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Abstract 
 

Mobility is a fundamental functionality of the next 
generation internet computing. How to support mobility 
for legacy codes, however, is still an issue of research. 
The key to solve this outstanding issue is the support of 
heterogeneous process migration. During the last few 
years, we have successfully developed mechanisms to 
support heterogeneous process migration of legacy codes 
written in C, C++, and Fortran. We present in this paper 
the design of the High Performance Computing Mobility 
(HPCM) middleware, the development and 
implementation of its key components, pre-compiler and 
its static libraries. Due to the similarity between process 
migration and checkpointing, the pre-compiler not only 
makes automatic process migration of legacy codes 
feasible, but also supports dynamic heterogeneous 
checkpointing. We perform a set of tests and compare 
experimental results with Porch, a well-known portable 
heterogeneous checkpointing system. The experimental 
results show that our methods are feasible, efficient and 
very promising.  
 
 
1. Introduction 

 
Process migration is the act of transferring an active 

process from one computer to another. The process retains 
its execution sequence, memory state and communication 
state during migration. The process is interrupted on the 
source machine and then resumes its execution at the 
break point with the same memory state and 
communication contexts on the destination machine. The 
break point in the execution sequence where migration 
occurs is called “migration point”. Process migration has 
many benefits to distributed computing environment, 
including dynamic load balancing, fault tolerance, data 
access locality, mobile and pervasive computing. The 
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emergence of grid-computing environment has made 
process migration even more important and challenging 
[10]. The grid provides mechanisms to share 
heterogeneous resources in a wide area network 
environment. In a grid environment, the cooperating 
systems are loosely coupled and the resources are widely 
distributed and highly dynamic. With the help of process 
migration, the running process can be relocated to 
approach computation, data, and service resources 
dynamically. Process migration system helps improve 
mobility, performance, efficiency and utilization of shared 
resources in a grid environment. Process migration can be 
classified into two categories: homogenous and 
heterogeneous. The heterogeneity can be at the hardware 
layer, system software layer, communication layer, and 
runtime environment layer. The grid is a large scale 
distributed computing environment that features 
heterogeneity, posing great difficulties and challenges to 
process migration. For example, the source and 
destination of a migration may have different computer 
architectures and instruction formats. For execution state 
transfer, an application has different binary codes on the 
source and destination machines. The destination machine 
cannot directly use the address of migration point stored in 
the instruction counter of the source machine. Similarly, 
for memory state transfer, the variable values at the source 
machine are meaningless to the destination because of 
different data representations. During a migration, the 
execution and memory states have to be transferred in a 
machine independent format. 

The High Performance Computing Mobility (HPCM) 
middleware supports user-level heterogeneous process 
migration. Several critical mechanisms have been 
proposed in our previous work [3, 5], including the 
execution, memory, and communication state transfer 
mechanisms. Based on these mechanisms, we build the 
HPCM middleware, an automatic process migration 
system in a heterogeneous distributed environment. The 
pre-compiler is an important component that aims to 
transform a code written in C, or other stack based 
languages, into a migration capable code. We choose C 
because of its high performance and popularity. We also 
build up libraries that can be statically linked with the pre-
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compiled applications and provide necessary 
functionalities. In this paper, we introduce the design of 
the HPCM middleware and present its implementation and 
experimental results. In next section, we give an overview 
of related works on process migration and checkpointing 
technologies. In section 3, we describe the architecture 
and components of the HPCM middleware. In Section 4, 
we introduce the structure and workflow of the pre-
compiler system and address several technical issues. The 
experimental tests are presented and discussed in section 
5. In Section 6, the conclusion and future work are 
presented.  

 
2. Related Research 

 
Intensive research has been done in the area of process 

migration due to its importance. Some of the early works, 
such as MOSIX [1], V [2] and Sprite [7], try to combine 
the migration functionality to cluster operating systems. 
By migrating a process across workstations, these systems 
balance workload and provide single system image. These 
systems rely on specific operating systems and provide 
services by the kernel extension. The usage of these 
technologies is limited to a specific system with a specific 
cluster operating system. To provide transparent access, 
they use forwarding technology, which keeps user 
contexts on the igniting host. The igniting host forwards 
system events such as IPC, file accesses and signals. As a 
result, the process is not migrated completely. These 
systems miss some benefits of process migration, 
including fault tolerance, data access locality, and 
mobility in grid or pervasive computing. They can only 
achieve load balancing to a limited cluster environment.   

