These records
are deleted when either the connection acknowledgment or
rejection are routed back to the requester. If the target
daemon cannot find the target process or detects its
termination but has a number of connection requests
pending responses, the target daemon will send the
rejection (conn_nack) message back to the requestor’s
daemon, which then forwards it to the requestor process.
On the other hand, if the target daemon does not exist
because the target machine has resigned from the virtual
machine, the requestor’s daemon will send the rejection
message back to the requestor.

The receive algorithm, as shown in Fig. 4, is designed to
collect messages in an orderly manner in process migration
environment. The algorithm stores every message arrived
at a process in the received-message-list of the receiver
process. The receive algorithm also has functionalities to
help migrate its peer processes (lines 12 to 14). In case a
process is running a receive event while one of its
connected peer processes is migrating, the receive event
may receive the PEER_MIGRATING control message from
the migrating peer. This control message is a special
message sent from a migrating peer to indicate the last
message sent from the peer and instruct the receiver to
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close connection with the peer process. The reception of this
message implies that all of the messages sent from the
migrating process earlier through the communication
channel have already been received. The receive algorithm
also contains mechanisms to assist connection establish-
ment (lines 9 to 11). While the receive event may be waiting
to receive a message, if a conn_req message arrives, the
receive algorithm will grant a connection and proceed to
establish a connection with the requestor.

3.2.2 Process Migration Algorithms

The process migration protocol involves algorithms to
transfer process state across machines. They are the
migration and initialization algorithms shown in Figs. 5
and 7, respectively. On the migrating process, the migration
algorithm first checks whether a migration_request

signal has been sent from the scheduler and is intercepted
by the migrating process. If so, it contacts the scheduler to
get information about an initialized process. Then, the
algorithm rejects further communication connection so that
it can coordinate with existing communication peers to
receive messages in transit into the receive-message-list. At
lines 2 and 3 of Fig. 5, the migrating process informs the
scheduler that the migration operation has started and
receives the vmid of the initialized process from the
scheduler. Recall that the scheduler has already initialized
a process to wait for state transfer on a destination machine
before sending the migration request to the migrating
process. Next, the migrateðÞ algorithm rejects further
connection requests (con_req) at line 4. In doing so, the
algorithm sends a message to inform the local virtual
machine daemon to reject all future incoming connection
requests to the migrating process. Then, it rejects all
conn_req that have already arrived. Upon receiving
conn_nack, the rejected peers consult the scheduler and
redirect their requests to the initialized process.

In process coordination, the migrating process sends
disconnection signals and peer_migrating control
messages out to all of its connected peers. The

disconnection signal will invoke an interrupt hand-
ler on the peer process if the peer is running a
computation event. Fig. 6 shows the algorithm of the
disconnection handlerðÞ interrupt handler. When in-
voked, the handler keeps receiving messages from
existing communication connections until the peer_

migrating message is found and then closes the
connection it receives the peer_migrating from. In
case the peer process is running a receive event, the
receive algorithm may detect peer_ migrating while
waiting for its desired messages. The recvðÞ algorithm
will close down the connection afterward (see line 13 of
Fig. 4). Note that, when the connection is closed on
either case above, the end-of-message message is sent
along the channel as the last message to the process on
the other end. If the peer is running a send event, the
coordination is delayed until the event finishes.

To prevent the repetition of coordination efforts by recvðÞ
and disconnection handlerðÞ algorithms, we use the variable
Closed conn to indicate the number of peer_migrating

messages that have been received and processed before the
disconnection handler is called. If the variable is greater
than zero, the coordination effort has already been done
and will not be repeated. On the other hand, if the variable
is zero, the disconnection handler will coordinate with the
migrating process.

On the migrating process, the migrateðÞ algorithm waits
to receive either end-of-message or peer_migrating as a
last message from connected peers. While migrateðÞ expects
an end-of-message message from a nonmigrating peer, it
expects a peer_migrating from a simultaneously migrat-
ing process. The migrating process receives messages from
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existing communication channels and saves them to its
receive-message-list until it receives the above messages
from every connected peer. Then, the migrating process
closes the existing communication channels and sends the
contents of the receive-message-list to the initialized
process. After that, the algorithm collects the execution
state and memory state of the migrating process and sends
the state information over to the destination machine [10].
Finally, the algorithm terminates the migrating process.

