
Original Article

The International Journal of High
Performance Computing Applications
1–22
� The Author(s) 2016
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342016677084
journals.sagepub.com/home/hpc

Rethinking key–value store for parallel
I/O optimization

Anthony Kougkas1, Hassan Eslami2, Xian-He Sun1, Rajeev Thakur3 and
William Gropp2

Abstract
Key–value stores are being widely used as the storage system for large-scale internet services and cloud storage systems.
However, they are rarely used in HPC systems, where parallel file systems are the dominant storage solution. In this
study, we examine the architecture differences and performance characteristics of parallel file systems and key–value
stores. We propose using key–value stores to optimize overall Input/Output (I/O) performance, especially for workloads
that parallel file systems cannot handle well, such as the cases with intense data synchronization or heavy metadata oper-
ations. We conducted experiments with several synthetic benchmarks, an I/O benchmark, and a real application. We
modeled the performance of these two systems using collected data from our experiments, and we provide a predictive
method to identify which system offers better I/O performance given a specific workload. The results show that we can
optimize the I/O performance in HPC systems by utilizing key–value stores.

Keywords
Hyperdex, I/O performance, key–value store, parallel I/O optimization, performance evaluation, prediction model,
OrangeFS

1 Introduction

File systems provide the interface between applications
and the underlying storage space. A parallel file system
(PFS) coordinates a large number of storage devices to
serve applications’ Input/Output (I/O) requests, lever-
aging the high degree of parallelism to offer the best I/
O performance. For a given file, a PFS partitions the
file into smaller fixed-size units of data, called stripes,
and distributes them over multiple data nodes, accord-
ing to predefined data layout policies. In the HPC com-
munity, PFSs seem to be the dominant storage solution
and have served well for most of the requirement needs
of an HPC system.

In the race for higher I/O bandwidth, PFSs have
adopted a higher degree of parallelism. However, our
previous work (Song et al., 2011b) has shown that a
higher degree of parallelism might not always be better
because data synchronization is more intense and could
affect performance dramatically. A PFS’s bandwidth
can be largely affected by the file system’s data layout
policy (i.e. how data stripes are distributed physically)
and the application’s data access patterns (i.e. how an
application reads or writes the data). The performance
benefit achieved by parallel access brings an inevitable
data synchronization issue, because different data

nodes will perform differently and subrequests will fin-
ish at different speeds. The fast subrequests must wait
for the slow ones, and the entire request finishes only
after all subrequests are done. Additionally, most PFSs
are designed to meet the POSIX standard, which
requires a large number of metadata operations such as
directory structure and file permissions. The latency
caused by these metadata operations cannot be
neglected. For a given application running over a PFS,
its frequency and number of metadata operations can
largely affect the overall I/O time. One example of a
metadata-heavy workload is to read or write many
small files (Carns et al., 2009). A PFS is often able to
provide satisfactory bandwidth in terms of its design
goal. However, because of factors such as data

1Department of Computer Science, Illinois Institute of Technology,

Chicago, IL, USA
2Department of Computer Science, University of Illinois at Urbana-

Champaign, Urbana, IL, USA
3Mathematics and Computer Science Division, Argonne National

Laboratory, Argonne, IL, USA

Corresponding author:

Anthony Kougkas, Department of Computer Science, Illinois Institute of

Technology, Chicago, IL60616, USA.

Email: akougkas@hawk.iit.edu, sun@iit.edu

uk.sagepub.com/en-gb/journals-permissions
https://doi.dox.org/10.1177/1094342016677084
journals.sagepub.com/home/hpc

synchronization for unaligned requests and heavy-
metadata operations, a PFS might demonstrate signifi-
cant performance degradation with specific workloads.
The experimental results presented in this paper have
verified this phenomenon.

On the other hand, in large-scale cloud storage and
web services, instead of file systems, key–value stores
(KVStores) are being widely used. A KVStore provides
an object based programming interface for manipulat-
ing the data. Each object is usually a key–value pair
where the data are stored in the value and are repre-
sented with a unique ID, the key. The data read and
write operations are presented as ‘‘get’’ and ‘‘put.’’
Compared with PFS’s fixed-size stripes, KVStore’s
object size is more flexible. Since an object is not further
partitioned into smaller entities, there are no subre-
quests to synchronize between data nodes for an I/O
operation to complete. Furthermore, hash tables often
are used to manage the metadata (i.e. the mapping
between the key and the physical location of the object).
Different implementations of a KVStore keep various
metadata information for each object. At the core of
the key–value pair notion however, the number and fre-
quency of the metadata operations are lightweight with
low latency. Because KVStores are designed for high
scalability, simplicity, and flexibility, they usually keep
a simple flat namespace (not tree-structured). Each
‘‘put’’ or ‘‘get’’ operation usually comes with a fixed
amount of metadata, including looking up the hash
table or other structures being used and updating it
when necessary, operations that are always faster com-
pared with a PFS.

As we move toward the exascale era, when the data
volume will explode, the shortcomings of the existing
storage solutions in scientific computing will be even
more challenging and efficient data handling will be
critical. Based on this understanding, in this study we
are not simply comparing the performance of these fun-
damentally different storage solutions by benchmark-
ing them. Instead we aim to expose and identify the
degrading factors in the performance of PFSs, as well
as explore the potential use of KVStores that may not
be sensitive to the same factors. We claim that for
workloads that PFSs cannot handle well, a KVStore
has a chance to achieve higher performance. We believe
that it is time to loosen the reliance and dependence on
the strongly restrictive POSIX standard and rethink the
ways we handle data. Thus, we propose that KVStores
be utilized to optimize the I/O performance for HPC
systems. We encourage the reader to imagine a hybrid
storage solution where PFSs and KVStores can com-
plement each other and be used appropriately under
scenarios that are better suited for them.

This paper presents our study of how we can opti-
mize the I/O performance under an application’s

specific needs (i.e. workloads). We make the following
contributions:

� We show that KVStore’s performance stays stable
with different data access patterns and various
types of storage devices compared to PFS results
(presented in Section 2). Our expectations for
KVStore’s potential for I/O optimization are veri-
fied by the results (presented in Section 3).

� We evaluate our proposal using synthetic bench-
marks, a popular I/O benchmark, and a real appli-
cation. The experimental results (presented in
Section 4) show that KVStore, for certain work-
loads and system configurations, is able to provide
higher I/O performance than a PFS does.

� We offer a performance prediction model (pre-
sented in Section 5) to choose the best-performing
storage solution, a PFS or a KVStore, given the
application’s I/O characteristics and system config-
urations. We prove that our model is accurate in its
predictions.

2 Motivation

PFSs have been around for a long time, and thus they
have been optimized considerably. PFSs utilize massive
parallelism to provide high-bandwidth data access to
HPC applications. In some scenarios however, perfor-
mance degradation can be experienced. This section
presents two major performance degradation factors:
(a) data synchronization, presented in Section 2.1, and
(b) frequent metadata operation, presented in Section
2.2. In addition to these major factors, the type of stor-
age device can also largely affect the I/O performance;
we show comparison results in Section 2.3. All experi-
ments in this section are performed on a Linux cluster
with four nodes as storage servers. These nodes are
equipped with both HDDs and SSDs and gigabit ether-
net interconnection. The workload tested consists of
only read operations with the data prepared before-
hand (i.e. the necessary files copied in the PFS). We use
OrangeFS (Carns et al., 2000; OrangeFS, 2014) as the
PFS. We focus mostly on the raw I/O performance of
the file system by measuring the time spent in I/O.
More details on experiment methodology and the plat-
forms used are presented in Section 4.

We present here some well understood issues of a
PFS; our intention is to explain the motivation of our
work to the reader and provide a clear demonstration
of the problem we target to solve. We also provide
quantifiable explanations of the performance degrada-
tion through a series of real system tests. Moreover, we
showcase the scenarios in which there is a potential ben-
efit to use a KVStore to optimize the I/O performance.

2 The International Journal of High Performance Computing Applications

2.1 I/O performance degradation caused by data
synchronization

To achieve parallel access, a PFS partitions the data
into smaller fixed-size units of data called stripes and
distributes them to multiple storage nodes. When an
application requests some data, multiple storage nodes
collaboratively service this request in parallel, hence the
performance speedup. This collaboration introduces
inevitable data synchronization and some issues that
come with it. For example, assuming the stripe size is
64 KB, if a 64 KB request is aligned with the stripe
boundary, then the storage node storing that stripe unit
will serve the request by itself. If the request is not
aligned with a stripe or is of size larger than 64 KB,
then its data are distributed over more than one storage
nodes. After the request is issued, all involved nodes
work together to fulfill the request; each node delivers
part of the demanded data via its corresponding subre-
quest. Because each storage node will act differently,
the various subrequests will finish at different speeds.
The fast subrequests must wait for the slow ones, and
the entire request as a whole finishes only when all sub-
requests are done. This approach then, may cause
severe overall performance degradation (Song et al.,
2011b).

This negative effect on the I/O performance is caused
mainly by the synchronization between storage nodes.

We provide here some experimental results to demon-
strate the degradation caused by data synchronization.
In Figure 1(a), we repeatedly read a file by a 64 KB
request size at various offsets. The PFS is configured
with a 64 KB stripe size as its default value, and it is
deployed on SSD devices. When the offset is 0 (or 64
KB in this case), each request is perfectly aligned with a
data stripe; therefore, it involves only one storage node,
and no data synchronization among subrequests is
introduced. When the offset is 1 KB however, each
request involves 2 storage nodes: 63 KB from one stor-
age node and 1 KB from the next one; the same thing
happens with 2 KB, 8 KB, and 32 KB offset shifting.
We can clearly observe the performance degradation in
Figure 1(a): 0 and 64 KB achieve the best performance,
but the performance of all the other offsets is around
20% lower.

In Figure 1(b), we do not modify the offset, but we
use different request sizes. We still use a 64 KB stripe
size. When the request size is 64 KB, each request is
perfectly aligned with a data stripe unit. With any
request size that is larger than 64 KB however, each
request inevitably involves more than one storage node.
We can observe the obvious performance degradation
in Figure 1(b): request sizes 64 KB and 128 KB yield
the best performance, but all the other cases are 10 to
20% lower.

Figure 1. PFS with shifting offset / varying request size access patterns.

Kougkas et al. 3

2.2 Effect of metadata operations on i/o
performance

Increased metadata operations can also significantly
affect a PFS’s overall I/O performance (Ali et al., 2008;
Meshram et al., 2011; Ren et al., 2014). We provide
here quantifiable proof of this effect. For our tests, the
PFS’s stripe size is configured at 64 KB and is deployed
on HDDs. We generate the workload according to the
I/O traces collected from two applications: HPIO
(Ching, 2014) and LANLApp1 (Nuclear Engineering
Division of Argonne National Laboratory, 2014). With
the ‘‘normal metadata’’ test case, we open a large file,
read the file according to the I/O patterns found in the
trace file, and then close that file after performing all I/
O operations. Each process opens and closes the file
only once during this test. With the ‘‘increased meta-
data’’ test case, each I/O event in the trace file uses a
separate file, a common access behavior where each
process uses a different file (i.e. one file per process). In
this case, each process performs one open and one close
for each request. This test case stresses the PFS’s meta-
data servers as expected.

From Figure 2, we can see that for both the HPIO
and LANLApp1 workloads, the degradation on the
overall I/O bandwidth, caused by increased metadata

operations, is significant. Specifically, for 32 processes
and normal metadata operation, OrangeFS achieves a
bandwidth of 125 MB/s whereas with the increased
metadata it drops to 32 MB/s, about 25% of the origi-
nal bandwidth. This kind of degradation can be seen
with various numbers of processes in both applications
shown in Figure 2.

2.3 Comparison of PFS using HDD versus using SSD

SSDs generally offer better performance over HDDs.
A PFS’s performance can be seriously affected, though,
especially in noncontiguous data accesses. Hardware
resources must be utilized to the best of their capabil-
ities and must avoid this degradation factor where pos-
sible. Figure 3 presents a comparison of the PFS’s
performance running the HPIO benchmark over differ-
ent storage devices, HDDs and SSDs. At various num-
bers of processes the performance of HDDs is between
15% and 35% of what the SSDs achieve. Additionally,
since metadata operations are latency sensitive, we can
observe in Figure 3(b) that SSD devices are affected
much less by the increased metadata operations.

The performance when using HDDs is, as expected,
much lower than that when using SSDs, for several rea-
sons. First, the physical raw performance of HDDs is

Figure 2. PFS performance without and with increased metadata operations.

4 The International Journal of High Performance Computing Applications

lower. The rotational latency averages around 4 ms in
modern HDDs, whereas SSDs roughly offer an access
latency of around 0.1 ms (latencies measured by us on
our testbed machine and may vary on different hard-
ware). Second, data access patterns are important in the
way the storage device is serving the requests. There are
cases where each type of storage device performs well.
For example, HDDs are good for streaming contiguous
data accesses but perform badly if the data access is
noncontiguous mainly because of the disk head seeking.
On the other hand, SSDs are flash memory based and
do not involve mechanical movement; thus they are
much less sensitive to whether the data accesses are con-
tiguous or not.

3 KVStore’s potential in I/O optimization

PFSs provide satisfying data access bandwidth for HPC
applications in most cases. However, a PFS’s perfor-
mance can largely degrade in certain scenarios, as
shown in the previous section. We found that in these
special cases, the performance of KVStores is much less
affected. This motivates us to explore the opportunities
of utilizing KVStores to optimize the I/O performance

under those circumstances. This section presents the dif-
ference between PFSs and KVStores and also demon-
strates KVStore’s performance characteristics with
experimental results.

We note the great diversity in the KVStore data
management space. Implementations include distribu-
ted hash tables (i.e. DHT-based) such as Chord (Stoica
et al., 2001), Dynamo (DeCandia et al., 2007), and
ZHT (Li et al., 2013), or column-oriented implementa-
tions such as Cassandra (Lakshman and Malik, 2010)
and MongoDB (MongoDB, n.d.), or even document-
based implementations such as HBase (Vora, 2011).
Most of them, however, in the core abstraction operate
on the data in the key–value pair concept (i.e. object-
based) and not in files. Many different features can be
found in all of them, which are tailored for specific use
cases. In this study, however, we focus only on the
stripped-down version of how the raw data are being
manipulated and whether that logic can be applied in a
broader high-performance storage solution. The main
question to be answered here is: Can we leverage the
broader concept of a KVStore to provide better I/O
performance to applications and alleviate the short-
comings of a PFS?