Several other systems have been implemented at user-
level such as Condor [16], Dynamite [13] and CoCheck 
[12], or kernel level such as Linux Zap [17] to support 
homogeneous process migration. These systems use run-
time checkpointing to preserve the memory image of a 
running process. They assume that the migration is 
between homogenous machines, where the execution and 
memory states can be transmitted without being translated 
or understood. For heterogeneous environments, a pre-
compiler is necessary to transfer the type, structure, 
variable and other required information into a machine 
independent format. An advantage of these systems is that 
they are built on top of the operating system layer and can 
be used on commercial workstations. The second 
advantage is that through checkpointing mechanisms, they 
can provide fault tolerance without other instrumentations. 
There are some outstanding limitations for these systems 
too. The checkpointed memory images can only be 
restored on machines with the same architecture. That is, 
the migration can only be performed on homogeneous 
platforms.  

Most checkpointing systems are designed for 
homogeneous computing. By capturing the memory image 
from physical memory or virtual memory, the memory 
collection and restoration problems can be naturally 
solved. Some research efforts have been made on 
developing heterogeneous checkpointing systems. 
Existing compiler instrumented portable heterogeneous 
checkpointing systems include Porch [19], PREACHES 
[15] and [14]. Similar to our system, they support 
heterogeneity by compiler or pre-compiler. Both 
checkpointing and process migration systems provide the 
save and restoration of the process states. However, 
checkpointing rolls back to a previously checkpoint for 
fault recovery; migration continues computing till the next 
migration point to migrate. Checkpointing requires 
periodic saving of run-time information to the disk, 
assuming reliable storage, and may have a domino effect 
in a distributed environment [18, 8]. Migration provides 
better mobility and efficiency, but requires pre-warning 
for fault tolerance. 

Few early research efforts [20, 9] in heterogeneous 
process migration have been presented in some early 
works. They address and discuss several important 
problems and build their prototype systems. These 
systems are not widely accepted by the scientific and 
engineering applications because of their inherent 
limitations such as range, performance and the integrity. 

 
3. HPCM System Overview 
 

The HPCM middleware is designed to support mobility 
of legacy codes. It consists of several primary 
components. They are a pre-compiler, libraries, a 
console/scheduler, and a run-time environment. The goal 
is to build an automatic heterogeneous process migration 
system, which provides a transparent mobility middleware 
layer. Users can modify the pre-compiler output through 
the pre-compiler interface and coordinate process 
operations through the console/scheduler. The libraries 
include execution and memory state facilities, and the 
communication library. HPCM can be incorporated into a 
distributed computing environment such as PVM, MPI, 
Condor and Grid. Figure 1 shows the structure of the 
HPCM middleware. 

The input of HPCM is the source code of an 
application. A poll-point is the point where a migration 
can occur. The pre-compiler chooses poll-points via poll-
point analysis with the assistance of the user, if the user 
chooses to do so. The pre-compiler annotates the source 
code accordingly and outputs equivalent migration 
capable code, namely the annotated code. The 
console/scheduler can distribute the annotated code to the 
destination machine at any time. In general, the annotated 
code is pre-loaded into a potential destination machine 
before a migration. The annotated code is then compiled 
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and linked with libraries to generate the binary code at the 
destination machine, which is called pre-initialization. 
When the migrating process at the source machine 
requests a migration, the console/scheduler chooses a pre-
initialized host from the pool, sends its choice to the 
migrating process, and initializes a process called 
initialized process at the destination machine. While 
receiving the migration command, the migrating process 
transfers the execution, memory, and communication state 
to the initialized process. By applying our mechanisms, 
the process states can be transferred in a pipelined fashion. 
That is, the data collection, transmission, and restoration 
can be performed concurrently. Concurrency can save 
significant time in a networked environment, especially 
when there are large amount of state data to be transmitted. 
After transmission, the migrating process is terminated 
and the initialized process resumes its execution.  