On the destination computer, a new process is initialized
to wait for process state transfer. Fig. 7 shows the
initialization algorithm. The initialized process will accept
any connection requests from start. At line 2 of Fig. 7, the
algorithm waits for the contents of the received-message-list
from the migrating process. During the wait, if any
con_req arrives, the initialized process will grant connec-
tion establishment. If the wanted message has not arrived,
the process keeps receiving new messages and appending
them to its received-message-list. We should note that,
while connections are granted on the initialized process,
they are rejected on the migrating process. Based on the
send algorithm, the rejection will cause connection requests
to be redirected to the initialized process. After initializeðÞ
finishes the operation at line 2, it inserts the contents of the
received-message-list from the migrating process in front of
the local received-message-list to maintain message order-
ing. Then, the algorithm waits for the execution and
memory state of the migrating process. After the state
information is received, the initialized process informs the
scheduler of migration completion and updates the PL table.
Then, the initializeðÞ algorithm restores the process state
and, finally, resumes program execution.

4 CORRECTNESS ANALYSIS

Since activities generated by process migration are addi-
tional to what is generated in nonmigration situations, the
distributed computation logic must be preserved. In this
section, we analyze the correctness of the newly proposed
protocols. For descriptive purposes, we define each
application-level process as a sequence of events [23]. The
events of our interest include the computation, send,
receive, and migration events. The correctness of our
algorithms is analyzed along the following aspects:

1. Process migration does not introduce any deadlock.
2. Process migration terminates and does not block the

progress of distributed computation.
3. There is no message loss because of process

migration.
4. Despite process migration, message ordering seman-

tics of point-to-point communication are preserved.

Here, nonblocking implies no deadlock. We will prove
aspects 1 and 2 together.

4.1 Deadlock and Migration Termination

First, we show that process migration does not introduce a
deadlock or prevent progress of distributed computation.
We focus on the effects of a migration event on various
message-sending situations because the only waiting in our
design is a migration event waiting for a send event to

finish. We assume that the original distributed application
does not create any deadlock.

Theorem 1. If two or more processes communicate and then one
of them migrates, the migration does not cause deadlock and
does not block the other processes from sending messages.

Proof. The communication protocol only introduces one
waiting for the sender process awaiting the response of a
connection request. However, based on the sendðÞ,
migrateðÞ, and initializeðÞ algorithms, a sender process
can either send a message via an existing communication
channel to the migrating process or via a new commu-
nication channel to the initialized process. Thus, no
blocking due to the connection request would occur.
Also, process migration does not cause control flow
blocking because messages sent in either case will be
received into the receive-message-list as soon as they
arrive. Thus, process migration does not block message-
sending. It does not introduce deadlock. tu

Weillustrate theproofusinganexample as shown inFig. 8,
where S and M represent the send and migration events,
respectively, and the dashed line that goes across the
processes indicates a timeline when a migration occurs at
M on P3. We assume that there are three processes, P1, P2,
andP3, in the environment and themigration event occurs at
P3. Suppose P3 and P2 are connected, the migration event
has to coordinate P2 for disconnection. Since P2 is sending a
message, the disconnection is possible only after the sending
finished. Consequently, the migration has to wait. If send
events on P2 and P1 block simultaneously, a circular wait on
the three processes could occur.

However, under our protocols, for the given situation, if
P1 already has a connection with P3, the migrating process,
m3 would be received to the receive-message-list by the
migrateðÞ algorithm. Thus, the circular wait does not occur.
On the other hand, suppose that P1 and P3 are not
connected, the connection request would be redirected to
the initialized process. A connection would be granted by
the operations at line 2 of the initializeðÞ algorithm. As a
result, m3 is received into the receive-message-list of the
initialized process. Hence, no blocking or deadlock occurs.

We now show that the migration event terminates.

Lemma 1. If two or more processes communicate and then one of
them migrates, the migration event terminates.

Proof. We show that the migrateðÞ and initializeðÞ
algorithms finish.