Figure 3. PFS with HPIO workloads on HDD and SSD: (a) with normal metadata operations; (b) with increased metadata
operations.

Kougkas et al. 5

In all the experimental results presented in this sec-
tion, we used our Linux cluster with four nodes running
HyperDex (Escriva et al., 2012) as the KVStore servers;
gigabit ethernet and SSDs were used; and the work-
loads were only read operations expressed as ‘‘get’’
operations. The data were placed as objects in the sys-
tem prior to the execution of our microbenchmarks,
which had as the main goal of capturing the raw I/O
performance of HyperDex ignoring the extra features
such as triple replication (disabled just to make sure)
and searchable hyperspace for secondary attributes.

3.1 Architecture differences between PFS and
KVStore

Both PFSs and KVStores are distributed storage sys-
tems and partition their data into small pieces that will
be distributed over multiple nodes. However, the data
partition and layout are different. Our goal is not to
present all architectural differences here. Instead, we
strive to demonstrate that for all the performance-
degrading factors that affect a PFS, a KVStore would
possibly perform better; and when examining the archi-
tecture benefits of each storage solution, we limit our
discussion to investigating what makes this possible.

A PFS usually uses fixed-size stripes for a file, which
are distributed in a fixed manner; the most widely used
distribution policy is round robin. Figure 4 shows four
requests and assumes they are contiguous data in a file.
The PFS disregards the logical information of the
requests. We can see in Figure 4(a) that the second,
third, and fourth requests’ data are each placed in two
storage nodes. In Figure 4(b), however, KVStore treats
each logical key–value pair as a single object and distri-
butes all the objects to all available nodes; each object
will not be further partitioned. The distribution is usu-
ally managed by an object-to-server mapping or

hashing. Therefore, for each object only one server is
involved, and internode data synchronization is
avoided. In Figure 4(a), for each of the second, third,
and fourth requests in the PFS, there is data synchroni-
zation among the two subrequests, whereas in
Figure 4(b), for KVStore, there is none. The results in
Section 3.2.1 verify that KVStore’s performance is sta-
ble with different data access parameter ‘‘request size’’
and different data layout parameter ‘‘stripe size.’’

The difference in metadata management is that com-
pared with a PFS, KVStore’s metadata operation is
more lightweight. The file layer metadata must include
the directory tree, permissions for different users, and
the data’s physical location on disks. Various imple-
mentations of a PFS employ different techniques for
handling the metadata workload, but typically the
metadata operations can be a bottleneck. In contrast,
KVStores were designed for scalability, simplicity, and
reliability; and thus they usually maintain a flatter
namespace with simpler structures that keep the map-
ping between keys and values. The experiments in
Section 3.2.2 present KVStore’s characteristics.

A PFS’s performance can also be largely affected by
the contiguity of the data access. The reason is that a file
system usually takes advantage of the spatial data locality
with data prefetching. This approach is especially impor-
tant for HDDs. Thus regardless of the underlying device,
the contiguous data access demonstrates high perfor-
mance. On the other hand, with noncontiguous data
access, the prefetching does not work well, and the disk
head seeking in the case of a traditional spinning disk
increases the data access latency. On the other hand, a
KVStore manages a set of discrete data objects, and its
performance usually does not benefit from any data local-
ity. As a result, KVStore’s performance does not vary
largely with different access patterns or different storage
devices. The results in Section 3.2.3 demonstrate this.

Figure 4. Stripe vs object on how the requests are physically stored and synchronized(boxes represent storage servers) (a) Data
stored in a file in PFS (b) Data stored in objects in KVStore.

6 The International Journal of High Performance Computing Applications

3.2 KVStore’s performance characteristics

This section illustrates how KVStore’s performance
varies with different workloads and different devices.

3.2.1 Stable performance with different access
patterns. Figure 5 shows KVStore’s performance with
different workloads. The workloads are the same as
that in Section 2.1. We vary the data offset, request
size, and number of concurrent processes. This figure
can be compared with Figure 1. We can see that com-
pared with the PFS, KVStore’s performance is stable
no matter how these parameters change. However, the
overall performance of KVStore is 300–350 MB/s,
which is not as high as the PFS’s nondegradation cases,
400–480 MB/s. The reason is that a PFS takes advan-
tages of the data locality of contiguous access, while
KVStore does not. Changing the representative storage
solutions (e.g. another implementation of KVStore and
of a PFS) would give different measurements. The
important point here is not simply to compare the
numbers but to note that the KVStore’s I/O perfor-
mance is not affected by the data access patterns and
remains stable.

3.2.2 Stable performance with different metadata operation
frequency. For a PFS, the frequency of metadata

operations can vary largely, depending on how fre-
quently the application creates directories, opens and
closes files, and so on. But for KVStore, each put or get
operation involves a fixed, smaller number of metadata
operations, usually looking up or updating the struc-
tures that manage the mapping between keys and val-
ues. In both Figure 5 and Figure 6, the frequency of the
metadata operation is one lookup per I/O request since
it is a get operation. With a noncontiguous data access
pattern and various request sizes in Figure 6 we observe
a stable performance around 300 MB/s whereas the
PFS in the similar microbenchmark achieved around
50 MB/s. In Section 4 we discuss the comparison
between them in more detail.

3.2.3 Less degradation with slower disks. We wanted to
investigate how KVStore utilizes the underlying storage
devices. We ran HPIO and LanlApp1 workloads with
various numbers of processes on HDDs and SSDs. In
Figure 7, we can see that the performance with HDDs
is 5–35% less than that with SSDs. This finding shows
that object-based data access can make better use of
the spinning disks than a PFS does. However, the over-
all SSDs bandwidth of around 300 MB/s is significantly
less than that of the PFS bandwidth, around 450 MB/s.
Under these specific workloads, a larger degree of par-
allelism achieved through the distribution of the stripes

Figure 5. KVStore with different access patterns: (a) shifting offset; (b) varying request size.

Kougkas et al. 7

onto more than one SSD device leads to overall better
performance. KVStore reads the data stored as a key–
value pair from a single SSD device. Nonetheless, what
we learn from this test is that the performance slow-
down with HDDs is much less in the KVStore case.

In summary, comparing the results in Section 2 and
Section 3, we make the following observations.

� With regular data access patterns with low data
synchronization and relatively few metadata

Figure 6. Metadata frequency stability.

Figure 7. KVStore’s performance with different storage devices: (a) HPIO; (b) LANLAPP1.

8 The International Journal of High Performance Computing Applications

operations, a PFS generates higher performance
than does a KVStore.

� For workloads with irregular data accesses and
heavy metadata operations, KVStore is expected to
be a better choice than a PFS.

� KVStore performance demonstrates less variation
with different storage devices compared with that
of a PFS.

Based on these observations, we believe that it is
valuable to utilize KVStore to optimize the I/O perfor-
mance of some HPC applications, especially for work-
loads that do not favor a PFS.

4 Evaluation

To evaluate and further explore the potential use of
KVStore systems in HPC environments, we conducted
an extensive series of experiments.

Hardware specifications: Our testbed system is a 65-
node SUN Fire Linux cluster. Each computing node
has two AMD Opteron quad core processors, 8 GB
memory, and a 250 GB HDD. All the nodes used are
equipped with an additional PCI-E X4 100 GB SSD.
All nodes are equipped with gigabit ethernet intercon-
nection. The network topology of the cluster consists of
three groups of nodes connected to network switches
with the appropriate capacity (e.g. 22 nodes on a router
of around 25 Gbits/sec) and a master node. A subgroup
of nodes are connected through InfiniBand 4X network
which we initially used to identify whether the network
of the cluster would be a possible bottleneck. We found
out that gigabit ethernet interconnection is sufficient to
support our I/O benchmarks.

Software used: The operating system is Ubuntu 9.04,
the PFS installed is OrangeFS v2.8.8, and the KVStore
storage system is HyperDex v1.3. We compiled our
code using gcc compiler version 4.8; the MPI imple-
mentation is MPICH 1.41b.

Experimental setup and configurations: For each set
of tests, in OrangeFS we used four nodes both as stor-
age servers and as metadata servers. For HyperDex, we
also used four nodes as storage servers and a separate
node as the coordinator (i.e. the node that controls all
the metadata operations). The fact that HyperDex uses
only one node as the metadata coordinator may seem
like a lopsided situation; but KVStore involves fewer
metadata operations and has a totally different archi-
tecture for metadata management. After benchmarking
the metadata performance (which, due to lack of space,
we do not present here), we have concluded that this
setup is fair and would not be any kind of a bottleneck
for any of those systems. We also made sure that client
processes were located on different nodes from the ser-
vers (i.e. an entirely different network switch). This
way, even though our testbed machine is a campus

cluster, we managed to simulate a traditional HPC
machine where computing nodes access the file system
remotely.

Our choice of those specific storage systems as repre-
sentatives from each category (e.g. file-based and
KVStore-based) was made for several reasons. First,
OrangeFS (formerly known as PVFS2) is a widely used
PFS in the HPC community, and it is mature enough in
terms of development and research to be the representa-
tive for the file-based storage system. HyperDex is a rel-
atively new implementation by Cornell University. It is
open source, and it has relatively easy to use APIs. It is
well documented, and it has active support by its devel-
opers. According to Hyperdex, (n.d.) this KVStore
implementation performs faster than other competitive
KVStores. We acknowledge that different representa-
tives of each storage solution may have differences in
their implementations. For example, other PFSs, such
as GPFS and Lustre, may have different implementa-
tion characteristics from OrangeFS; HyperDex may not
behave exactly the same as other key value stores.
However, the focus of this study is not benchmarking
OrangeFS and HyperDex but the comparison of the
two categories of storage solutions: data stripes-based
PFSs and key–value-based object storage systems. We
want to explore an instance of fixed versus variable
storage segment sizes (PFS stripe vs KVStore object)
and how existing assumptions might be revisited in the
face of evolving use cases; OrangeFS and HyperDex
were chosen since they implement the data stripes and
key–value objects respectively. Although different rep-
resentatives may lead to different measurements and
numbers, we believe this issue does not hurt the conclu-
sions and contributions of this study.

For the rest of this section, we first analyze our
methodology and then present our experimental results.
We do not present results in cases where a PFS per-
forms well since our goal is to identify scenarios where
a PFS performs badly and a KVStore can potentially
offer higher bandwidth.

4.1 Methodology

Comparing the performance of OrangeFS and
HyperDex under various scenarios is not an easy task
since these two storage systems have different features
and characteristics. Several factors can affect the per-
formance of each system at any given time, such as
data distribution schemes, data consistency, or fault
tolerance guarantees. To achieve a fair comparison
between them, we used the following method.

4.1.1 Tracing. IOSIG (Yin et al., 2012), an I/O pattern
analysis tool developed at the I/O middleware level, is
used to capture the runtime statistics of data accesses.
Using this information, we were able to identify the

Kougkas et al. 9

key characteristics of the I/O behavior of the applica-
tion. The IOSIG trace includes information such as
process ID, offset, request size, and begin and end time.
We considered only the offset and the request size since
these two values alone can determine the access pattern
of the application.

4.1.2 Trace player/workload generator. Having the desired
information extracted from the trace, we designed and
implemented a straightforward workload generator.
This workload generator takes an I/O trace as input
and ‘‘replays’’ all the I/O operations onto the file system
that is being tested. We developed three trace players;
one for OrangeFS, one for HyperDex, and a third one
for OrangeFS but modified to simulate extra metadata
operations. The reason we designed this third trace
player was to bring a balance between OrangeFS and
HyperDex in terms of the amount of metadata pro-
duced by the systems. Traditionally, KVStore systems
keep metadata for each object they store. On the other
hand, OrangeFS operates on the same big file, which
means that it opens the file once, does the I/O on this
file, and then closes the file. The new trace player for
OrangeFS, for each request to the file system for I/O,
opens a small file, does the I/O, and then closes the file;
but it does this for every request found in the trace.
Thus, the amount of metadata produced by OrangeFS
is similar to that from HyperDex. This new workload
generator mostly simulates the behavior of OrangeFS
when operating with many small files in applications
such as graph applications. It is intended not to pena-
lize the performance of OrangeFS but to emphasize
some workloads that really hurt the performance and
demonstrate the strength of the KVStore in similar
cases. With these three workload generators, one can
easily test the systems under various workloads; one
simply feeds the I/O trace into the appropriate trace
player and measures the time spent on I/O operations.

4.1.3 Performance measurement. To measure the perfor-
mance of each storage system, we wrapped each I/O
operation under a time barrier and calculated the total
time spent in I/O. When doing so, special attention
needs to be taken so that total time does not include
other operations such as system startup or other pre-
parations before the actual I/O operation. To focus on
the file system performance, we removed the effects of
memory cache and buffer. Before each test run, we
cleared the operating system cache to ensure that all
data was read from the storage devices. Prior to the
first run, we also prepared the data for both systems.
The experiments measure the read performance, and so
the data was already in the underlying storage solution.
For OrangeFS this was done with a simple copy, but
for HyperDex we implemented a simple tool to copy

the data into the storage system according to the trace
of each application. Each request was eventually turned
into an object with the offset as the key (can be up to
16 bytes) and the request size as the value (equal to
request-size number of bytes). We ran each test 10 times
and calculated the average time, leading the measure-
ment closer to the actual time stripped from other fac-
tors that can degrade the system’s performance, such as
current system status, other running processes and
overloaded network.

4.2 Results with synthetic benchmarks

We wanted to test specific access patterns that seem to
affect the performance on a traditional PFS such as
OrangeFS. In particular, we designed and implemented
three simple synthetic benchmarks that can produce
workloads with three distinct access patterns: offset
shifting, varying request size, and noncontiguous access
pattern.

4.2.1 Offset shifting. The first synthetic benchmark was
designed to simulate an access pattern where the offset
of the next request is shifted by some bytes (i.e. una-
ligned with the stripes of the PFS), thus forcing the sys-
tem to coordinate each subrequest among multiple
storage nodes. This specific access pattern clearly stres-
ses OrangeFS; but it does not seem to be a problem for
the KVStore system, where there is no need to synchro-
nize the subrequests since each request is for a different
object.

Figure 8 shows the comparison between OrangeFS
and HyperDex for this offset shifting testing case. We
captured the I/O trace of this synthetic trace and then
gave it as input to the workload generator for each sys-
tem. Additionally, we ran it with the modified
OrangeFS benchmark with increased metadata opera-
tion. The results clearly illustrate that HyperDex can
perform faster by an average of 244% and of 698%
without and with the increased metadata operations
respectively.