 
3.1. Pre-compiler 

 
We have successfully designed a set of mechanisms to 

support the process migration in the heterogeneous 
environments [5]. These mechanisms include the 
execution, memory and communication state transfer 
mechanisms. These novel mechanisms have been tested 
on several practical applications, which confirm their 
feasibility and effectiveness. To implement these 
mechanisms, macros and other facilities need to be 
inserted into the source code. For this purpose, we build a 
pre-compiler, which transforms the source code to its 
equivalent migration capable annotated code.   

A migration point is a poll-point where a migration 
occurs. Poll-point analysis is used to determine a set of 
suitable locations where a migration can be performed 
safely and efficiently. The pre-compiler performs poll-
point analysis to automatically choose suitable poll-points 
according to the user’s requirements. Astute users can 
make their own decisions based on the pre-compiler’s 
choice. At each poll-point, the process will examine if a 

migration command has been issued and take action 
accordingly. Proper choice of poll-points may 
significantly affect the feasibility and performance of 
process migration. Firstly, there might be some features in 
C language that are not safe to migrate at certain locations. 
These features may lead to errors after migration. 
Secondly, it is not efficient to migrate at some locations. It 
may need more memory state data to be transferred or it 
may need more communication to be redirected to the 
destination machine. Avoiding those locations as poll-
points can save much time during migration. Thirdly, the 
migrating process should not be executing for a long time 
before it reaches the nearest poll-point. If there are fewer 
poll-points in an application, it will take a longer time to 
reach the nearest poll-point. On the other hand, if there are 
more poll-points, the cost for checking the poll-points and 
source code annotation is higher. Poll-point analysis 
determines an appropriate set of poll-points.  It needs to 
estimate the execution time between poll-points, the 
amount of data that needs to be transferred, and the 
overhead of migration. We need to minimize the 
execution time, migration response time, communication 
overhead and migration overhead.   

 
3.2. Console/Scheduler 

 
A console is built to monitor and coordinate the 

running processes. The console accepts user commands to 
migrate a running process and controls the state 
transformation. It handles the authentication and 
authorization problems. It initializes a process, which 
compiles, distributes the code and starts the run-time 
environment. The console serves as a commander to 
running processes and as a user interface to the system 
administrator. Sometimes for load balancing and fault 
tolerance, we also need a scheduler to collect current 
status of performance and resources availability on the 
source machine and other pooling hosts. When the 
performance of current hosting machine cannot satisfy the 
requirements of the users, it will find another host that has 
more suitable resources. It will also determine when to 
migrate and where to migrate dynamically. In our system 
design, we combine the console and the scheduler into one 
component called console/scheduler. With the 
console/scheduler, we can choose a suitable destination 
machine automatically or manually. Users can define 
conditions as to when the process migration should be 
invoked or directly issue a command through the 
console/scheduler interface to migrate at a desired time to 
a desired machine.  

 
3.3. Libraries and Run-time System 

 
We build a set of libraries and a run-time process 

working together to provide the functions and run-time 

 

Figure 1. Software Structure of HPCM Middleware
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supports needed by process migration. The libraries 
include a basic library, a data transmission library, and a 
communication migration library. We can easily extend 
the HPCM middleware to different platforms by providing 
more libraries. The basic library contains a set of 
functions, which are called by the macros inserted by the 
pre-compiler. These functions help to conduct memory, 
execution and communication state transfers. The data 
transmission library contains functions to handle memory 
and execution transfers over the network. It can be 
implemented on top of various communication software 
environments. Currently we have implemented the 
libraries on top of MPI, PVM and TCP/IP. That is, the 
memory and execution state can be transmitted across 
machines using MPI, PVM, or TCP/IP communication 
facilities. The communication migration library contains 
the functions needed to handle message passing or 
network data communication during process migration. 
We have currently implemented the communication 
migration library under PVM [11]. However, It also can 
be extended to support other distributed environments. 
The run-time system consists of a number of collaborative 
daemon processes each running on a participant computer 
within a process migration environment. The 
console/scheduler starts a daemon on a participant host on 
demand. An early version of the functions is used [3] to 
confirm the feasibility of the mechanisms for execution, 
memory and communication transfer. Recently, we have 

build up a set of libraries based on them and significantly 
improve their prototypes by providing more 
functionalities for process migration operations, by 
making the run-time system more robust and interoperable 
with other software, and by providing better performance. 
The run-time system can be bound to different underlying 
platforms as well.  