Since a process always finishes sending messages,
regardless of migration events (Theorem 1), the
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end-of-message messages will eventually be received
from every existing communication channel. Thus, the
migrateðÞ algorithm will proceed to send its receive-
message-list and terminate the migrating process.

The initializeðÞ algorithm is defined to keep accepting
connection requests and receiving new messages until it
receives the receive-message-list from the migrate()
algorithm. Since the receive-message-list will be sent by
the migrateðÞ algorithm, the initializeðÞ will finish. tu

Since process migration terminates (Lemma 1) and does
not block any message-sending (Theorem 1), it does not
block progress of distributed computation.

4.2 Message Deliveries

Theorem 2. If two or more processes communicate and then one
of them migrates, every message arrives at their desired
destinations.

Proof. From the proof of Theorem 1, migration does
not block message-sending. Based on the recvðÞ,
disconnection handlerðÞ, and migrateðÞ algorithms, all
messages in transit during the migration would be
received. Every message will be sent successfully.
Therefore, they will reach their destinations unless they
are redirected by the communication protocol. In the
protocol, communication redirection occurs only when
the receiving process is migrating (see Fig. 3, the
connectðÞ algorithm). These redirected messages are
received by the initialized process and kept in the
received-message-list (Fig. 7, the initializeðÞ algorithm).
The initialized process is the migrating process when
migration finishes. Therefore, every redirected message
also reaches its destination. tu

4.3 Message Ordering

If there is no redirection, by the FIFO assumption, all the
messages to the migrating process will be received in order.
A communication redirection occurs when the receiving
process migrates. We have the following theoretical results:

Theorem 3. If process P1 passes messages m1 and m2
subsequently to process P2 and a migration occurs on the
receiver process P2 during data communication, both
messages will be received by P2 in order.

Proof. If both m1 and m2 are sent before or after migration,
by the FIFO assumption, they will be received in order. If
m1 is sent before migration andm2 is sent during or after
migration, then m1 is received before migration and m2
is received after migration. They are received in order.

If m1 is sent during the migration, we have the
following possibilities:

1. m1 is received by the migrating process and
stored in the received-message-list (ListA) (see
Fig. 5, the migrateðÞ algorithm). In this case:

a. If m2 is received by the migrating process, by
the FIFO assumption, m1 and m2 will be
stored in ListA in order;

b. If m2 is redirected to the initialized process
and stored in the received-message-list

(ListB) (see Fig. 6, the initializeðÞ algorithm),
by our protocol, P2 will read ListA before
ListB after migration. The message order is
preserved.

c. If m2 is sent after migration, by our protocol,
P2 will read ListA and ListB before receiving
any new message. m1 and m2 are received in
order.

2. m1 is received by initialized process and stored in
ListB. In this case, since m2 is sent after m1, m2 is
either stored in ListB or sent after migration. In
the former, by the FIFO assumption, m1 and m2
will be stored in ListB in order. In the latter, by
our protocol, P2 will read ListB before receiving
any new message after migration. m1 and m2 are
also received in order.

Ifm1 is sent after migration, thenm2must also be sent
after migration. The FIFO applies. They are also received
in order. tu

Lemma 2. If process P1 passes messages m1 and m2

subsequently to process P2 and P1 migrates during the

communications, m1 and m2 will be received by P2 in order.

Proof. If both m1 and m2 are sent before or after the

migration, by the FIFO assumption, they will be received

in order. If m1 is sent before the migration andm2 is sent

after the migration, then, by the disconnection handlerðÞ
and migrateðÞ algorithms, the m1 is received by P2

before P1 migrates. Since m2 is sent after the migration,

m2 is received after m1. The messages are received in

order. Based on our communication protocol, P1 does

not send message during migration. That concludes the

proof. tu
Theorem 4. Theorem 1, Theorem 2, and Theorem 3 can be

extended to general situations, where two or more processes

may migrate simultaneously.