4.2.2 Varying request size. The second synthetic bench-
mark was designed to simulate a varying request size
access pattern. The default value of the stripe size in
OrangeFS is 64 KB. When a request is 64 KB or a mul-
tiple of that value, it is aligned with the stripes on each
node. Generally, in PFSs, stripe sizes are fixed; and
matching them with various request sizes is difficult. If
a request is not aligned with the striping pattern,
decomposition can make the first and last subrequests
much smaller than the striping unit. This situation can
lead to serious degradation, as we showed in Section 2.
This benchmark stresses the storage system exactly
according to that access pattern. We tried different
cases where each process issues varied-sized requests

10 The International Journal of High Performance Computing Applications

namely 64 KB, 65 KB, 80 KB, 96 KB, and 128 KB.
The results can be seen in Figure 9. HyperDex clearly is
not affected, and the performance is higher than
OrangeFS by at least 183% and at most by 338%. We
also gave the trace of this synthetic benchmark to the
trace player with increased metadata operations, and
the results are even more impressive. OrangeFS seems
to suffer with this access pattern and also from the
number of metadata operations. HyperDex achieves a
higher bandwidth by an average of 914%. Specifically,
this benchmark run on HDDs and HyperDex performs
at around 200 MB/s, whereas OrangeFS with increased
metadata operations is around 35 MB/s.

4.2.3 Noncontiguous access pattern. In this third synthetic
benchmark, a noncontiguous access pattern is produced
where a gap between each request is created, thus forcing
the storage system to move across the file to do the
requested I/O operation. Basically, each request is of vari-
ous size and is served from various offsets inside the file.

Figure 10 illustrates the performance comparison
between OrangeFS and HyperDex, first on HDD and
then on SSD. We point out the difference that the type
of storage device entails. In this case, when we load the
trace in the workload generator and run it over HDD,
the performance difference between these systems is
large. Specifically, while HyperDex maintains a band-
width of around 265 MB/s, OrangeFS is under 30 MB/
s, and OrangeFS with increased metadata is even lower.

If we look at the SSD case, however, the picture is
different. OrangeFS demonstrates good bandwidth and
in some cases surpasses that of HyperDex. There is
some obvious degradation for OrangeFS; with a 64 KB
request size and 128 processes the bandwidth is close to
400 MB/s, whereas for 65 KB request size the band-
width is 300 MB/s, a 24% degradation. Even with this
degradation, however, OrangeFS manages to keep the
performance high. Compared with HyperDex, which is
very stable, OrangeFS has a 106% gain in average per-
formance. OrangeFS with increased metadata opera-
tions demonstrates relatively low performance

Figure 8. Shifting offset comparison.

Figure 9. Varying request size comparison.

Kougkas et al. 11

compared with that of the normal OrangeFS and
HyperDex. In particular, HyperDex performs higher
by an average of 238% compared with OrangeFS with
increased metadata operations.

4.3 Results with HPIO benchmark

The HPIO (high-performance I/O) benchmark is a tool
for evaluating and debugging noncontiguous I/O per-
formance for MPI-IO. It allows the user to specify a
variety of noncontiguous I/O access patterns and verify
the output. It has been optimized for OrangeFS MPI-
IO hints but can be augmented to use MPI-IO hints for
other file systems. It is a widely used open source I/O
benchmark designed and implemented by Northwestern
University. We designed a noncontiguous access pattern
with a fixed request size of 64 KB and measured the
performance of these two storage systems.

Figure 11 demonstrates the comparison between
OrangeFS and HyperDex. HyperDex’s performance is
consistently higher and scales well. It maintains an aver-
age bandwidth of 256 MB/s. OrangeFS seems to suffer
from this particular access pattern; and as the number
of processes increases, the performance decreases and
reaches a low of 63 MB/s. HyperDex offers a better per-
formance by an average of 241%. OrangeFS with

increased metadata performs even worse, with a band-
width of merely 50 MB/s.

4.4 Results with a real application

To test these numbers on real-world scientific applica-
tions, we took the I/O trace of LANL Anonymous
App1 and fed it to the workload generator. This appli-
cation, has three I/O requests in each loop, one small
request with 16 bytes followed by two large requests
with 131056 and 131072 bytes, respectively.

Figure 10. Noncontiguous access pattern comparison: (a) HDD; (b) SSD.

Figure 11. HPIO trace comparison.

12 The International Journal of High Performance Computing Applications

In Figure 12 we can observe that HyperDex hits a
bandwidth of 220 MB/s with 32 processes, whereas
OrangeFS is at only 120 MB/s. On average, HyperDex
achieves a 179 MB/s bandwidth and OrangeFS 110
MB/s. When the increased metadata scenario was run,
OrangeFS performs poorly, with a 25 MB/s average
bandwidth resulting in an impressive 756% difference
from HyperDex.

5 Performance toolkit

To further drive this evaluation comparison, we created
a prediction tool to help users decide which of the two
storage solutions would offer a higher I/O performance
for their needs. In this section we present an overview
of this tool, we detail the prediction model, and we pro-
vide some verification of the accuracy of the output of
the model.

5.1 A performance prediction tool

To gather more information about each system’s beha-
vior, we decided to run more experiments with different
configurations and the same trace files. Specifically we
varied the number of available storage servers, the num-
ber of metadata servers, and the number of clients issu-
ing the requests. We repeated all the test cases using the
same traces, the ones from our microbenchmarks as
well as HPIO and LANLApp1. The results were col-
lected and created the dataset we used to build the per-
formance prediction model.

The goal for this prediction tool is to be able to iden-
tify the best option in terms of higher I/O performance
between the two storage solutions, PFS and KVStore.
The inputs to this tool are the system configuration and
the trace file collected by the IOSIG. Given an applica-
tion and a system configuration, this tool captures the
I/O characteristics, using the I/O profiling IOSIG, and
determines the access patterns. Using this information,
it runs the performance prediction model and returns
the best-performing storage solution to use.

5.2 Model description

In this subsection, we describe the data and variables,
present some preliminary analysis of the data, detail
the multiple linear regression we used, and analyze the
output.

5.2.1 Data and variables. Our dataset was derived from
our extensive experiments and the file contained data
from our performance measurements as well as the sys-
tem configurations for each test case. Besides the time
spent in I/O, we collected the access pattern informa-
tion and included that in the dataset as well. The total
number of entries in the dataset are 1329, representing
all the conducted experiments. Each test case was
repeated five times, and we kept only the average time
for each one. We then categorized all the data into vari-
ables. Table 1 shows the initial variables in the dataset
and an example entry.

The number of servers s refers to the number of
available nodes to use as storage servers. The number
of metadata servers m refers to the number of nodes
acting as a metadata server or coordinator for
HyperDex. The number of clients c is the number of
clients issuing I/O requests to the storage solution. The
access pattern a is a categorical variable with value 1
for a contiguous pattern and value 2 for a noncontigu-
ous access pattern. For the noncontiguous access pat-
terns we included the gap numeric variable g, which is
the gap in bytes between each request. The reason we
included this gap in between requests is that we wanted
to examine whether the read-ahead (default 128 KB) of

Figure 12. LANLApp1 trace comparison.

Table 1. Initial variables in the dataset.

Variable
name

Variable description Example entry

s # of servers 4
m # of metadata servers 4
c # of clients 8
a Access pattern (1-contiguous,2-

noncontiguous)
1

g Gap size between
noncontiguous requests in bytes

0

r Size in bytes of each request 262,144
p # of processes 32
R Total size in bytes for the input

file
6,7108,864

d Storage device type (1-HDD, 2-
SSD)

2

A Unaligned with the stripe
boundaries requests (0-aligned,
bytes-unaligned by these bytes)

0

M Metadata operations (# of open/
close/create operations)

768

f Storage system (1-OrangeFS,2-
HyperDex)

1

T Time spent in I/O (us) 16,520,531

Kougkas et al. 13

the POSIX I/O can play a significant role in the perfor-
mance. A smaller gap between requests might be alle-
viated by this read-ahead operation, but a larger
request makes the disk head move more to serve the
request. The variable s describes the request size in
bytes. The number of processes p refers to the number
of concurrent processes running in the application. R is
the total size in bytes that the application has as an
input file to issue the requests to. The different types of
storage devices (i.e. disks), are described by the catego-
rical variable d. Value 1 stands for the spinning hard
drives (HDDs) and value 2 for the newer solid state
drives (SSDs). To capture the requests unaligned with
the stripe boundaries, we included the variable A that
takes values 0 if the request is aligned with the stripes
or the number of bytes that the offset of the request is
shifted from the stripe boundaries. For instance, if the
request started 2 KB from the stripe boundaries, the
value for this variable would be 2048. The next variable
is the number of metadata operations performed,
namely, open, close, and create. The categorical vari-
able filesystem F in the dataset describes the storage
solution that this entry is coming from, with value 1
corresponding to OrangeFS and value 2 to HyperDex.
T is the time spent in I/O as measured from our
experiments

Initially, we ran some descriptive statistics to check
whether our dataset was in good shape for the models.
We tried some simple descriptive statistics, first com-
paring means between the two storage solutions in
terms of the created variable bandwidth B. Table 2
shows the values. We expected that the mean of the
two systems would be similar to these values since we
observed from the evaluation that OrangeFS shows a
high fluctuation between the offered bandwidth accord-
ing to the test parameters and thus the lower mean
value. OrangeFS had a 92 MB/s average bandwidth
and HyperDex around 210 MB/s. Since both systems
were tested in exactly the same test environment, we

conclude that HyperDex seems to be more stable in its
I/O performance.

During the evaluation we proved that for specific
workloads a PFS is prone to extreme degradation in
performance. We cite three key findings from the
evaluation.

� With irregular data access patterns a PFS generates
lower performance than a KVStore.

� For workloads with heavy metadata operations, a
KVStore is expected to be a better choice than a
PFS.

� KVStore performance has less variation with differ-
ent storage devices compared with a PFS.

We ran the compare means statistical test to discover
whether those observations are true. In Table 3 we can
see the difference in the mean values for those vari-
ables. Access pattern, metadata operations, and type of
storage device, in terms of the bandwidth change, are
compared for both systems. The values shown are the
average bandwidth offered from those systems in MB/
s. The results clearly show that our conclusions hold.

Specifically, for the access pattern, OrangeFS shows
almost a 20% degradation in performance when it
serves noncontiguous accesses. On the other hand,
HyperDex has better performance and is more stable;
when going from contiguous to noncontiguous access
patterns, the average bandwidth is kept around 180
MB/s. For the storage device type we can see that when
OrangeFS operates with SSDs, the performance benefit
is high; the system offers 230% higher bandwidth. This
is expected; but it also shows that when OrangeFS is
running over traditional HDDs and has workloads that
are not favorable to its design, the performance can be
low. On the other hand, HyperDex and the KVStore
approach in general shows that the system is not that
sensitive to the device type, mostly because of the way
that it issues requests to the underlying disk and how it

Table 2. Means by filesystem.

Filesystem Mean Std deviation Std error of mean

OrangeFS 92.762694 111.075107 4.2377797
HyperDex 212.552191 196.600468 7.7652516

Table 3. Compare means.

Filesystem Access pattern Storage device # metadata servers Same amount of
metadata ops

1 2 1 2 1 4 Average

OrangeFS 95.068966 81.123016 52.272727 120.57198 29.611111 108.573333 44.814553
HyperDex 186.002727 182.056130 138.617318 160.088717 129.658691 210.626432 183.046248

14 The International Journal of High Performance Computing Applications

handles the parallelism. KVStore does not need to
stripe data among the available servers/disks; rather it
distributes the objects among them. That approach
makes the accesses to the disk more straightforward,
and there is no need to synchronize any subrequests
since there are none. HyperDex showed a performance
benefit of 115% on the better hardware device, namely,
the SSDs. Metadata operations can be described by the
metadata servers variable and by the average band-
width for the same number of metadata operations. We
can see that going from 1 metadata server to 4 for
OrangeFS means almost a 400% increase in the band-
width, whereas for HyperDex we see a more moderate
increase of 162%, which means that OrangeFS is more
sensitive to the metadata handling than HyperDex (as
described in Section 3). Furthermore, when we look at
the average bandwidth for the same number of meta-
data operations (e.g. create/open/close operations),
HyperDex achieves 43 higher bandwidth than does
OrangeFS, which we saw in the evaluation section can-
not handle a large number of these operations (i.e.
increased metadata scenarios). Next, we checked the
correlations between the variables and the independent
variable bandwidth as well as some descriptive statis-
tics. We demonstrate in Table 4 the correlation matrix
by filesystem in terms of the variable bandwidth. We
note that the correlation matrix shows the correlation
between an independent variable with the dependent
variable bandwidth.

For this test, the null hypothesis H0 is that there is
no significant correlation between the two variables
involved. We can see from the table, however, a strong
positive linear correlation does exist between the num-
ber of metadata servers, the number of clients, and the
type of storage device variables and the dependent vari-
able bandwidth for OrangeFS, where all p-values are
less than 0.05. Thus we reject the null hypothesis.
Similarly, there is a strong negative linear correlation
between the metadata operations variable and the
dependent variable bandwidth where again the p-value
is less than 0.05. For OrangeFS, access pattern (the gap
in bytes variable has Pearson correlation 2.148 with p-
value .000) and the metadata operations as well as the
storage device type demonstrate a linear correlation
with the I/O bandwidth, and those variables are
expected to affect the performance. On the other hand,

HyperDex shows almost the opposite. The access pat-
tern and metadata operations have the lowest Pearson
correllation with very high p-values. That means we
accept the null hypothesis; there is no significant corre-
lation between these variables and the dependent vari-
able bandwidth. The HyperDex bandwidth seems to be
affected by parameters that make more sense such as
the number of servers, the number of metadata servers,
the number of clients, and the type of storage device,
where all those variables have a positive linear correla-
tion and p-values less than 0.05. We reject the null
hypothesis for those; there is a significant statistical lin-
ear correlation between the variables involved.

After this preliminary dataset analysis, we move to
the multiple linear regression models for both systems.
The dataset is representative of the performance of
these systems, and the variables we choose can capture
the factors that affect the I/O performance. The next
subsection describes the prediction models and presents
formulas to be used to predict the offered bandwidth
according to the given system configuration and I/O
workload characteristics.