 

4. The Pre-compiler and Its Functionality 
 

The pre-compiler is a C-to-C translator, which converts 
the C source code into its equivalent migration capable C 

code, and generates related utility files. Figure 2 shows the 
conceptual model of the pre-compiler. The pre-compiler 
does the poll-point analysis to select a set of poll-points. It 
gathers type, structure, variable and memory block 
information from the source code and performs type 
analysis, live variable analysis and memory block 
analysis. Live variable analysis of the pre-compiler also 
generates the performance prediction and statistical data to 
evaluate the selection. Users can also choose poll-points 
and evaluate the poll-points selected by the poll-point 
analysis manually through the graphic user interface. The 
GUI is implemented using Java. This process may repeat 
several times until an appropriate set of poll-points is 
selected. It annotates the source code and inserts the 
migration macros and function calls to C source code to 
form MOD (MODified code). The Code Generator also 
generates a main function file that takes care of the global 
data and data type management of the application (MAIN), 
a function definition file (FUNC), a type definition file 
(TYPE) containing type information table, a component 
layout table, as well as saving and restoring functions.  

For applications written in C, there are some language 
features and programming practices that make the process 
non-migratable. Some of them depend highly on the 
current execution state and some others depend highly on 
the underlying computational platform. We called this 
condition as migration-unsafe. We have to transform these 
features into their equivalent codes that are safe during 
migration. We have to use some mechanisms to deal with 
these features, rewrite this part of program in a different 
but safe way or use some other mechanisms to gain safe 
migration.  The migration-unsafe features include: usage 
of pointer, type casting, usage of void pointer, memory 
allocation and release, union, communication, local file 
access, usage of “sizeof()” operator, function pointer. We 
need to handle these migration-unsafe problems through 
the pre-compiler and process migration mechanisms. 

Our pre-compiler is implemented based on the 
framework of Porch (Portable checkpoint compiler), a 
well-known pre-compiler for a checkpointing system 
developed by the MIT laboratory of computer science 
[19]. We adopt the underlying layer including lexical 
analysis, semantic analysis, framework of data flow 
analysis and some part of the code generation.   

Figure 3 shows the workflow of our pre-compiler. The 
pre-compiler gets the preprocessed code with “gcc –E”, 
and then performs lexical and semantic analysis to the 
preprocessed code and builds up the AST (Abstract 
Syntax Tree). After performing optional poll-point 
analysis and user interaction one or more times, it detects 
the migration-unsafe features of the application and 
transforms them to an equivalent code that is migration- 
safe, gathers the function information, and performs type, 
live variable, and memory block analysis. Finally, the pre-
compiler generates annotated codes. 

 
Figure 2. Pre-Compiler Conceptual Model 
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4.1. Source Code Annotation 
 

There are six kinds of macros involved in the process 
of migration. The pre-compiler needs to insert them into 
the source code. They are head_macro, end_macro, 
jump_macro, mig_macro, entry_macro, and stk_macro. 
The head_macro is inserted at the beginning of the 
function body. It put the migration point to the stack of 
calling sequence. For the migrating process, it registers 
memory spaces and memory blocks into a global data 
structure, called MSRLT table; for the main function of 
the initialized process, it makes connection to the 
migrating process and initializes the global state of the 
process. The end_macro removes the migration point in 
the stack of calling sequence. The jump_macro follows 
the head_macro. It extracts the calling sequence 
information and jumps to corresponding location of codes. 
The mig_macro is placed at the poll point. For the 
migrating process, it collects and transmits global 
variables; for the initialized process, it receives and 
restores the values of global variables. The entry_macro 
and stk_macro are placed separately before and after the 
function call in the migration point calling sequence. The 
entry_macro collects and restores the local live variables 
of the current function before entering the migrating point. 
The stk_macro collects and restores the local live 
variables of the current function after existing the 
migrating points. 