Proof. Since we only consider point-to-point communica-

tions, a proof of two processes migrating simultaneously

is sufficient.
Assume P1 and P2 migrate simultaneously. If there is

no communication between P1 and P2 during migra-
tion, then P1’s and P2’s migrations are two unrelated
instances. The previous analytical results can apply. If
there is a communication between P1 and P2 during
migration, then it must have one of the processes, say P1,
sending a message to another process, say P2. By the
definitions of our protocol, P1 cannot send a message
during migration. So, the message has to be sent before
or after P1 migrates. In either case, the message will be
handled by the protocol as a single P2 process migration.
By Theorems 1, 2, and 3, the message will not be blocked,
will be received, and will be received in order. Since this
is true for arbitrary messages and for both processes, it
concludes the proof. tu

5 IMPLEMENTATION

We have implemented the proposed communication state

transfer mechanism within the SNOW process migration

system and performed a number of experiments. Our

CHANCHIO AND SUN: COMMUNICATION STATE TRANSFER FOR THE MOBILITY OF CONCURRENT HETEROGENEOUS COMPUTING 1267



system consists of a programming library that hosts our
protocol implementation and a virtual machine. Fig. 9a
shows the protocol stack and programming libraries used to
support application programs. We implement our data
communication and process migration algorithms in the
SNOW data communication and process migration library.
We build the library on top of an extended PVM
communication library. The connectivity service macros
and routines are added to the PVM library to support
interaction between a sender process and the scheduler
during a connection establishment. As shown in Fig. 9a, the
data collection and restoration library is a separate software
module that contains mechanisms to collect, transfer, and
restore execution and memory state across heterogeneous
machines [10].

From Fig. 9b, the virtual machine and scheduler are
employed to monitor and manage the runtime environ-
ment. We extend the PVM virtual machine to handle
process creation and termination and to pass control
messages and signals between machines. In our implemen-
tation, we modify PVM’s daemon to keep records of
connection requests and reject them when the receiver
processes or machines do not exist. We also implement a
simple scheduler to oversee process migration. The sche-
duler handles process migration requests, assists process
coordination during the migration (as previously discussed
in Section 3), and performs bookkeeping on process
migration records.

5.1 Extensions to PVM

PVM uses a sender initiated approach for its automatic
connection establishment. When a sender process calls
pvm_send, it sends a connection request and waits for a
response. The receiver process responds to the request
when it calls pvm_send or pvm_recv. The sender makes a
connection after it receives an acknowledgment from the
receiver.

We have extended functionalities of pvm_send by
adding connectivity service macros to its original connec-
tion establishment mechnaism in PVM source code. The
macros allow pvm_send to: 1) detect a connection denial
message from the receiver or the virtual machine, 2) send an
inquiry message to the scheduler and wait for a reply, and
3) pass along the information from the scheduler back to its
caller. We have also added a number of routines to manage
communication channels to the PVM library. We found that
the extensions only cause small changes to the PVM source

as most of our protocol is implemented in the next layer.
Our modification does not change pvm_send’s functional-
ities in nonmigration circumstances.

5.2 Communication Interfaces and Migration
Macros

We implement the proposed protocols in the SNOW
Communication and Process Migration library. The send
and receive algorithms are implemented in the following
two functions:

int snow sendðint dst id; int tagÞ;
int snow recvðint src id; int tagÞ;

We use them to replace pvm_send and pvm_recv in the
application source code, respectively. Remember that, in
our design, only a computation event can be interrupted by
a signal. In the implementation, we use SIGUSR1 to
represent a migration request, while SIGUSR2 is used for
the disconnection signal in the algorithms. To prevent
the disconnection signal handler from invocation during
communication events, we call sighold(SIGUSR2) and
sigrelse(SIGUSR2) at the beginning of snow_send and
snow_recv and at the end of them, respectively. We have
also modified the PVM daemon to convert the signal values
when they are transmitted across heterogeneous computers.
The function snow_send implements the sendðÞ algorithm
and invokes pvm_send| to send a message. In case the
receiver migrates, it uses the connectivity service, extended
to pvm_send, to find the receiver’s new vmid. The
snow_recv implements the recvðÞ algorithm and runs on
top of pvm_recv. This function maintains the receive-
message-list, receives incoming messages, and coordinates
with the migrating process.