5.2.2 Multiple linear regression. Multiple linear regression
is an extension of simple linear regression. It is used
when one wants to predict the values of a variable
based on the value of two or more other variables. The
variable we want to predict is called the dependent vari-
able; in our case this is the new calculated variable
bandwidth B. The variables we are using to predict the
value of the dependent variable are called independent
variables. In our case, the independent variables are all
the variables from Table 1 besides filesystem and time
which are used to calculate the new variable bandwidth.
The independent variable bandwidth B is computed as
p � R=T , and it refers to the aggregate bandwidth using
all processes. Multiple linear regression also allows us
to determine the overall fit of the model and the relative
contribution of each of the independent variables to the
dependent variable.

When analyzing data using multiple linear regres-
sion, part of the process involves checking to make sure
that the data can actually be analyzed by this approach.
During the preliminary analysis of our dataset we made
sure that all assumptions that are required by the

Table 4. Correlation matrix.

Filesystem # servers # metadata
servers

clients Access
pattern

Gap in
bytes

processes Storage
device

Metadata
operations

OrangeFS Pearson 2.062 .313 .413 2.062 2.148 .055 .319 2.459
P-value .104 .000 .000 .104 .000 .150 .000 .000

HyperDex Pearson .382 .357 .263 2.013 2.008 .122 .158 .005
P-value .000 .000 .000 .752 .845 .002 .000 .898

Kougkas et al. 15

multiple linear regression held. We do not list all eight
assumptions here, but we will mention some. One
assumption is that the dependent variable should be
measured on a continuous scale, which holds for our
bandwidth variable. Another assumption is that two or
more independent variables are either continuous or
categorical, which is also true in our case where we
have 10 independent variables both numeric and cate-
gorical. Moreover, the residuals are approximately nor-
mally distributed for both models, as can be seen by the
normal Q–Q plots of the residual values in Figure 13.
After checking those assumptions we chose to run the
multiple linear regression with the stepwise method on
this initial model

B= b0 + b1 � s+ b2 � m+ b3 � c+ b4 � a

+ b5 � g + b6 � r + b7 � p+ b8 � R

+ b9 � d + b10 � A+ b11 �M

where all b’s are the coefficients of our independent
variables and B is our dependent variable bandwidth
(in MB/s).

We chose the stepwise method for our regression
model because it evaluates the combination of the inde-
pendent variables to best predict the dependent variable
and thus gives us an advantage in finding out which
independent variables each storage solution is more
sensitive to. In stepwise regression, independent vari-
ables are entered into the regression equation one at a
time based on statistical criteria. At each step in the
analysis the predictor variable that contributes the
most to the prediction equation in terms of increasing
the multiple correlation, R, is entered first. When no
additional predictor variables add anything statistically
meaningful to the regression equation, the analysis
stops. Thus, not all independent variables may enter
the equation in stepwise regression. The next step is to

run the multiple regression models with the stepwise
method selected on the dataset with the selection vari-
able filesystem: that is one regression model for
OrangeFS and another one for HyperDex. The final
models selected by the multiple linear regression for
each storage system are

BO = b0 + b1 � s+ b2 � m+ b3 � c+ b4 � a

+ b5 � g + b7 � p+ b8 � R+ b9 � d + b11 �M

for OrangeFS and

BH = b0 + b1 � s+ b2 � m+ b3 � c+ b7 � p+ b9 � d

for HyperDex.
We note that the excluded independent variables for

the OrangeFS model are the request size in bytes r and
the unaligned bytes A. All other variables seem to be
statistically significant and are kept in the final model.
For HyperDex, on the other hand, the excluded inde-
pendent variables are the access pattern a, the gap in
bytes g, the request size in bytes r, the total size in bytes
R, the unaligned bytes A, and the metadata operations
M. Further explanations are provided in the next sub-
section. Table 5 summarizes the output of those models
for each system.

5.2.3 Model analysis. We discuss a few important find-
ings about the output of the multiple linear regression
models we ran. First, both models show a good model
fit with the adjusted R-squared value at .0633 for
OrangeFS and .301 for HyperDex. Additionally, the p-
values from the ANOVA table of both models are less
than 0.05, which means that both models are statisti-
cally significant. Looking at the scatter plot and the
histograms for the residuals in Figure 14 and given that
the regression assumptions are satisfied, we conclude

Figure 13. Q–Q plots of Residuals: (a) OrangeFS; (b) HyperDex.

16 The International Journal of High Performance Computing Applications

that the goodness-of-fit of those models is acceptable
and we can trust that both models are adequate for
predicting the dependent variable bandwidth.

Most important, we look at the excluded variables to
explain the real behavior of the two storage systems.
For OrangeFS, the final model kept all initial variables
except two: the request size in bytes and the unaligned
bytes. This shows that OrangeFS is more sensitive to
the same parameters as we presented in Section 2.
Specifically, OrangeFS I/O performance is severely
affected by the access pattern, contiguous or noncontig-
uous. Metadata-heavy workloads also seem to affect
the performance and the type of storage device is shown
to fluctuate the bandwidth. This model tells us that to
predict the bandwidth given the system configuration
and the I/O trace, we need to take into account all vari-
ables kept in the model. Some of the variables, such as
the number of the available storage servers and the
number of processes, are expected to play a significant
role in the final aggregate I/O performance. With this
model, however, we are able to quantify how significant
they are.

In contrast, the HyperDex model kept fewer vari-
ables, showing that the I/O performance of this system
is less sensitive to parameters such as access pattern
and heavy metadata operations. In this model, we need
to use only four variables - the number of servers, the
number of coordinators, the number of clients, and the
type of the storage device - to predict the dependent
variable bandwidth. Our observations from the evalua-
tion for the potential use of KVStore for optimization
of parallel I/O hold true here as well.

5.3 Verification of the model

To verify the accuracy of our models, we ran some new
tests. We picked another scientific application from Los
Alamos National Laboratory that offers the I/O trace
(Nuclear Engineering Division of Argonne National
Laboratory, 2014), anonymous application 2 (i.e.
LANLApp2). Using the information from the trace file
we extracted the access pattern, the gap between each
request in bytes (since this application had a noncontig-
uous access pattern), the sizes of each request, the total
size of the input file, and the number of metadata oper-
ations. We used in our testbed the same system config-
uration for both storage solutions. We used eight
storage servers, four metadata servers, eight clients, 4–
128 processes and repeated the experiments on both
HDDs and SSDs.

Using all this information, we ran the two models
and got a predicted bandwidth value for both systems.
We then used the real machine and conducted the tests
to measure the real I/O performance. The experimenta-
tion was conducted by using the same method as in the
evaluation where we used our workload generators toT

a
b

le
5
.

R
eg

re
ss

io
n

m
o
d
el

s
o
u
tp

u
t.

O
ra

n
ge

FS
(m

o
d
el

fit
:
A

d
ju

st
ed

R
-s

q
u
ar

e=
.6

3
3
,
A

N
O

V
A

p-
va

lu
e=

.0
0
0
)

H
yp

er
D

ex
(m

o
d
el

fit
:
A

d
ju

st
ed

R
-s

q
u
ar

e=
.3

0
1
,
A

N
O

V
A

p-
va

lu
e=

.0
0
0
)

V
ar

ia
b
le

N
am

e
C

o
ef

f
ic

ie
n
t

B
et

a
St

d
E
rr

o
r

t
p-

va
lu

e
9
5
%

lo
w

er
9
5
%

u
p
p
er

B
et

a
St

d
E
rr

o
r

t
p-

va
lu

e
9
5
%

lo
w

er
9
5
%

u
p
p
er

C
o
n
st

an
t

b 0
2

1
7
7
:0

3
3

2
7
.2

1
0

2
6
:5

0
6

.0
0
0

2
2
3
0
:4

6
0

2
.1

2
3
:6

0
6

2
2
8
2
:6

1
8

3
0
.8

9
0

2
9
:1

4
9

.0
0
0

2
3
4
3
:2

7
6

2
2
2
1
:9

5
9

s
b 1

2
6
:4

9
4

2
.8

5
6

2
2
:2

7
4

.0
2
3

2
1
2
:1

0
1

2
.8

8
7

6
1
.7

5
4

6
.5

6
6

9
.4

0
5

.0
0
0

4
8
.8

6
0

7
4
.6

47
m

b 2
3
0
.3

2
5

2
.9

4
7

1
0
.2

8
9

.0
0
0

2
4
.5

3
8

3
6
.1

1
2

2
1
8
:0

9
6

9
.3

4
0

2
1
:9

3
7

.0
5
3

2
3
6
:4

3
8

.2
4
6

c
b 3

1
3
.5

3
3

1
.1

9
7

1
1
.3

0
3

.0
0
0

1
1
.1

8
2

1
5
.8

8
4

1
2
.2

8
3

3
.0

5
7

4
.0

1
8

.0
0
0

6
.2

8
0

1
8
.2

85
a

b 4
2
1
.9

2
9

1
2
.4

1
8

1
.7

6
6

.0
5
8

2
2
:4

5
3

4
6
.3

1
0

E
X

C
LU

D
E
D

g
b 5

2
0
:0

0
0
2
3

0
.0

0
0
0
5

2
4
:6

8
5

.0
0
0

2
0
:0

0
0
3

2
.0

:0
0
0
1

E
X

C
LU

D
E
D

r
b 6

E
X

C
LU

D
E
D

E
X

C
LU

D
E
D

p
b 7

.1
4
0

.0
5
7

2
.4

5
4

.0
1
4

.0
2
8

.2
5
3

.5
9
2

.1
5
3

3
.8

6
5

.0
0
0

.2
9
1

.8
9
2

R
b 8

6
:7

0
2
e–

7
1
:2

e–
7

5
.5

4
3

.0
0
0

4
:3

e–
6

9
:0

e–
6

E
X

C
LU

D
E
D

d
b 9

6
9
.0

3
4

5
.0

4
4

1
3
.6

8
6

.0
0
0

5
9
.1

3
0

7
8
.9

3
8

7
0
.7

8
5

1
6
.2

3
0

4
.3

6
1

.0
0
0

3
8
.9

1
4

1
0
2.

6
5
7

A
b 1

0
E
X

C
LU

D
E
D

E
X

C
LU

D
E
D

M
b 1

1
2

.0
8
9

.0
1
0

2
8
:9

1
3

.0
0
0

2
.1

0
9

2
.0

6
9

E
X

C
LU

D
E
D

Kougkas et al. 17

‘‘replay’’ all I/O operations, and we measured the time
spent in I/O. We then calculated the bandwidth using
the total size in bytes and the measured time. In
Figure 15 we can see that our predicted bandwidth
value is close to the actual value from the real system.
Our tool returns to the user the system with the higher
expected bandwidth. As can be seen, HyperDex outper-
forms OrangeFS in this test. Thus, we can say that our
models can successfully predict the aggregate band-
width of the two storage solutions we are describing.

6 Related work

PFSs are the de facto method of data storage for HPC
systems. They provide high data access performance
and a consistent file based storage space. Popular PFSs
include Lustre (Braam et al., 2014), OrangeFS, and
GPFS (Schmuck and Haskin, 2002). Researchers found
that the server-side data layout and client-side data
access pattern can largely affect the overall I/O

performance, because they affect the mapping between
the logical data requests from the applications and the
physical data layout on the server nodes (Song et al.,
2011a). The parallel data access between the multiple
client nodes and multiple server nodes inevitably brings
data synchronization. Song et al. (2011b) designed an
I/O coordination scheme to reduce the average comple-
tion time for concurrent applications. Zhang et al.
(2013) noticed that the subrequest data synchronization
caused performance degradation, and they designed a
scheme called ‘‘iBridge,’’ using SSDs to eliminate una-
ligned data access. The ‘‘offset shifting’’ and ‘‘varying
request size’’ synthetic benchmarks are based on the
benchmarks used in zhang2013ibridge’s iBridge work.

Parallel and distributed file systems often decouple
metadata management from I/O operations. However,
metadata management services are often designed as
centralized services for ease of implementation, which
makes them hard to scale for billions of objects
(Ghemawat et al., 2003; Shvachko, 2010; Shvachko et

Figure 14. Standardized residuals for the regression models: (a) OrangeFS; (b) HyperDex; (c) Residuals scatterplot.

Figure 15. Predicted vs actual bandwidth for LANLApp2.

18 The International Journal of High Performance Computing Applications

al., 2010). This can be a bottleneck in metadata-heavy
workloads because of namespace synchronization
(Patil and Gibson, 2011). Modern file systems alleviate
this problem by taking advantage of a distributed
metadata service (Carns et al., 2000; Ren et al., 2014;
Schmuck and Haskin, 2002; Wang et al., 2012; Welch
et al., 2008; Weil et al., 2004, 2006; Zheng et al., 2014)
by static or dynamic namespace partitioning among
multiple servers. In particular IndexFS (Ren et al.,
2014) uses a distributed KVStore to store metadata
information.

Most PFSs support the POSIX standard. In many
cases, however, POSIX is unnecessarily strict (Kimpe
and Ross, 2014). It may hurt the system’s scalability
and the ability to control the small objects contained in
a file independently (Goodell et al., 2012). Object-based
systems and KVStores provide better flexibility with an
object-based interface, instead of the file-based inter-
face. KVStore is widely used in internet services and
cloud storage services (Group, 2012), but it is rarely
used for HPC systems. Many works have compared the
advantages and disadvantages of file systems and object
storage systems (Brim et al., 2013; Gibson et al., 1996;
Group, 2012). Other works have tried to integrate PFSs
and object storage systems (Devulapalli et al., 2007) or
expose the underlying object data streams of a PFS
(Goodell et al., 2012) to gain better I/O performance.
This study explores whether HPC workloads can bene-
fit from an object-based system such as KVStore.

Some work has been done on performance modeling
and prediction for PFSs. Moody et al. (2010) use a
probabilistic Markov model to predict the performance
of a scalable checkpoint/restart. Sun et al. (2009) pro-
posed a simple performance model to study integration
of the parallel I/O middleware and PFSs. Using this
model, the authors showed the effectiveness of data
layout optimization in large-scale data storage. Nguyen
and Apon (2012) used a colored Petri-net to measure
and model the performance of PVFS. However, all
these focus on modeling a single PFS, and they do not
use their proposed model to compare different storage
strategies.

7 Discussion

In this study, we use OrangeFS as the PFS and
HyperDex as the KVStore. We know that the experi-
mental results are dependent on the specific implemen-
tations of PFS or KVStore. So the actual performance
of the tests presented in this study might change if they
were run in a different platform or with different PFS
and KVStore implementations. Still, we believe the
comparison and the performance characteristics pro-
vided by the results are highly valuable.