 
4.2. Pointers and Dynamic Memory Management 

The pointer type in C language poses a great difficulty 
in process migration. The memory address on the source 
machine is meaningless to the destination machine. In 
most cases, we consider the memory piece occupied by a 
variable or sometimes a group of variables as a memory 
block. The dynamic allocated memory pieces are also 
considered as memory blocks. To circumvent the above 
problem, a logical memory space model MSR (Memory 
Space Representation) is defined [5].   

There could be many memory blocks in the memory 
space of a big application. In practice, we do not need to 
register all memory blocks into MSRLT table. The 
memory blocks registered in the MSRLT shall satisfy one 

of the following four conditions: dynamic allocated 
memory blocks; pointers; variables with the types of 
struct and array; variables whose addresses have been 
used as right-value. For dynamic memory management, 
we replace the system calls of dynamic memory 
management with our own functions. The MSR function 
not only requests a piece of memory as required but also 
registers this memory block to MSRLT table.  

 
4.3. Live variable analysis 
 

A practical computing application may have large 
number of variables. Some of those variables will never 
been used after process migration. Transferring those 
variables to the destination machine will add unnecessary 
cost. To improve the performance of process migration, 
we try to find out which variable is useful in future 
execution and which is not. This process is called live 
variable analysis [4].  Live variable analysis defines a set 
of variables whose values are modified before a poll-point 
and are needed after the poll-point. We perform live 
variable analysis to global variables and local variables 
separately to determine the variables that need to be 
transmitted. 

 
4.4. Struct and Union 

 
Union is one of the three composite types in C. It is 

widely used in all kinds of applications, especially, in 
system header files. It will dramatically limit the usage of 
our method without solving this problem. P. Smith and N. 
Hutchinson address this problem [20], but the problem is 
not solved in their system. The difference is caused by the 
definition of union, which is that every component in a 
union should occupy the same memory address. In our 
way, for case C, we do the followings: 1. add a component  
int _elem_tag to the union; 2. add a component union _U  
to the union and move all the components in the original 
union to _U; 3. convert the access (read, write) of the 
union to the access of the component “_U”; 4. record 
current type in the union to _elem_tag after an assignment 
instruction to a union; 5. check the _elem_tag to 
determine current type of the union while saving/restoring 
the value of a union,, then save/restore the value 
accordingly. 

 
5. Experimental Testing 
 

We have implemented and tested our system on the 
following three platforms: a Sun Blade workstation 100 
with 1 UltraSparc-IIe 500MHz CPU, 256K L2 cache, 
128MB, running SunOS 5.8 operating system (called w in 
this section), a Sun Enterprise 450 server with 4 
UltraSparc II 480Hz, 8M cache, 4GB, running SunOS 5.8 
operating system (called s), and a Dell Precision 

 

Figure 3. Workflow of the Pre-compiler 
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Workstation 410MT with 2 Pentium III 500MHz, 512K 
L2 cache, 768MB, running Redhat Linux 8.0 (called l). 
Their floating-point speed is 32698kflops for the server, 
27067kflops for the workstation and 54934kflops for the 
Linux PC. We have tested the linpack sequential program 
translated to C by Bonnie Toy that solves a dense system 
of linear equations with Gaussian elimination [6], and the 
bitonic program by Joe Hummel, which builds a random 
binary tree and then sort it. The linpack program includes 
use of pointer, array and other primary types. The bitonic 
includes more complex self-defined data structure such as 
structs and linking pointers. It also includes lots of 
dynamic memory management operations and recursive 
function calls, which may incur large memory state data. 
We configured the matrix size of the linpack as 100, 200, 
500, and 1000.  The tree size of the bitonic benchmark 
varies from 1024 to 16384. The communication between 
the server and the workstation is a 100Mbps internal 
Ethernet with exclusive use. The server and linux belong 
to different subnets of our 100Mbps campus network and 
the communication between them is sometimes interfered 
non-determinately by other users. Each test with 
communication is performed ten times at separate time 
periods to avoid the network interference. 