To handle process migration, we implement the migrate
algorithminmacrosand insert themacrosatpoll-points in the
source code. Recall that a poll-point is a location where
process migration can occur. At runtime, if a process
intercepts amigration request (SIGUSR1) from the scheduler,
itwill perform themigrationmacros at thenextpoll-point.On
the destination machine the initializeðÞ algorithm is imple-
mented in the form of macros as well (see [10]) for details.

6 EXPERIMENTAL RESULTS

As a case study, we show here the application of our
prototype implementations on the parallel kernel Multi-
Grid (MG) benchmark program [24]. The program is
written in C and originally runs under the PVM environ-
ment. The kernel MG program is an SPMD-style program
executing four iterations of the V-cycle multigrid algorithm
to obtain an approximate solution to a discrete Poisson
problem on a 128� 128� 128 grid.

The kernel MG program applies block partitioning to the
vectors for each process. A vector is assigned to an array of
size 16� 128� 128 when eight processes are used. Since
each process has to access data belonging to its neighbors,
the data must be distributed to the computations that need
them. Such distribution occurs periodically during execu-
tion. Every MG process transmits data to its left and right
neighbors. Therefore, the communication is a ring topology
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[24]. Data communication of the MG program is nontrivial.
The application exercises extensive interprocess commu-
nication; over 48 Mbytes of data on the total of 1,472 mes-
sage transmissions.

We have annotated the program with process migration
operations and linked the annotated program to our
protocols. In our experimental settings, we generate eight
processes ranking from process 0 to 7. Each stays on a
different machine. Then, we force process 0 to migrate
when a function call sequence main ! kernelMG is made
and two iterations of the multigrid solver inside the
kernelMG function are performed. For reliable data
communication, we change the PVM send and receive
routines in source code to those of our communication
library. As a result, while process 0 migrates, others would
be executing without prior knowledge of the migration
incident. Note that no barrier is used to synchronize the
processes during a migration.

6.1 Communication Behaviors

Experiments are conducted to study process migration of
the kernel MG program. In the first experiment, we analyze
communication behaviors during a process migration.
Fig. 10 shows an Xwindow Graphical Interface for PVM
(XPVM) generated migration diagram of the kernel MG
program running on a cluster of 10 Sun Ultra 5 workstations
connected via 100Mbit/s Ethernet. We set up two machines
to run the scheduler and an initialized process. Process 0

spawns seven other processes on different machines, as
shown in Fig. 10. Note that a line between two timelines
indicates a message passing which starts at the point where
pvm_send is called and ends when the matching pvm_recv

returns. Since our communication routines are implemented
on top of PVM, these lines also show what is going on inside
our prototype implementation. Also, sincewe implement the
execution and memory state transfer directly on TCP, their
network transmissions are not displayed in this diagram. In
Fig. 10, the execution is separated into different stages. First,
all pvmmg processes establish connections, distribute data,
and perform the first two iterations. Then, the migration is
performed by relocating process 0 to the initialized process.
After the migration, the kernel MG resumes the rest of its
computation.

We have observed a number of interesting facts through
the space-timediagram. First, since themigratingprocess has
connections to all other processes (due to the original setup of
the benchmark), it has to send disconnection signals and

peer_migrating messages to all of them. When the
migration starts, we find that there is no message sent to the
migrating process from any of the connected peers. There-
fore, the migrating process does not receive any messages
into the receive-message-list when it performs message
coordination with connected peers. After the coordination,
everyexistingconnection is closed.Thisoperation is shown in
area A in Fig. 11.2 Second, while process 0 migrates, other
processes proceed with their data exchanges normally. As
long as a process does not have to wait for messages, its
execution continues. Area B in Fig. 11 shows such an
execution. In normal operation, the kernelMGprocesswould
exchangemessages of size 34,848 followedby 9,248 and2,592,
etc.,with its near neighbors. In the areaB, somenonmigrating
processes proceedwith the exchanges up to the message size
2,592. Then, they have to wait for certain communications to
finish before proceeding further, until only process 4 can
transmit messages of size 800 to its neighbors (area C in
Fig. 12). Beyond this point, the nonmigrating processes have
to wait for process 0 to start sending data after the migration
finishes.