8 Conclusion

PFSs are the dominant storage solution in HPC sys-
tems. Even though PFSs can offer a high-performance
parallel data access, they have some deficiencies with
specific I/O workloads such as being noncontiguous
and unaligned with the stripe boundary access patterns.
Heavy metadata operations are another difficult task
for PFSs. On the other hand, KVStores are widely used
by internet and cloud storage services, but are rarely
used by HPC systems. Those storage solutions can offer
an easy-to-use APIs for data manipulation and can
offer competitive I/O performance. HPC systems can
largely benefit from KVStores.

In this study, having compared the performance
characteristics of PFSs and KVStores, we propose to
utilize KVStores to optimize the performance for some
specific I/O workloads, especially those that are difficult
for a PFS to handle. We conducted extensive experi-
ments the results of which prove the value of our pro-
posal. We note that, we do not propose to entirely
replace PFSs with KVStores. Rather we see them as
complementary. A PFS’s performance can be very high
for its ideal workloads, but it can also be very low for
some irregular workloads. With the same hardware,
KVStore’s performance is stable, somewhere between
the PFS’s high and low points. Therefore, it is valuable
to optimize the performance with KVStore for the
PFS’s low-performance cases. We have proposed and
implemented a performance prediction model to help
users choose the best-performing system for their spe-
cific system configuration and application’s I/O charac-
teristics. The model is proven to be accurate, and using
this toolkit can guide parallel I/O optimization.

In our future work, we want to extend the experi-
mentation with better network interfaces such as
InfiniBand and to improve our prediction model. We
may evaluate some different representatives from PFSs
and KVStores and examine their I/O performance
behavior in order to generalize our proposal as much as
possible. We feel encouraged to explore the general use
of KVStores in HPC systems because we believe that
applications currently running in these systems can ben-
efit from this proposed data manipulation mechanism.

Acknowledgements

The authors acknowledge Harris Agyropoulos for his helpful
insights in building our prediction model and Gail Pieper for
the valuable text editing she provided.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Kougkas et al. 19

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: This work was supported by the National Science
Foundation (Grant numbers CNS-1162540, CNS-1162488,
and CNS-1161507).

References

Ali N, Devulapalli A, Dalessandro D, et al. (2008) Revisiting

the metadata architecture of parallel file systems. In: Pro-

ceedings of the 2008 3rd petascale data storage workshop,

Austin, US, 15–21 November 2008, pp 1–9. Piscataway,

NJ: IEEE.
Braam PJ, et al. (2014) The Lustre storage architecture. Avail-

able at: ftp://ftp.uni-duisburg.de/linux/filesys/Lustre/lustre.

pdf. (accessed 13 February 2015).
Brim MJ, Dillow DA, Oral S, et al. (2013) Asynchronous

object storage with QoS for scientific and commercial big

data. In: Proceedings of the 8th parallel data storage work-

shop, Denver, US, 17–22 November 2013, pp. 7–13. New

York, NY: ACM.
Carns P, Lang S, Ross R, et al. (2009) Small-file access in

parallel file systems. In: Proceedings of IEEE international

symposium on parallel & distributed processing, IPDPS.

Rome, Italy, 25–29 May 2009, pp. 1–11. Piscataway, NJ:

IEEE.
Carns PH, Ligon WB III, Ross RB, et al. (2000) PVFS: A

parallel file system for Linux clusters. In: Proceedings of

the 4th annual Linux showcase and conference. Atlanta,

GA, USA, 10–14 October 2000, pp. 391–430. Berkeley:

USENIX.

Ching A (2014) HPIO I/O benchmark. Available at: http://

goo.gl/OEaaiB. (accessed 10 January 2015).
DeCandia G, Hastorun D, Jampani M, et al. (2007) Dynamo:

Amazon’s highly available key–value store. ACM SIGOPS

Operating Systems Review 41(6): 205–220.
Devulapalli A, Dalessandro D, Wyckoff P, et al. (2007) Inte-

grating parallel file systems with object-based storage

devices. In: Proceedings of the ACM/IEEE conference on

supercomputing, Reno, CA, USA, 10–16 November 2007,

p. 27. New York, NY: ACM.
Escriva R, Wong B and Sirer EG (2012) HyperDex: A distrib-

uted, searchable key–value store. In: ACM SIGCOMM

computer communication review 42, no. 4 (2012), New

York, NY, USA, pp. 25–36.
Ghemawat S, Gobioff H and Leung ST (2003) The google file

system. In: ACM SIGOPS Operating Systems Review, vol-

ume 37, pp. 29–43. New York, NY: ACM.
Gibson GA, Vitter JS and Wilkes J (1996) Strategic directions

in storage I/O issues in large-scale computing. ACM Com-

puting Surveys (CSUR) 28(4): 779–793.
Goodell D, Kim SJ, Latham R, et al. (2012) An evolutionary

path to object storage access. In: High performance com-

puting, networking, storage and analysis (SCC), Salt Lake

City, UT, USA, 2012 SC Companion, pp. 36–41. Piscat-

away, NJ: IEEE.
Group TT (2012) EMC object-based storage for active archiv-

ing and application development. Technical report, The

TANEJA Group, Inc. Available at: http://www.emc.com/

collateral/analyst-reports/emc-atmosecosystem-taneja-

group-tech-brief-final-ar.pdf.
Hyperdex (n.d.) Hyperdex performance benchmarks. Avail-

able at: http://hyperdex.org/performance/.
Kimpe D and Ross R (2014) Storage models: Past, present,

and future. In: High Performance Parallel I/O, chapter 30.

ANL, Lemont, IL, USA, pp. 335–345.
Lakshman A and Malik P (2010) Cassandra: A decentralized

structured storage system. ACM SIGOPS Operating Sys-

tems Review 44(2): 35–40.
Li T, Zhou X, Brandstatter K, et al. (2013) ZHT: A light-

weight reliable persistent dynamic scalable zero-hop dis-

tributed hash table. In: Proceedings of the IEEE 27th inter-

national parallel and distributed processing symposium,

Boston, MA, USA, 20–24 May 2013, pp. 775–787. Piscat-

away, NJ: IEEE.
Meshram V, Besseron X, Ouyang X, et al. (2011) Can a

decentralized metadata service layer benefit parallel filesys-

tems? In: Proceedings of the 2011 IEEE international con-

ference on cluster computing, Austin, TX, USA, 26–30

Septemeber 2011, pp. 484–493. Piscataway, NJ: IEEE.
MongoDB (n.d.) MongoDB. Available at: https://www.

mongodb.com/white-papers. (accessed 2 April 2015).

Moody A, Bronevetsky G, Mohror K, et al. (2010) Design,

modeling, and evaluation of a scalable multi-level check-

pointing system. In: Proceedings of the 2010 ACM/IEEE

international conference for high performance computing,

networking, storage and analysis, New Orleans, LA, USA,

13–19 November 2010, pp. 1–11. Piscataway, NJ: IEEE.
Nguyen HQ and Apon A (2012) Parallel file system measure-

ment and modeling using colored petri nets. In: Proceed-

ings of the 3rd ACM/SPEC international conference on

performance engineering (ICPE ’12), Boston, MA, USA,

22–25 April 2012, pp. 229–240. New York: ACM.
Nuclear Engineering Division of Argonne National Labora-

tory (2014) PLFS I/O traces. Available at: https://www.

mcs.anl.gov/;thakur/pio-benchmarks.html (accessed 23

November 2016).
OrangeFS (2014) Orange file system. OrangeFS 2.8.8 Current

version is 2.9.6 Retrieved from:http://www.orangefs.org.
Patil S and Gibson GA (2011) Scale and concurrency of

giga+ : File system directories with millions of files. In:

9th USENIX conference on file and storage technologies,

San Jose, CA, USA, 15–17 February 2011, Vol. 11, p. 13.

Berkeley: USENIX.
Ren K, Zheng Q, Patil S, et al. (2014) Indexfs: Ccaling file

system metadata performance with stateless caching and

bulk insertion. In: International conference on high perfor-

mance computing, networking, storage and analysis, New

Orleans, LA, USA, 16–21 November 2014, pp. 237–248.

Piscataway, NJ: IEEE.
Schmuck FB and Haskin RL (2002) GPFS: A shared-disk file

system for large computing clusters. In: Proceedings of

USENIX conference on file and storage technologies, Mon-

terey, CA, USA, 28–30 January 2002. Berkeley: USENIX.
Shvachko K, Kuang H, Radia S, et al. (2010) The hadoop

distributed file system. In: Proceedings of the 2010 IEEE

26th symposium on mass storage systems and technologies

(MSST), pp.1–10. IEEE. Incline Villiage, NV, USA, 3–7

May 2010, pp. 1–10. Piscataway, NJ: IEEE.

20 The International Journal of High Performance Computing Applications

Shvachko KV (2010) Hdfs scalability: The limits to growth.

login 35(2): 6–16.
Song H, Yin Y, Chen Y, et al. (2011a) A cost-intelligent appli-

cation-specific data layout scheme for parallel file systems.

In: Proceedings of the ACM international symposium on

high performance distributed computing, Edinburgh, Scot-

land, 24–26 July 2010, pp. 37–48. New York/Piscataway:

ACM/IEEE.
Song H, Yin Y, Sun XH, et al. (2011b) Server-side I/O coor-

dination for parallel file systems. In: Proceedings of the

international conference for high performance computing,

networks, storage and analysis (Supercomputing), Seattle,

WA, USA, 12–18 November 2011, p. 17. New York/Pis-

cataway: ACM/IEEE.
Stoica I, Morris R, Karger D, et al. (2001) Chord: A scalable

peer-to-peer lookup service for internet applications. In:

Proceedings of the 2001 conference on applications, technol-

ogies, architectures, and protocols for computer communica-

tions Review 31, no. 4 (2001), New York, NY, USA, pp.

149–160. New York: ACM.
Sun XH, Chen Y and Yin Y (2009) Data layout optimization

for petascale file systems. In: Proceedings of the 4th annual

workshop on petascale data storage, Oregon, Portland,

USA, 14-2- November 2009, pp. 11–15. New York: ACM.
Vora MN (2011) Hadoop-hbase for large-scale data. In: Pro-

ceedings of the 2011 international conference on computer

science and network technology (ICCSNT), volume 1, Har-

bin, China, 24–26 December 2011, pp. 601–605. Piscat-

away, NJ: IEEE.
Wang Y, Zhou J, Ma C, et al. (2012) Clover: A distributed

file system of expandable metadata service derived from

hdfs. In: Proceedings of the 2012 IEEE international con-

ference on cluster computing Beijing, China, 24–28 Septem-

ber 2012, pp. 126–134. Piscataway, NJ: IEEE.
Weil S, Brandt S, Miller E, et al. (2006) Ceph: A scalable,

high-performance distributed file system. In: Proceedings

of 7th symposium on operating systems design and imple-

mentation, Seattle, WA, USA, 6–8 November 2006, pp.

307–320. Berkeley: USENIX Association.
Weil SA, Pollack KT, Brandt SA, et al. (2004) Dynamic

metadata management for petabyte-scale file systems. In:

Proceedings of the 2004 ACM/IEEE conference on Super-

computing, Pittsburgh, PA, USA, 6–12 November 2004,

p. 4. New York/Piscataway: ACM/IEEE.
Welch B, Unangst M, Abbasi Z, et al. (2008) Scalable perfor-

mance of the panasas parallel file system. In: 6th USENIX

conference on file and storage technologies, San Jose, CA,

USA, 26–29 February 2008, Vol. 8. pp.1–17. Berkeley:

USENIX.
Yin Y, Byna S, Song H, et al. (2012) Boosting application-

specific parallel I/O optimization using IOSIG. In: Pro-

ceedings of IEEE/ACM international symposium on cluster,

cloud, and grid computing, Ottawa, Canada, 13–16 May

2012, pp. 196–203. Piscataway, NJ: IEEE.
Zhang X, Liu K, Davis K, et al. (2013) iBridge: Improving

unaligned parallel file access with solid-state drives. In:

Proceedings of IEEE international parallel and distributed

processing symposium. Boston, MA, USA, 20–24 May

2013, pp. 381–392. Piscataway, NJ: IEEE.
Zheng Q, Ren K and Gibson G (2014) Batchfs: Scaling the file

system control plane with client-funded metadata servers.

In: Proceedings of the 2014 9th parallel data storage work-

shop (PDSW), New Orleans, LA, USA, 16–21 November

2014, pp.1–6. Piscataway, NJ: IEEE.

Author Biographies

Anthony Kougkas is a 4th year PhD student at Illinois
Institute of Technology in the Computer Science
department, advised by Dr. Xian-He Sun. He holds a
BSc in Military Science and a MSc in Computer
Science, both received in Athens, Greece. His research
is focused in Parallel and Distributed systems, Parallel
I/O optimizations, HPC systems, and Key-Value Store
solutions. He is a member of the Scalable Computing
Software(SCS) lab at IIT and works closely with
Argonne National Laboratory.

Hassan Eslami is currently a PhD candidate in the
http://cs.illinois.edu/_blank Department of Computer
Science at the University of Illinois at Urbana-
Champaign, working with William D. Gropp. He
received his bachelor’s degree in computer engineering
from Sharif University of Technology in 2011. His
research focuses on Parallel and High Performance
Computing. He is currently working on dynamic load
balancing, and programming models for optimizing
parallel I/O.

Xian-He Sun is the director of the SCS laboratory. He
is a Distiniguished Professor of computer science and
the past Chair (9/2009-8/2014) of the Department of
Computer Science at the Illinois Institute of
Technology, an IEEE fellow and a guest faculty in the
Division of Mathematics and Computer Science at
Argonne National Laboratory. His current research
interests include parallel and distributed processing,
memory and I/O systems, software system for Big
Data applications, and performance evaluation and
optimization.

Rajeev Thakur is a deputy director of the Mathematics
and Computer Science Division at Argonne National
Laboratory, where he is also a Senior Computer
Scientist. He is also a senior fellow in the Computation
Institute at the University of Chicago. He received a
PhD in Computer Engineering from Syracuse
University. His research interests are in the area of
high-performance computing in general and particu-
larly in parallel programming models, runtime systems,
communication libraries, and scalable parallel I/O. He
is a member of the Message-Passing Interface (MPI)
Forum that defines the MPI standard for parallel pro-
gramming. He is also a co-author of the MPICH
implementation of MPI and the ROMIO implementa-
tion of MPI-IO, which have thousands of users all over
the world and form the basis of commercial MPI
implementations from IBM, Cray, Intel, Microsoft,

Kougkas et al. 21

and other vendors. MPICH received an R&D 100
Award in 2005.