First we test the overhead for the migration capable 
linpackc application for normal execution. We perform 
the testing on the server, workstation and linux. The 
problems scale from 100 to 1000. We find that the 
overhead of the migration capable code is very low. In 
most cases, the performance of the linpackc and the 
migration capable linpackc is almost the same. There is no 
significant overhead in most testing results shown in 
Figure 4. The maximum overhead found among these tests 
is 0.7%, which comes from the 1000x1000 matrix running 
on the server. These performance results show that 
generally the overhead is very low when there is no 
migration occurred. Figure 4 compares the execution time 
of the linpackc and migration capable linpackc. 

Table 1. Homogeneous Process Migration 
Seconds 100 200 500 1000 

original (w) 0.800 5.720 96.475 773.420 

original (s) 0.793 5.338 75.628 604.676 

non-migration (w) 0.782 5.699 96.478 772.650 

non-migration (s) 0.780 5.343 75.353 608.996 

migration (w=>s) 0.813 5.464 77.643 622.620 

migration (w=>w) 0.828 5.750 96.947 774.026 

communication data  82240 323440 2007040 8013040 

migration overhead (w) 3.5% 0.5% 0.5% 0.08% 

We test the homogeneous process migration from the 
workstation to the server and the heterogeneous process 
migration performance from the server to the Linux PC. 
Table 1 shows the performance of homogeneous process 
migration from the workstation to the server and the 

migration between two workstations. The overheads of the 
homogeneous migration between the workstations with 
the same architecture and speed range from 0.08% to 
3.5%.  For very small application scale, the migration may 

cause higher overhead. For bigger scales, the overheads 
are from 0.08% to 0.5%. Figure 5 compares the 
performance of original, non-migration and homogeneous 
migration.  

The heterogeneous testing is on the problem scale 
1000x1000 and 500x500 matrix. The floating point 
computing speed of the Linux PC is higher than the 
server. Table 2 shows the comparisons of performance for 
the pre-compiled linpack application without migration, 
collection time, restoration time, migration without 
pipelining, and migration with pipelining. The collection 
and restoration time refer to the time of memory state 
collection and restoration time respectively. Because we 
pipelined the collection, restoration, and data 
transmission, the summation of no-migration execution, 
collection, and restoration time is higher than the actual 
migration time.  Table 2 verifies that our design is 
efficient and pipelining the collection and restoring of 
state is beneficial in actual migrations. By overlapping the 
collection, restoration, and transmission, we save 6%-14% 
of total execution time or almost 50% of the data 
collection/restoration time. We also tested process 
migration for the benefits of load balancing on the server 
and linux. When the server’s one-minute load average is 
5.23, the migrated linpackc can save 24.60% time 
compared with the non-migrated control. When the 
server’s one-minute load average reaches 8.41, the 
performance gain is over 100%. In this case, migrating a 
process to a faster machine compensates for the overhead 
incurred by migration. Because it is difficult to find 

 
  Figure 4. Overhead of Process Migration System 

Table 2. Heterogeneous Migration from Server 
to Linux 

Seconds 500 1000 
1. non-migration 75.353 608.996 
2. collection 4.708 19.092 
3. restoration 4.790 19.334 
4. without pipeline 1+2+3 84.851 648.326 
5. migration (s=>l) 74.182 610.496 
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heterogeneous platforms with the same computational 
environments including integer speed, floating point speed, 

and memory access speed, the exact overhead for 
heterogeneous migration is not presented here.  