Finally, following the multigrid algorithm, two messages
of size 34,848 bytes are sent from processes 1 and 7 to
process 0 at the start of the third iteration. Since process 0 is
migrating and the communication channels between 0 and
1 and between 0 and 7 are already closed, both senders
have to consult the scheduler to acquire the location of the
initialized process for establishing new connections. Such
communications are shown by the two lines captured by
label D in Fig. 12. By a closer analysis of trace data, we find
that the communication channels are established before the
execution and memory state restoration of the migrating
process, allowing the senders (processes 1 and 7) to send
their data to the initialized process in parallel with the
execution and memory state restoration. Since the sent data
are copied to low-level Operating System (OS) buffers, the
sender process can proceed with the next execution so that
the computation can continue in area C. The sent data are
received after the restoration finishes, resulting in XPVM
displaying two long lines cut across the migration time
frame, as shown in area D in Fig. 12. After that, the
migrating process starts resuming its execution, sends two
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messages of size 34,848 bytes back to its neighboring peers,
and continues the multigrid computation. These observa-
tions confirm that the case study represents general
communication situations and validates the proposed
communication protocols.

6.2 Overheads

In the second experiment, our objective is to exam the
overheads of our communication and migration protocols
and the cost of migration. Table 1 shows the measured
turnaround time of the parallel MG benchmark. All timing
reported is the average of 10 measurements. From the table,
the original column shows performance data of the
original code running on PVM, while the modified column
shows that of themigration-enabledprocess runningwithout
process migration. Finally, the migration column presents
performanceof themigration-enabledprocess runningwitha
migration.

By comparing the communication time in modified to
that of original, the overhead is evidently small.
Although over 48 Mbytes of data on the total of 1,472 mes-
sages are transmitted during execution, the total overhead
of the modified code is only about 0.144 seconds. We
believe such a small overhead is due to the thin layer
protocol design on top of PVM.

By comparing the execution timeof themigration to that of
the original code, we find that a migration incurs about

2.2922 seconds higher turnaround time. Although processes
can continue execution while the process 0 migrates, due to
the communication characteristic of the kernel MG program,
they eventually all have to wait for messages from process 0
after its migration. The waiting contributes to the migration
cost. The migration transmits over 7.5 Mbytes of execution
andmemory statedata. Indetail,we find themigration cost to
be 2.2922 seconds in average, which can be divided into
0.1166 seconds for communication coordination with con-
nected peers, 0.73 seconds for collecting the execution and
memory state of the migrating process, 0.7662 seconds to
transmit the state to a new machine, and 0.6794 seconds for
restoring them before resuming execution.

6.3 Heterogeneity

Wehave conducted an experiment to verify the correctness of
our protocol in a heterogeneous environment. In this
experiment, we run the kernel MG program on a hetero-
geneous testbed where, out of eight processes, seven are
spawned on SunUltra 5workstations running Solaris 2.6 and
one is spawned on a Digital Equipment Corporation (DEC)
5000/120 workstation running Ultrix. The DEC 5000/120
workstation is significantly slower than the Ultra 5.
Network connections among these machines are also
different. All the Ultra 5 machines are connected via a
100Mbit/s Ethernet, while the DEC 5000/120 is connected
to the Ultra 5 cluster via a 10Mbit/s Ethernet. We should
note that the experiment is performed during the weekend
where the utilization of machines and the network traffics
are low. We configure the program such that, after two
iterations of the V-cycle multigrid algorithm, the process on
the DEC 5000/120 machine migrates to an idle Ultra 5.

The experimental outputs with and without the migra-
tion are identical. The outputs are also consistent with those
generated from the homogeneous testbed reported earlier.

Table 2 shows the performance of different operations
during a process migration. The result is the average of
10 runs. During the migration, over 7.5 Mbytes of execution
and memory state are transmitted. The migrating process
spends 0.125 seconds to coordinate its connected peer
processes, 5.209 seconds to collect the execution and
memory state, 8.591 seconds to transfer state information
across machines via a 10Mbit/s Ethernet network, and
0.696 seconds to restore the state information on an Ultra 5
machine. The unparallelled performance of data collection
and restoration is obviously the result of the different
powers of the two machines.