William Gropp received his BS in Mathematics from
Case Western Reserve University in 1977, a MS in
Physics from the University of Washington in 1978,
and a PhD in Computer Science from Stanford in
1982. He held the positions of assistant (1982-1988)
and associate (1988-1990) professor in the Computer
Science Department at Yale University. In 1990, he
joined the Numerical Analysis group at Argonne,
where he was a Senior Computer Scientist in the
Mathematics and Computer Science Division, a Senior
Scientist in the Department of Computer Science at the
University of Chicago, and a senior fellow in the
Argonne-Chicago Computation Institute. From 2000
through 2006, he was also Deputy Director of the
Mathematics and Computer Science Division at
Argonne. In 2007, he joined the University of Illinois
at Urbana-Champaign as the Paul and Cynthia Saylor
professor in the Department of Computer Science.
From 2008 to 2014 he was the deputy director for
Research for the Institute of Advanced Computing
Applications and Technologies at the University of
Illinois. In 2011, he became the founding director of

the Parallel Computing Institute. In 2013, he was
named the Thomas M. Siebel chair in Computer
Science. His research interests are in parallel comput-
ing, software for scientific computing, and numerical
methods for partial differential equations. He has
played a major role in the development of the MPI
message-passing standard. He is co-author of the most
widely used implementation of MPI, MPICH, and was
involved in the MPI Forum as a chapter author for
MPI-1, MPI-2, and MPI-3. He has written many books
and papers on MPI including ‘‘Using MPI’’ and
‘‘Using MPI-2’’. He is also one of the designers of the
PETSc parallel numerical library, and has developed
efficient and scalable parallel algorithms for the solu-
tion of linear and nonlinear equations. With the other
members of the PETSc core team, he was awarded the
SIAM/ACM Prize in Computational Science and
Engineering in 2015. Gropp is a Fellow of ACM,
IEEE, and SIAM, and a member of the National
Academy of Engineering. He received the Sidney
Fernbach Award from the IEEE Computer Society in
2008, in 2010, and the SIAM-SC Career Award in
2014.