Table 3. Heterogeneous Migration of Bitonic 
Tree Size Data size (bytes) Execution Time (seconds) Migration Time (seconds) 

level 1 4 8 1 4 8 1 4 8 
1024 49416 49932 50620 0.564 0.558 0.570 0.018 0.018 0.018 
2048 98568 99084 99772 1.715 1.768 1.786 0.036 0.036 0.047 
4096 196872 197388 198076 4.779 4.674 4.742 0.088 0.108 0.108 
8192 393480 393996 394684 11.020 11.134 10.994 0.214 0.248 0.253 

16384 786696 787212 787900 24.815 24.857 24.724 0.462 0.556 0.557 

We also test the migration performance of the bitonic 
benchmark from the server to the linux. The bitonic 
benchmark randomly generates a defined size of tree, then 
perform bitonic sort on the tree. In our tests, the process 
repeats for 32 times. There are a large number of pointers 
referring the memory blocks that need to be transferred 
because the bitonic benchmark has many memory 
management operations. The actual migration point is 
inside a recursive function call, biSort(). The migration 
command is issued when the execution sequence reaches 
its depth of 1st, 4th, and 8th level in biSort(). The scale of 
the application increases with the Tree Size from 1024 to 
16384. The execution time of the application, the data size 
of the memory state and the migration time increase 
accordingly. We compare the experimental data for 1st, 4th, 
and 8th level for data size, total execution time, and 
migration time in Table 3. With the increase of the Tree 
Size and the data size, the execution time and migration 
time increase accordingly. With the increase of the 
migration point level, the data size increases slowly; the 
migration time also increases slowly. There is no 
significant increase for total execution time. Though the 
application is recursive, the amount of local variable does 
not incur a dramatic performance overhead for both the 
execution time and the migration time.  

Figure 6 is a comparison of the migration and 
checkpointing/restoring performance for the HPCM 
system and Porch, a well-known portable heterogeneous 

checkpointing system [19]. Porch provides fault tolerance 
by checkpointing the process state to local reliable disks. 
The recovery can be performed both on local or remote 
system. The recovery machine can be both homogenous 
and heterogeneous. But Porch has the limitations caused 
by its data conversion mechanisms. They use a data 
structure called structure metric to provide a specification 
of the data layout at runtime to accomplish data 
representation conversion. This means that Porch has to 
know the data representation format at pre-compile time. 
The pre-compiled application is static to the given format 
of data. In the other words, Porch has to know the type of 
the data format at the source machine before compiling 
the application on the destination machine. The pre-
compilation has to be performed for each source or 
destination machine and for each data format. Porch does 
not support the type of union. In the contrary, for the 
HPCM middleware, we do not need to know the 
architecture of source or destination machine before 
migration. We can dynamically configure the system at 
run time. Both the systems are using the pre-compiler 
technology to solve the problems caused by heterogeneity. 
In normal execution, Porch generates more overheads 
compared with HPCM pre-compiler. Figure 6 shows that 
the performance of HPCM process migration is better than 
Porch checkpointing. The mechanisms used by HPCM 
can be used for dynamic heterogeneous checkpointing as 
well. 

 
Figure 5. Migration Overhead of Homogeneous Migration (workstation) 
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6. Conclusion and Future Work 
 

This paper presents our recent progress in supporting 
mobility of legacy codes through heterogeneous process 
migration. First we introduce the background of process 
migration and compare the heterogeneous process 
migration with checkpointing systems. We describe the 
design of the HPCM middleware and its primary 
components. Then we introduce the conceptual model, the 
implementation and the workflow of the pre-compiler. 
The performance results show that the HPCM middleware 
is efficient for both the migration and non-migration 
conditions, and has its real potential in checkpointing as 
well as in mobility. Heterogeneous process migration of 
legacy codes is an outstanding research issue. The success 
of the design and implementation of the pre-compiler is a 
significant step towards a practical solution for the 
outstanding issue.  

There are still some features in our design that are left 
for future work. The performance of the HPCM system is 
highly depending on the amount of memory states to be 
transferred. This problem is worsened when the 
application is recursive in major. Local variables need to 
be transferred for each level of recursive call. We need to 
further improve the system and tune it for better 
performance. Currently, the algorithm of poll-points 
selection is coarse-grained and simple. It needs user 
interaction for better performance. We still need to refine 
the poll-point analysis module to select the poll-point 
wisely and improve the console/scheduler component of 
the current prototype implementation.  
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Figure 6. Performance of HPCM and Porch 