Under the heterogeneous environment, the process
migration protocol shows an interesting communication
coordination behavior in which two messages are captured
and forwarded during the migration. According to the
application configuration, the migrating process has to
coordinatewith sevenotherprocesses to capture all incoming
messages to themigrating process before the communication
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TABLE 1
Timing Results (in Seconds) of the Kernel MG Program



connections can be closed. Fig. 13 shows a space-time
diagram of this experiment. From the figure, the MIGRATING
label represents themigratingprocess runningona slowDEC
5000/120 machine, while INITIALIZE represents an initi-
alized process on an Ultra 5 machine. The UX:pvmmg label,
where UX is a computer name, represents a nonmigrating
kernel MG process (pvmmg) running on an Ultra 5 machine.
Finally, the SCHEDULER label represents the scheduler
process. Because of the significantly slower speed of the
DEC 5000/120 machine, the two neighbor processes on the
faster Ultra 5 machines already sent messages to the
migrating process before the migration started. Therefore,
the migrating process collects transmitted messages during
the coordination. Afterward, the migrating algorithm for-
wards these messages to the initialized process and inserts
them into the front of the initialized process’s receive-
message-list. The communication and migration protocols
work well despite the hardware’s disparity. The last two
iterations are significantly faster than the previous two
because the migrating process has been moved to a much
better computer andnetworking environment.However, this
experiment is intended to show the capabilities of our
protocols handling heterogeneous process migration rather
than measuring performance.

7 RELATED WORK

Process migration has been implemented on various
distributed environments, such as message passing system
[14], [25], [26], [3], distributed shared memory [27], [28], and
BSP systems [29]. Most of the existing systems support
homogeneous process migration only. Only a few systems
support process migration in heterogeneous environments

[21], [2], [30], [3]. To the best of our knowledge, SNOW is
the only system that supports communication state transfer
in heterogeneous environments [3].

Chandy and Lamport’s algorithm [22] is an early
consistent checkpointing algorithm that employs process
coordination to achieve global consistency in distributed
systems. The CoCheck [11] system implements coordinated
checkpointing mechanisms for PVM applications based on
Chandy and Lamport’s work. Since global consistency is
provided, CoCheck can also support process migration. In
doing so, users can “crash” a process intentionally and
restart the process from its last checkpoint on a new
machine. However, we should note forcefully here that the
main purpose of CoCheck or any other coordinated
checkpointing system is to provide fault tolerance, not
process migration. As a result, their designs suffer two
disadvantages: coordination of all processes that are
directly or indirectly connected to the migrating process
and blocking off communication among these processes
during checkpointing. Checkpointing goes back to the last
stored checkpoint for process states. Our communication
protocols transfer the communication state without rolling
back and without blocking communication. Their designs
and, therefore, performance are quite different.

To improve performance, systems such as Charlotte [12],
Freeze-Free [13], Mach [31], MPVM [14], ChaRM [25],
Dynamite [26], task-migration PVM (tmPVM) [32], and
SNOW, etc., have been developed to support process
migration. While Charlotte, Freeze-Free, and Mach imple-
ment process migration mechanisms in OS kernels, MPVM,
ChaRM, tmPVM, Dynamite, and SNOW implement their
mechanisms in user-level and based on PVM.

Unlike SNOW, which uses the communication protocol
proposed in this study, most existing systems do not have a
well-designed communication protocol for communication
state transfer. They avoid the task of communication state
transfer by either adopting some kind of message forward-
ing methods after migration or blocking communication
during migration. The former does not or partially migrates
the communication state, while the latter tries to empty the
communication state. In both cases, they are costly and
nonflexible.

. Communication State Transfer: The SNOW migration
protocol completes communication state transfer
from a source computer to destination computer.
Subsequent communications after the transfer do not
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depend on any entities on the source computer. This
is not the case for systems like Mach and tmPVM
that rely on message forwarding after the migration
finishes. In MPVM, the latest location information of
the migrating process is stored at the source
computer and the computer where the process
originates. In MPVM’s indirect communication,
messages are routed through the source computer.
The routing mechanism may have to consult the
original host on some occasions to find the correct
location of the migrating process. MPVM does not
always support connection-oriented (or direct) com-
munication. During and after a migration, a peer can
only send messages to the migrated process in
indirect communication mode, which relies on
message forwarding.