22 The International Journal of High Performance Computing Applications

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-Italic
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeCorpID-Acrobat
 /AdobeCorpID-Adobe
 /AdobeCorpID-Bullet
 /AdobeCorpID-MinionBd
 /AdobeCorpID-MinionBdIt
 /AdobeCorpID-MinionRg
 /AdobeCorpID-MinionRgIt
 /AdobeCorpID-MinionSb
 /AdobeCorpID-MinionSbIt
 /AdobeCorpID-MyriadBd
 /AdobeCorpID-MyriadBdIt
 /AdobeCorpID-MyriadBdScn
 /AdobeCorpID-MyriadBdScnIt
 /AdobeCorpID-MyriadBl
 /AdobeCorpID-MyriadBlIt
 /AdobeCorpID-MyriadLt
 /AdobeCorpID-MyriadLtIt
 /AdobeCorpID-MyriadPkg
 /AdobeCorpID-MyriadRg
 /AdobeCorpID-MyriadRgIt
 /AdobeCorpID-MyriadRgScn
 /AdobeCorpID-MyriadRgScnIt
 /AdobeCorpID-MyriadSb
 /AdobeCorpID-MyriadSbIt
 /AdobeCorpID-MyriadSbScn
 /AdobeCorpID-MyriadSbScnIt
 /AdobeCorpID-PScript
 /AGaramond-BoldScaps
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-RomanScaps
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGar-Special
 /AkzidenzGroteskBE-Bold
 /AkzidenzGroteskBE-BoldEx
 /AkzidenzGroteskBE-BoldExIt
 /AkzidenzGroteskBE-BoldIt
 /AkzidenzGroteskBE-Ex
 /AkzidenzGroteskBE-It
 /AkzidenzGroteskBE-Light
 /AkzidenzGroteskBE-LightEx
 /AkzidenzGroteskBE-LightOsF
 /AkzidenzGroteskBE-Md
 /AkzidenzGroteskBE-MdEx
 /AkzidenzGroteskBE-MdIt
 /AkzidenzGroteskBE-Regular
 /AkzidenzGroteskBE-Super
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Aldine401BT-BoldA
 /Aldine401BT-BoldItalicA
 /Aldine401BT-ItalicA
 /Aldine401BT-RomanA
 /Aldine401BTSPL-RomanA
 /Aldine721BT-Bold
 /Aldine721BT-BoldItalic
 /Aldine721BT-Italic
 /Aldine721BT-Light
 /Aldine721BT-LightItalic
 /Aldine721BT-Roman
 /Aldus-Italic
 /Aldus-ItalicOsF
 /Aldus-Roman
 /Aldus-RomanSC
 /AlternateGothicNo2BT-Regular
 /AmazoneBT-Regular
 /AmericanTypewriter-Bold
 /AmericanTypewriter-BoldA
 /AmericanTypewriter-BoldCond
 /AmericanTypewriter-BoldCondA
 /AmericanTypewriter-Cond
 /AmericanTypewriter-CondA
 /AmericanTypewriter-Light
 /AmericanTypewriter-LightA
 /AmericanTypewriter-LightCond
 /AmericanTypewriter-LightCondA
 /AmericanTypewriter-Medium
 /AmericanTypewriter-MediumA
 /Anna
 /AntiqueOlive-Bold
 /AntiqueOlive-Compact
 /AntiqueOlive-Italic
 /AntiqueOlive-Roman
 /Arcadia
 /Arcadia-A
 /Arkona-Medium
 /Arkona-Regular
 /ArrusBT-Black
 /ArrusBT-BlackItalic
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AssemblyLightSSK
 /AuroraBT-BoldCondensed
 /AuroraBT-RomanCondensed
 /AuroraOpti-Condensed
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /Avenir-Black
 /Avenir-BlackOblique
 /Avenir-Book
 /Avenir-BookOblique
 /Avenir-Heavy
 /Avenir-HeavyOblique
 /Avenir-Light
 /Avenir-LightOblique
 /Avenir-Medium
 /Avenir-MediumOblique
 /Avenir-Oblique
 /Avenir-Roman
 /BaileySansITC-Bold
 /BaileySansITC-BoldItalic
 /BaileySansITC-Book
 /BaileySansITC-BookItalic
 /BakerSignetBT-Roman
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /BaskervilleBook-Italic
 /BaskervilleBook-MedItalic
 /BaskervilleBook-Medium
 /BaskervilleBook-Regular
 /BaskervilleBT-Bold
 /BaskervilleBT-BoldItalic
 /BaskervilleBT-Italic
 /BaskervilleBT-Roman
 /BaskervilleMT
 /BaskervilleMT-Bold
 /BaskervilleMT-BoldItalic
 /BaskervilleMT-Italic
 /BaskervilleMT-SemiBold
 /BaskervilleMT-SemiBoldItalic
 /BaskervilleNo2BT-Bold
 /BaskervilleNo2BT-BoldItalic
 /BaskervilleNo2BT-Italic
 /BaskervilleNo2BT-Roman
 /Baskerville-Normal-Italic
 /BauerBodoni-Black
 /BauerBodoni-BlackCond
 /BauerBodoni-BlackItalic
 /BauerBodoni-Bold
 /BauerBodoni-BoldCond
 /BauerBodoni-BoldItalic
 /BauerBodoni-BoldItalicOsF
 /BauerBodoni-BoldOsF
 /BauerBodoni-Italic
 /BauerBodoni-ItalicOsF
 /BauerBodoni-Roman
 /BauerBodoni-RomanSC
 /Bauhaus-Bold
 /Bauhaus-Demi
 /Bauhaus-Heavy
 /BauhausITCbyBT-Bold
 /BauhausITCbyBT-Heavy
 /BauhausITCbyBT-Light
 /BauhausITCbyBT-Medium
 /Bauhaus-Light
 /Bauhaus-Medium
 /BellCentennial-Address
 /BellGothic-Black
 /BellGothic-Bold
 /Bell-GothicBoldItalicBT
 /BellGothicBT-Bold
 /BellGothicBT-Roman
 /BellGothic-Light
 /Bembo
 /Bembo-Bold
 /Bembo-BoldExpert
 /Bembo-BoldItalic
 /Bembo-BoldItalicExpert
 /Bembo-Expert
 /Bembo-ExtraBoldItalic
 /Bembo-Italic
 /Bembo-ItalicExpert
 /Bembo-Semibold
 /Bembo-SemiboldItalic
 /Benguiat-Bold
 /Benguiat-BoldItalic
 /Benguiat-Book
 /Benguiat-BookItalic
 /BenguiatGothicITCbyBT-Bold
 /BenguiatGothicITCbyBT-BoldItal
 /BenguiatGothicITCbyBT-Book
 /BenguiatGothicITCbyBT-BookItal
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /Benguiat-Medium
 /Benguiat-MediumItalic
 /Berkeley-Black
 /Berkeley-BlackItalic
 /Berkeley-Bold
 /Berkeley-BoldItalic
 /Berkeley-Book
 /Berkeley-BookItalic
 /Berkeley-Italic
 /Berkeley-Medium
 /Berling-Bold
 /Berling-BoldItalic
 /Berling-Italic
 /Berling-Roman
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BernhardTangoBT-Regular
 /BlockBE-Condensed
 /BlockBE-ExtraCn
 /BlockBE-ExtraCnIt
 /BlockBE-Heavy
 /BlockBE-Italic
 /BlockBE-Regular
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BremenBT-Black
 /BremenBT-Bold
 /BroadwayBT-Regular
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Caliban
 /CarminaBT-Bold
 /CarminaBT-BoldItalic
 /CarminaBT-Light
 /CarminaBT-LightItalic
 /CarminaBT-Medium
 /CarminaBT-MediumItalic
 /Carta
 /Caslon224ITCbyBT-Bold
 /Caslon224ITCbyBT-BoldItalic
 /Caslon224ITCbyBT-Book
 /Caslon224ITCbyBT-BookItalic
 /Caslon540BT-Italic
 /Caslon540BT-Roman
 /CaslonBT-Bold
 /CaslonBT-BoldItalic
 /CaslonOpenFace
 /CaslonTwoTwentyFour-Black
 /CaslonTwoTwentyFour-BlackIt
 /CaslonTwoTwentyFour-Bold
 /CaslonTwoTwentyFour-BoldIt
 /CaslonTwoTwentyFour-Book
 /CaslonTwoTwentyFour-BookIt
 /CaslonTwoTwentyFour-Medium
 /CaslonTwoTwentyFour-MediumIt
 /CastleT-Bold
 /CastleT-Book
 /Caxton-Bold
 /Caxton-BoldItalic
 /Caxton-Book
 /Caxton-BookItalic
 /CaxtonBT-Bold
 /CaxtonBT-BoldItalic
 /CaxtonBT-Book
 /CaxtonBT-BookItalic
 /Caxton-Light
 /Caxton-LightItalic
 /CelestiaAntiqua-Ornaments
 /Centennial-BlackItalicOsF
 /Centennial-BlackOsF
 /Centennial-BoldItalicOsF
 /Centennial-BoldOsF
 /Centennial-ItalicOsF
 /Centennial-LightItalicOsF
 /Centennial-LightSC
 /Centennial-RomanSC
 /Century-Bold
 /Century-BoldItalic
 /Century-Book
 /Century-BookItalic
 /CenturyExpandedBT-Bold
 /CenturyExpandedBT-BoldItalic
 /CenturyExpandedBT-Italic
 /CenturyExpandedBT-Roman
 /Century-HandtooledBold
 /Century-HandtooledBoldItalic
 /Century-Light
 /Century-LightItalic
 /CenturyOldStyle-Bold
 /CenturyOldStyle-Italic
 /CenturyOldStyle-Regular
 /CenturySchoolbookBT-Bold
 /CenturySchoolbookBT-BoldCond
 /CenturySchoolbookBT-BoldItalic
 /CenturySchoolbookBT-Italic
 /CenturySchoolbookBT-Roman
 /Century-Ultra
 /Century-UltraItalic
 /CharterBT-Black
 /CharterBT-BlackItalic
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamBT-Bold
 /CheltenhamBT-BoldCondItalic
 /CheltenhamBT-BoldExtraCondensed
 /CheltenhamBT-BoldHeadline
 /CheltenhamBT-BoldItalic
 /CheltenhamBT-BoldItalicHeadline
 /CheltenhamBT-Italic
 /CheltenhamBT-Roman
 /Cheltenham-HandtooledBdIt
 /Cheltenham-HandtooledBold
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Christiana-Bold
 /Christiana-BoldItalic
 /Christiana-Italic
 /Christiana-Medium
 /Christiana-MediumItalic
 /Christiana-Regular
 /Christiana-RegularExpert
 /Christiana-RegularSC
 /Clarendon
 /Clarendon-Bold
 /Clarendon-Light
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /CMR10
 /CMR8
 /CMSY10
 /CMSY8
 /CMTI10
 /CommonBullets
 /ConduitITC-Bold
 /ConduitITC-BoldItalic
 /ConduitITC-Light
 /ConduitITC-LightItalic
 /ConduitITC-Medium
 /ConduitITC-MediumItalic
 /CooperBlack
 /CooperBlack-Italic
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Light
 /CooperBT-LightItalic
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-BoldCond
 /CopperplateGothicBT-Heavy
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /Copperplate-ThirtyThreeBC
 /Copperplate-ThirtyTwoBC
 /Coronet-Regular
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Critter
 /CS-Special-font
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /Della-RobbiaItalicBT
 /Della-RobbiaSCaps
 /Del-NormalSmallCaps
 /Delphin-IA
 /Delphin-IIA
 /Delta-Bold
 /Delta-BoldItalic
 /Delta-Book
 /Delta-BookItalic
 /Delta-Light
 /Delta-LightItalic
 /Delta-Medium
 /Delta-MediumItalic
 /Delta-Outline
 /DextorD
 /DextorOutD
 /DidotLH-OrnamentsOne
 /DidotLH-OrnamentsTwo
 /DINEngschrift
 /DINEngschrift-Alternate
 /DINMittelschrift
 /DINMittelschrift-Alternate
 /DINNeuzeitGrotesk-BoldCond
 /DINNeuzeitGrotesk-Light
 /Dom-CasItalic
 /DomCasual
 /DomCasual-Bold
 /Dom-CasualBT
 /Ehrhard-Italic
 /Ehrhard-Regular
 /EhrhardSemi-Italic
 /EhrhardtMT
 /EhrhardtMT-Italic
 /EhrhardtMT-SemiBold
 /EhrhardtMT-SemiBoldItalic
 /EhrharSemi
 /ELANGO-IB-A03
 /ELANGO-IB-A75
 /ELANGO-IB-A99
 /ElectraLH-Bold
 /ElectraLH-BoldCursive
 /ElectraLH-Cursive
 /ElectraLH-Regular
 /ElGreco
 /EnglischeSchT-Bold
 /EnglischeSchT-Regu
 /ErasContour
 /ErasITCbyBT-Bold
 /ErasITCbyBT-Book
 /ErasITCbyBT-Demi
 /ErasITCbyBT-Light
 /ErasITCbyBT-Medium
 /ErasITCbyBT-Ultra
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EUEX10
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuropeanPi-Four
 /EuropeanPi-One
 /EuropeanPi-Three
 /EuropeanPi-Two
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /Eurostile
 /Eurostile-Bold
 /Eurostile-BoldCondensed
 /Eurostile-BoldExtendedTwo
 /Eurostile-BoldOblique
 /Eurostile-Condensed
 /Eurostile-Demi
 /Eurostile-DemiOblique
 /Eurostile-ExtendedTwo
 /EurostileLTStd-Demi
 /EurostileLTStd-DemiOblique
 /Eurostile-Oblique
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /ExPonto-Regular
 /FairfieldLH-Bold
 /FairfieldLH-BoldItalic
 /FairfieldLH-BoldSC
 /FairfieldLH-CaptionBold
 /FairfieldLH-CaptionHeavy
 /FairfieldLH-CaptionLight
 /FairfieldLH-CaptionMedium
 /FairfieldLH-Heavy
 /FairfieldLH-HeavyItalic
 /FairfieldLH-HeavySC
 /FairfieldLH-Light
 /FairfieldLH-LightItalic
 /FairfieldLH-LightSC
 /FairfieldLH-Medium
 /FairfieldLH-MediumItalic
 /FairfieldLH-MediumSC
 /FairfieldLH-SwBoldItalicOsF
 /FairfieldLH-SwHeavyItalicOsF
 /FairfieldLH-SwLightItalicOsF
 /FairfieldLH-SwMediumItalicOsF
 /Fences
 /Fenice-Bold
 /Fenice-BoldOblique
 /FeniceITCbyBT-Bold
 /FeniceITCbyBT-BoldItalic
 /FeniceITCbyBT-Regular
 /FeniceITCbyBT-RegularItalic
 /Fenice-Light
 /Fenice-LightOblique
 /Fenice-Regular
 /Fenice-RegularOblique
 /Fenice-Ultra
 /Fenice-UltraOblique
 /FlashD-Ligh
 /Flood
 /Folio-Bold
 /Folio-BoldCondensed
 /Folio-ExtraBold
 /Folio-Light
 /Folio-Medium
 /FontanaNDAaOsF
 /FontanaNDAaOsF-Italic
 /FontanaNDCcOsF-Semibold
 /FontanaNDCcOsF-SemiboldIta
 /FontanaNDEeOsF
 /FontanaNDEeOsF-Bold
 /FontanaNDEeOsF-BoldItalic
 /FontanaNDEeOsF-Light
 /FontanaNDEeOsF-Semibold
 /FormalScript421BT-Regular
 /Formata-Bold
 /Formata-MediumCondensed
 /ForteMT
 /FournierMT-Ornaments
 /FrakturBT-Regular
 /FrankfurterHigD
 /FranklinGothic-Book
 /FranklinGothic-BookItal
 /FranklinGothic-BookOblique
 /FranklinGothic-Condensed
 /FranklinGothic-Demi
 /FranklinGothic-DemiItal
 /FranklinGothic-DemiOblique
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItal
 /FranklinGothic-HeavyOblique
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothicITCbyBT-Heavy
 /FranklinGothicITCbyBT-HeavyItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumItal
 /FranklinGothic-Roman
 /Freeform721BT-Bold
 /Freeform721BT-BoldItalic
 /Freeform721BT-Italic
 /Freeform721BT-Roman
 /FreestyleScrD
 /Freestylescript
 /FreestyleScript
 /FrizQuadrataITCbyBT-Bold
 /FrizQuadrataITCbyBT-Roman
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura
 /FuturaBlackBT-Regular
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldCondensedItalic
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Heavy
 /FuturaBT-HeavyItalic
 /FuturaBT-Light
 /FuturaBT-LightCondensed
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /Futura-CondensedLight
 /Futura-CondensedLightOblique
 /Futura-ExtraBold
 /Futura-ExtraBoldOblique
 /Futura-Heavy
 /Futura-HeavyOblique
 /Futura-Light
 /Futura-LightOblique
 /Futura-Oblique
 /Futura-Thin
 /Galliard-Black
 /Galliard-BlackItalic
 /Galliard-Bold
 /Galliard-BoldItalic
 /Galliard-Italic
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Galliard-Roman
 /Galliard-Ultra
 /Galliard-UltraItalic
 /Garamond-Antiqua
 /GaramondBE-Bold
 /GaramondBE-BoldExpert
 /GaramondBE-BoldOsF
 /GaramondBE-CnExpert
 /GaramondBE-Condensed
 /GaramondBE-CondensedSC
 /GaramondBE-Italic
 /GaramondBE-ItalicExpert
 /GaramondBE-ItalicOsF
 /GaramondBE-Medium
 /GaramondBE-MediumCn
 /GaramondBE-MediumCnExpert
 /GaramondBE-MediumCnOsF
 /GaramondBE-MediumExpert
 /GaramondBE-MediumItalic
 /GaramondBE-MediumItalicExpert
 /GaramondBE-MediumItalicOsF
 /GaramondBE-MediumSC
 /GaramondBE-Regular
 /GaramondBE-RegularExpert
 /GaramondBE-RegularSC
 /GaramondBE-SwashItalic
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-Book
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-BookItalic
 /Garamond-Halbfett
 /Garamond-HandtooledBold
 /Garamond-HandtooledBoldItalic
 /GaramondITCbyBT-Bold
 /GaramondITCbyBT-BoldCondensed
 /GaramondITCbyBT-BoldCondItalic
 /GaramondITCbyBT-BoldItalic
 /GaramondITCbyBT-BoldNarrow
 /GaramondITCbyBT-BoldNarrowItal
 /GaramondITCbyBT-Book
 /GaramondITCbyBT-BookCondensed
 /GaramondITCbyBT-BookCondItalic
 /GaramondITCbyBT-BookItalic
 /GaramondITCbyBT-BookNarrow
 /GaramondITCbyBT-BookNarrowItal
 /GaramondITCbyBT-Light
 /GaramondITCbyBT-LightCondensed
 /GaramondITCbyBT-LightCondItalic
 /GaramondITCbyBT-LightItalic
 /GaramondITCbyBT-LightNarrow
 /GaramondITCbyBT-LightNarrowItal
 /GaramondITCbyBT-Ultra
 /GaramondITCbyBT-UltraCondensed
 /GaramondITCbyBT-UltraCondItalic
 /GaramondITCbyBT-UltraItalic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Garamond-Light
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Garamond-LightItalic
 /GaramondNo4CyrTCY-Ligh
 /GaramondNo4CyrTCY-LighItal
 /GaramondThree
 /GaramondThree-Bold
 /GaramondThree-BoldItalic
 /GaramondThree-BoldItalicOsF
 /GaramondThree-BoldSC
 /GaramondThree-Italic
 /GaramondThree-ItalicOsF
 /GaramondThree-SC
 /GaramondThreeSMSIISpl-Italic
 /GaramondThreeSMSitalicSpl-Italic
 /GaramondThreeSMSspl
 /GaramondThreespl
 /GaramondThreeSpl-Bold
 /GaramondThreeSpl-Italic
 /Garamond-Ultra
 /Garamond-UltraCondensed
 /Garamond-UltraCondensedItalic
 /Garamond-UltraItalic
 /GarthGraphic
 /GarthGraphic-Black
 /GarthGraphic-Bold
 /GarthGraphic-BoldCondensed
 /GarthGraphic-BoldItalic
 /GarthGraphic-Condensed
 /GarthGraphic-ExtraBold
 /GarthGraphic-Italic
 /Geometric231BT-HeavyC
 /GeometricSlab712BT-BoldA
 /GeometricSlab712BT-ExtraBoldA
 /GeometricSlab712BT-LightA
 /GeometricSlab712BT-LightItalicA
 /GeometricSlab712BT-MediumA
 /GeometricSlab712BT-MediumItalA
 /Giddyup
 /Giddyup-Thangs
 /GillSans
 /GillSans-Bold
 /GillSans-BoldCondensed
 /GillSans-BoldExtraCondensed
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-ExtraBold
 /GillSans-ExtraBoldDisplay
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSans-LightShadowed
 /GillSans-Shadowed
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /Gill-Special