Message forwarding can degrade communication
performance. In addition, dependencies between the
migrating process and source or original computers
further make these systems unsuitable for virtual
machine environments where computers can join
and leave dynamically.

. Blocking of Communication: In SNOW, the commu-
nication state transfer is conducted inparallelwith the
execution and memory state migration. SNOW al-
ways deliversmessages directly to receiver processes,
regardless of the migration situation. On the other
hand, message passing during process migration is
blocked by other systems. For instance, in Dynamite,
since process migration operation can interrupt
sending and receiving operations of the peers, some
messages in transit between the migrating process
and the peers can be partially sent or received.
Dynamite discards these incomplete messages and
resends them via indirect communication. The mi-
grating process will receive these messages after its
resume execution on the destination machine. Like
MPVM, routingmessagesvia indirect communication
will degrade communication performance.

ChaRM is another system based on PVM that
blocks communication during the migration. The
sender process stores messages in a delayed message
buffer if the receiver ismigrating.When themigration
finishes, themigrationmanagerwill notify the sender
to retransmit the delayed messages.

. Scalability: In SNOW, if a sender process cannot
make a connection to the migrating process, it will
consult the scheduler for a new location. Thus, the
peer process learns of the new location on demands.

On the other hand, Dynamite broadcasts new
location information of the migrating process to
every host in the virtual machine, while ChaRM
broadcasts the new location to every other process in
a distributed application. Both systems broadcast the
information before the migration starts. ChaRM also
broadcasts a signal message, again before the
migration finishes. The need for broadcast mechan-
isms in these systems severely limits their applic-
ability in a large distributed environment.

. Homogeneous versus Heterogeneous Process Migration:
Charlotte [12] and Freeze-Free [13] are systems,
which build process migration mechanism into OS
kernels. They both use memory-buffer based

mechanisms and rely entirely on kernel-level
functions to handle data communication and
support process migration. Their communication
state transfer protocols also suffer communication
blocking during the migration. The fundamental
difference, however, is that they only support
homogeneous process migration, where SNOW
supports heterogeneous process migration.

8 SUMMARY AND FUTURE WORKS

We have presented algorithms to support communication

state transfer in a dynamic, distributed computing environ-

ment. These algorithms are implemented inside data

communication and process migration protocols to handle

send, receive, and process migration operations. They work

collectively to prevent loss of messages and preserve

message ordering. In our design, the send algorithm

initiates a connection establishment by sending a connec-

tion request to the receiver process. It contains two vital

functionalities that support data communication in process

migration environments. They are the abilities to search for

a new location of a migrated process and to reconstruct

communication channels. In the receive algorithm, we have

introduced the receive-message-list, a user-level buffer used

to provide correct message delivery and ordering in

communication state transfer. The receive algorithm is also

designed to receive messages in transit during process

migration to prevent message loss.

We have presented the process migration and initializa-

tion algorithms to handle process state transfer across

computers in distributed heterogeneous environments. The

migration algorithm coordinates every connected peer

process to capture messages in transit during the migration

and then collects and transfers the process state to a

destination computer. The initialization algorithm, on the

other hand, accepts incoming messages while waiting for

the process state transfer and then resumes process

execution after the migration finishes.
We have implemented the prototype data communica-

tion and process migration protocols by extending the
PVM system. We have presented a case study of process
migration on the parallel MG benchmark. Analytical and
experimental results show that our protocols do preserve
distributed computation logics and correctly capture and
restore the communication state of a process for process
migration. The prototype implementation reports small
computation and migration overheads and demonstrates
the real potential of the protocols.

The need for heterogeneous process migration for future
distributed computation is vital [18]. Further investigations
are needed in many areas. In the near future, we plan to
perform more case studies on a number of parallel
applications with different communication characteristics
and, through the HPCM project [9], [33], to develop a
compilation system to support semiautomatic process
migration. We believe that the development of such tools
will advocate new applications of process migration to
distributed network computing.
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