 /Giovanni-Bold
 /Giovanni-BoldItalic
 /Giovanni-Book
 /Giovanni-BookItalic
 /Glypha
 /Glypha-Bold
 /Glypha-BoldOblique
 /Glypha-Oblique
 /Gothic-Thirteen
 /Goudy
 /Goudy-Bold
 /Goudy-BoldItalic
 /GoudyCatalogueBT-Regular
 /Goudy-ExtraBold
 /GoudyHandtooledBT-Regular
 /GoudyHeavyfaceBT-Regular
 /GoudyHeavyfaceBT-RegularCond
 /Goudy-Italic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-ExtraBold
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudySans-Black
 /GoudySans-BlackItalic
 /GoudySans-Bold
 /GoudySans-BoldItalic
 /GoudySans-Book
 /GoudySans-BookItalic
 /GoudySansITCbyBT-Black
 /GoudySansITCbyBT-BlackItalic
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Light
 /GoudySansITCbyBT-LightItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GoudySans-Medium
 /GoudySans-MediumItalic
 /Granjon
 /Granjon-Bold
 /Granjon-BoldOsF
 /Granjon-Italic
 /Granjon-ItalicOsF
 /Granjon-SC
 /GreymantleMVB-Ornaments
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Black-SemiBold
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Compressed
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-Light-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Condensed-Thin
 /Helvetica-ExtraCompressed
 /Helvetica-Fraction
 /Helvetica-FractionBold
 /HelveticaInserat-Roman
 /HelveticaInserat-Roman-SemiBold
 /Helvetica-Light
 /Helvetica-LightOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /HelveticaNeue-Black
 /HelveticaNeue-BlackCond
 /HelveticaNeue-BlackCondObl
 /HelveticaNeue-BlackExt
 /HelveticaNeue-BlackExtObl
 /HelveticaNeue-BlackItalic
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldCond
 /HelveticaNeue-BoldCondObl
 /HelveticaNeue-BoldExt
 /HelveticaNeue-BoldExtObl
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-ExtBlackCond
 /HelveticaNeue-ExtBlackCondObl
 /HelveticaNeue-Extended
 /HelveticaNeue-ExtendedObl
 /HelveticaNeue-Heavy
 /HelveticaNeue-HeavyCond
 /HelveticaNeue-HeavyCondObl
 /HelveticaNeue-HeavyExt
 /HelveticaNeue-HeavyExtObl
 /HelveticaNeue-HeavyItalic
 /HelveticaNeue-Italic
 /HelveticaNeue-Light
 /HelveticaNeue-LightCond
 /HelveticaNeue-LightCondObl
 /HelveticaNeue-LightExt
 /HelveticaNeue-LightExtObl
 /HelveticaNeue-LightItalic
 /HelveticaNeueLTStd-Md
 /HelveticaNeueLTStd-MdIt
 /HelveticaNeue-Medium
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-MediumExt
 /HelveticaNeue-MediumExtObl
 /HelveticaNeue-MediumItalic
 /HelveticaNeue-Roman
 /HelveticaNeue-Thin
 /HelveticaNeue-ThinCond
 /HelveticaNeue-ThinCondObl
 /HelveticaNeue-ThinItalic
 /HelveticaNeue-UltraLigCond
 /HelveticaNeue-UltraLigCondObl
 /HelveticaNeue-UltraLigExt
 /HelveticaNeue-UltraLigExtObl
 /HelveticaNeue-UltraLight
 /HelveticaNeue-UltraLightItal
 /Helvetica-Oblique
 /Helvetica-UltraCompressed
 /HelvExtCompressed
 /HelvLight
 /HelvUltCompressed
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-ExtraBold
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /Humanist521BT-UltraBold
 /Humanist521BT-XtraBoldCondensed
 /Humanist531BT-BlackA
 /Humanist531BT-BoldA
 /Humanist531BT-RomanA
 /Humanist531BT-UltraBlackA
 /Humanist777BT-BlackB
 /Humanist777BT-BlackCondensedB
 /Humanist777BT-BlackItalicB
 /Humanist777BT-BoldB
 /Humanist777BT-BoldCondensedB
 /Humanist777BT-BoldItalicB
 /Humanist777BT-ExtraBlackB
 /Humanist777BT-ExtraBlackCondB
 /Humanist777BT-ItalicB
 /Humanist777BT-LightB
 /Humanist777BT-LightCondensedB
 /Humanist777BT-LightItalicB
 /Humanist777BT-RomanB
 /Humanist777BT-RomanCondensedB
 /Humanist970BT-BoldC
 /Humanist970BT-RomanC
 /HumanistSlabserif712BT-Black
 /HumanistSlabserif712BT-Bold
 /HumanistSlabserif712BT-Italic
 /HumanistSlabserif712BT-Roman
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /Iglesia-Light
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Imago-Book
 /Imago-BookItalic
 /Imago-ExtraBold
 /Imago-ExtraBoldItalic
 /Imago-Light
 /Imago-LightItalic
 /Imago-Medium
 /Imago-MediumItalic
 /Industria-Inline
 /Industria-InlineA
 /Industria-Solid
 /Industria-SolidA
 /Insignia
 /Insignia-A
 /IPAExtras
 /IPAHighLow
 /IPAKiel
 /IPAKielSeven
 /IPAsans
 /ITCGaramondMM
 /ITCGaramondMM-It
 /JAKEOpti-Regular
 /JansonText-Bold
 /JansonText-BoldItalic
 /JansonText-Italic
 /JansonText-Roman
 /JansonText-RomanSC
 /JoannaMT
 /JoannaMT-Bold
 /JoannaMT-BoldItalic
 /JoannaMT-Italic
 /Juniper
 /KabelITCbyBT-Book
 /KabelITCbyBT-Demi
 /KabelITCbyBT-Medium
 /KabelITCbyBT-Ultra
 /Kaufmann
 /Kaufmann-Bold
 /KeplMM-Or2
 /KisBT-Italic
 /KisBT-Roman
 /KlangMT
 /Kuenstler480BT-Black
 /Kuenstler480BT-Bold
 /Kuenstler480BT-BoldItalic
 /Kuenstler480BT-Italic
 /Kuenstler480BT-Roman
 /KunstlerschreibschD-Bold
 /KunstlerschreibschD-Medi
 /Lapidary333BT-Black
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /LatinMT-Condensed
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LDecorationPi-One
 /LDecorationPi-Two
 /Leawood-Black
 /Leawood-BlackItalic
 /Leawood-Bold
 /Leawood-BoldItalic
 /Leawood-Book
 /Leawood-BookItalic
 /Leawood-Medium
 /Leawood-MediumItalic
 /LegacySans-Bold
 /LegacySans-BoldItalic
 /LegacySans-Book
 /LegacySans-BookItalic
 /LegacySans-Medium
 /LegacySans-MediumItalic
 /LegacySans-Ultra
 /LegacySerif-Bold
 /LegacySerif-BoldItalic
 /LegacySerif-Book
 /LegacySerif-BookItalic
 /LegacySerif-Medium
 /LegacySerif-MediumItalic
 /LegacySerif-Ultra
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldSlanted
 /LetterGothic-Slanted
 /Life-Bold
 /Life-Italic
 /Life-Roman
 /LINE10
 /LINEW10
 /Linotext
 /Lithos-Black
 /LithosBold
 /Lithos-Bold
 /Lithos-Regular
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOSL10
 /LOMD-Normal
 /LubalinGraph-Book
 /LubalinGraph-BookOblique
 /LubalinGraph-Demi
 /LubalinGraph-DemiOblique
 /LucidaHandwritingItalic
 /LucidaMath-Symbol
 /LucidaSansTypewriter
 /LucidaSansTypewriter-Bd
 /LucidaSansTypewriter-BdObl
 /LucidaSansTypewriter-Obl
 /LucidaTypewriter
 /LucidaTypewriter-Bold
 /LucidaTypewriter-BoldObl
 /LucidaTypewriter-Obl
 /LydianBT-Bold
 /LydianBT-BoldItalic
 /LydianBT-Italic
 /LydianBT-Roman
 /LydianCursiveBT-Regular
 /Machine
 /Machine-Bold
 /Marigold
 /MathematicalPi-Five
 /MathematicalPi-Four
 /MathematicalPi-One
 /MathematicalPi-Six
 /MathematicalPi-Three
 /MathematicalPi-Two
 /MatrixScriptBold
 /MatrixScriptBoldLin
 /MatrixScriptBook
 /MatrixScriptBookLin
 /MatrixScriptRegular
 /MatrixScriptRegularLin
 /Melior
 /Melior-Bold
 /Melior-BoldItalic
 /Melior-Italic
 /MercuriusCT-Black
 /MercuriusCT-BlackItalic
 /MercuriusCT-Light
 /MercuriusCT-LightItalic
 /MercuriusCT-Medium
 /MercuriusCT-MediumItalic
 /MercuriusMT-BoldScript
 /Meridien-Bold
 /Meridien-BoldItalic
 /Meridien-Italic
 /Meridien-Medium
 /Meridien-MediumItalic
 /Meridien-Roman
 /Minion-Black
 /Minion-Bold
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-BoldItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-DisplayItalic
 /Minion-DisplayRegular
 /MinionExp-Italic
 /MinionExp-Semibold
 /MinionExp-SemiboldItalic
 /Minion-Italic
 /Minion-Ornaments
 /Minion-Regular
 /Minion-Semibold
 /Minion-SemiboldItalic
 /MonaLisa-Recut
 /MrsEavesAllPetiteCaps
 /MrsEavesAllSmallCaps
 /MrsEavesBold
 /MrsEavesFractions
 /MrsEavesItalic
 /MrsEavesPetiteCaps
 /MrsEavesRoman
 /MrsEavesRomanLining
 /MrsEavesSmallCaps
 /MSAM10
 /MSAM10A
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM10A
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MTSYN
 /MusicalSymbols-Normal
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-CnBold
 /Myriad-CnBoldItalic
 /Myriad-CnItalic
 /Myriad-CnSemibold
 /Myriad-CnSemiboldItalic
 /Myriad-Condensed
 /Myriad-Italic
 /MyriadMM
 /MyriadMM-It
 /Myriad-Roman
 /Myriad-Sketch
 /Myriad-Tilt
 /NeuzeitS-Book
 /NeuzeitS-BookHeavy
 /NewBaskerville-Bold
 /NewBaskerville-BoldItalic
 /NewBaskerville-Italic
 /NewBaskervilleITCbyBT-Bold
 /NewBaskervilleITCbyBT-BoldItal
 /NewBaskervilleITCbyBT-Italic
 /NewBaskervilleITCbyBT-Roman
 /NewBaskerville-Roman
 /NewCaledonia
 /NewCaledonia-Black
 /NewCaledonia-BlackItalic
 /NewCaledonia-Bold
 /NewCaledonia-BoldItalic
 /NewCaledonia-BoldItalicOsF
 /NewCaledonia-BoldSC
 /NewCaledonia-Italic
 /NewCaledonia-ItalicOsF
 /NewCaledonia-SC
 /NewCaledonia-SemiBold
 /NewCaledonia-SemiBoldItalic
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothic-BoldOblique
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldCondensed
 /NewsGothicBT-BoldCondItalic
 /NewsGothicBT-BoldExtraCondensed
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Demi
 /NewsGothicBT-DemiItalic
 /NewsGothicBT-ExtraCondensed
 /NewsGothicBT-Italic
 /NewsGothicBT-ItalicCondensed
 /NewsGothicBT-Light
 /NewsGothicBT-LightItalic
 /NewsGothicBT-Roman
 /NewsGothicBT-RomanCondensed
 /NewsGothic-Oblique
 /New-Symbol
 /NovareseITCbyBT-Bold
 /NovareseITCbyBT-BoldItalic
 /NovareseITCbyBT-Book
 /NovareseITCbyBT-BookItalic
 /Nueva-BoldExtended
 /Nueva-Roman
 /NuptialScript
 /OceanSansMM
 /OceanSansMM-It
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OnyxMT
 /Optima
 /Optima-Bold
 /Optima-BoldItalic
 /Optima-BoldOblique
 /Optima-ExtraBlack
 /Optima-ExtraBlackItalic
 /Optima-Italic
 /Optima-Oblique
 /OSPIRE-Plain
 /OttaIA
 /Otta-wa
 /Ottawa-BoldA
 /OttawaPSMT
 /Oxford
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /Palatino-Roman
 /Parisian
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PhotinaMT
 /PhotinaMT-Bold
 /PhotinaMT-BoldItalic
 /PhotinaMT-Italic
 /PhotinaMT-SemiBold
 /PhotinaMT-SemiBoldItalic
 /PhotinaMT-UltraBold
 /PhotinaMT-UltraBoldItalic
 /Plantin
 /Plantin-Bold
 /Plantin-BoldItalic
 /Plantin-Italic
 /Plantin-Light
 /Plantin-LightItalic
 /Plantin-Semibold
 /Plantin-SemiboldItalic
 /Poetica-ChanceryI
 /Poetica-SuppLowercaseEndI
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /ProseAntique-Bold
 /ProseAntique-Normal
 /QuaySansEF-Black
 /QuaySansEF-BlackItalic
 /QuaySansEF-Book
 /QuaySansEF-BookItalic
 /QuaySansEF-Medium
 /QuaySansEF-MediumItalic
 /Quorum-Black
 /Quorum-Bold
 /Quorum-Book
 /Quorum-Light
 /Quorum-Medium
 /Raleigh
 /Raleigh-Bold
 /Raleigh-DemiBold
 /Raleigh-Medium
 /Revival565BT-Bold
 /Revival565BT-BoldItalic
 /Revival565BT-Italic
 /Revival565BT-Roman
 /Ribbon131BT-Bold
 /Ribbon131BT-Regular
 /RMTMI
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /RotisSansSerif
 /RotisSansSerif-Bold
 /RotisSansSerif-ExtraBold
 /RotisSansSerif-Italic
 /RotisSansSerif-Light
 /RotisSansSerif-LightItalic
 /RotisSemiSans
 /RotisSemiSans-Bold
 /RotisSemiSans-ExtraBold
 /RotisSemiSans-Italic
 /RotisSemiSans-Light
 /RotisSemiSans-LightItalic
 /RotisSemiSerif
 /RotisSemiSerif-Bold
 /RotisSerif
 /RotisSerif-Bold
 /RotisSerif-Italic
 /RunicMT-Condensed
 /Sabon-Bold
 /Sabon-BoldItalic
 /Sabon-Italic
 /Sabon-Roman
 /SackersGothicLight
 /SackersGothicLightAlt
 /SackersItalianScript
 /SackersItalianScriptAlt
 /Sam
 /Sanvito-Light
 /SanvitoMM
 /Sanvito-Roman
 /Semitica
 /Semitica-Italic
 /SIVAMATH
 /Siva-Special
 /SMS-SPELA
 /Souvenir-Demi
 /Souvenir-DemiItalic
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /Souvenir-Light
 /Souvenir-LightItalic
 /SpecialAA
 /Special-Gali
 /Sp-Sym
 /StempelGaramond-Bold
 /StempelGaramond-BoldItalic
 /StempelGaramond-Italic
 /StempelGaramond-Roman
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-PhoneticAlternate
 /StoneSans-PhoneticIPA
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /StoneSerif
 /StoneSerif-Italic
 /StoneSerif-PhoneticAlternate
 /StoneSerif-PhoneticIPA
 /StoneSerif-Semibold
 /StoneSerif-SemiboldItalic
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-BlackRounded
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-BoldRounded
 /Swiss721BT-Heavy
 /Swiss721BT-HeavyItalic
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Medium
 /Swiss721BT-MediumItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721BT-ThinItalic
 /Swiss921BT-RegularA
 /Symbol
 /Syntax-Black
 /Syntax-Bold
 /Syntax-Italic
 /Syntax-Roman
 /Syntax-UltraBlack
 /Tekton
 /Times-Bold
 /Times-BoldA
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /Times-NewRoman
 /Times-NewRomanBold
 /Times-Oblique
 /Times-PhoneticAlternate
 /Times-PhoneticIPA
 /Times-Roman
 /Times-RomanSmallCaps
 /Times-Sc
 /Times-SCB
 /Times-special
 /TimesTenGreekP-Upright
 /TradeGothic
 /TradeGothic-Bold
 /TradeGothic-BoldCondTwenty
 /TradeGothic-BoldCondTwentyObl
 /TradeGothic-BoldOblique
 /TradeGothic-BoldTwo
 /TradeGothic-BoldTwoOblique
 /TradeGothic-CondEighteen
 /TradeGothic-CondEighteenObl
 /TradeGothicLH-BoldExtended
 /TradeGothicLH-Extended
 /TradeGothic-Light
 /TradeGothic-LightOblique
 /TradeGothic-Oblique
 /Trajan-Bold
 /TrajanPro-Bold
 /TrajanPro-Regular
 /Trajan-Regular
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /Transitional551BT-MediumB
 /Transitional551BT-MediumItalicB
 /Univers
 /Universal-GreekwithMathPi
 /Universal-NewswithCommPi
 /Univers-BlackExt
 /Univers-BlackExtObl
 /Univers-Bold
 /Univers-BoldExt
 /Univers-BoldExtObl
 /Univers-BoldOblique
 /Univers-Condensed
 /Univers-CondensedBold
 /Univers-CondensedBoldOblique
 /Univers-CondensedOblique
 /Univers-Extended
 /Univers-ExtendedObl
 /Univers-ExtraBlackExt
 /Univers-ExtraBlackExtObl
 /Univers-Light
 /Univers-LightOblique
 /UniversLTStd-Black
 /UniversLTStd-BlackObl
 /Univers-Oblique
 /Utopia-Black
 /Utopia-BlackOsF
 /Utopia-Bold
 /Utopia-BoldItalic
 /Utopia-Italic
 /Utopia-Ornaments
 /Utopia-Regular
 /Utopia-Semibold
 /Utopia-SemiboldItalic
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Viva-BoldExtraExtended
 /Viva-Regular
 /Weidemann-Black
 /Weidemann-BlackItalic
 /Weidemann-Bold
 /Weidemann-BoldItalic
 /Weidemann-Book
 /Weidemann-BookItalic
 /Weidemann-Medium
 /Weidemann-MediumItalic
 /WindsorBT-Elongated
 /WindsorBT-Light
 /WindsorBT-LightCondensed
 /WindsorBT-Roman
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfCalligraphic801BT-Bold
 /ZapfCalligraphic801BT-BoldItal
 /ZapfCalligraphic801BT-Italic
 /ZapfCalligraphic801BT-Roman
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Demi
 /ZapfChanceryITCbyBT-Medium
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZapfHumanist601BT-Ultra
 /ZapfHumanist601BT-UltraItalic
 /ZurichBT-Black
 /ZurichBT-BlackExtended
 /ZurichBT-BlackItalic
 /ZurichBT-Bold
 /ZurichBT-BoldCondensed
 /ZurichBT-BoldCondensedItalic
 /ZurichBT-BoldExtended
 /ZurichBT-BoldExtraCondensed
 /ZurichBT-BoldItalic
 /ZurichBT-ExtraBlack
 /ZurichBT-ExtraCondensed
 /ZurichBT-Italic
 /ZurichBT-ItalicCondensed
 /ZurichBT-Light
 /ZurichBT-LightCondensed
 /ZurichBT-LightCondensedItalic
 /ZurichBT-LightExtraCondensed
 /ZurichBT-LightItalic
 /ZurichBT-Roman
 /ZurichBT-RomanCondensed
 /ZurichBT-RomanExtended
 /ZurichBT-UltraBlackExtended
]
 /NeverEmbed [true
 /TimesNewRomanPS
 /TimesNewRomanPS-Bold
 /TimesNewRomanPS-BoldItalic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-Italic
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings for creating PDF files for submission to The Sheridan Press. These settings configured for Acrobat v6.0 08/06/03.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

