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Abstract—Big data applications demand a better memory performance. Data Locality has been the focus of reducing data access

delay. Data access concurrency, however, has become prevalent in modern memory systems in recent years. How to extend existing

locality-based performance optimization to consider data concurrency becomes a timely issue facing the researchers and practitioners

in the field of computing, especially in the field of big data computing. In this study, we introduce the concept and definition of

Concurrency-aware data access Locality (CaL), which, as its name states, extends the concept of locality by considering concurrency.

Compared to the conventional concept of locality, CaL accurately reflects the combined impact of data access locality and concurrency

in modern memory systems and is very effective for data intensive applications. The value of CaL can be quantitatively measured

directly by performance counters in mainstream commercial processors and is practically feasible. Two theoretical results are

presented to reveal the relationships between CaL and existing memory system performance metrics of memory accesses per cycle

(APC), average memory access time (AMAT), and memory bandwidth (B). In this way, we provide a methodology to use existing

locality-based optimization methods directly or in combination with data concurrency optimizations, to improve the value of CaL and to

improve the performance of a memory system. To demonstrate the practical value of CaL, we conduct four case studies to illustrate the

power of concurrency-aware locality optimization. Compared with the conventional locality based optimization, the CaL-aware design

has achieved significant performance improvement. It achieved a 3.12-fold speedup on K-means, which is a widely-used data analytic

kernel from the big data benchmarks.

Index Terms—Memory wall, memory stall time, memory concurrency, memory hierarchy, memory access patterns

Ç

1 INTRODUCTION

DATA is becoming an increasingly vital resource in many
scientific and engineering domains. As data is the object

and result of computation, any computer operation requires
the accessing, managing, manipulating, and storing of data.
However, data access has become the dominant performance
bottleneck of computing systems. Processors commonly
spend 50 to 70 percent of their total application execution
time waiting for data to arrive [23], [44]. This large waiting
for data ratio is stemmed by the large access time ratio
among the memory layers (i.e., memory wall effect [52]) and
the limitation of the pin bandwidth (i.e., bandwidth wall
effect [28], [43]). It is likely to be even more problematic in
the near future as modern processors have moved into the
many-core era and big data applications are becoming a
norm. On one hand, many-core structures provide increas-
ingly high computing capacity, which needs to be matched
with high data access speed. On the other hand, big data
applications increase the complexity and intensiveness of

data access patterns, making the memory wall problem even
more severe. To mitigate the effects of memory wall for big
data applications, memory performance optimizations are
becoming increasingly critical onmodern computer systems.

Memory performance optimizations generally fall into
two categories, optimizations to improve data locality and
optimizations to improve data concurrency. The end goal of
such optimizations is to reduce the data stall time. Locality-
based optimization is a well-studied topic and is the focus of
data access optimization for many years. In the meantime,
concurrency-based technologies have been deployed in
modern memory systems to overlap or hide the data access
latency [11]. For instance, a processor can conduct out-of-
order execution to reduce access latency and a cache
deployed with a miss handling architecture (MSHR) [30] can
serve multiple outstanding misses simultaneously. Even
when the cache miss rate is high, strong concurrency can sig-
nificantly reduce the penalty of data accesses perceived by
the processors. Concurrency has become an effective lever-
age for the performance optimization of memory systems.

While both optimization approaches are important
and effective, data locality and data concurrency-based
approaches, however, influence each other. It is hard to
achieve the best data locality and best data concurrency at
the same time. We use average memory access time
(AMAT) to measure locality. As shown in Section 7, current
applications rarely achieve both short AMAT and strong
concurrency (C) simultaneously. Locality and concurrency
have many different ways to influence each other. As an
example, concurrency puts pressure on shared resources,
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such as the on-chip network bandwidth and the cache
capacity. Therefore, increasing the degree of concurrency
may intensify the bandwidth contention and the cache pol-
lution, and then, as a result, increases AMAT.

We would like to optimize data locality and concurrency
simultaneously. However, traditional locality models, such
as reuse distance [37] and miss rate [20], are difficult to be
used for concurrency-related performance analysis because
they are based on a sequential data access trace and rarely
consider data access concurrency. Although some literatures
discussed the tradeoff between data access locality and
thread level parallelism [8], [26], [29], the locality concepts in
these works do not consider data access concurrency.

In this study, we revisit the definition of locality, and then
introduce the concept and a formal definition of Concur-
rency-aware data access Locality (CaL). CaL is an extension
of the conventional locality to consider concurrency. When
there is no concurrency, it is the same as locality. When con-
currency exists, it includes concurrency under its consider-
ation, and therefore, has the power to utilize locality and
concurrency simultaneously. Following the recent locality
definition, CaL is given in an open mathematical form to
accurately describe the relationship between concurrency
and locality based optimizations. CaL can be applied for per-
formance analysis at different levels, includes thread-level,
socket-level, node-level and system-level.

This work makes the following major contributions:

(1) We propose a mathematical model CaL to quantify
locality with the consideration of data access concur-
rency. Compared with miss rate and reuse distance,
the new model is more practical in reflecting inte-
grated impact of data locality and concurrency in
modern memory systems. Moreover, methodology
has been given to measure CaL by performance
counters of mainstream commercial processors.

(2) We propose and prove two theorems to reveal the
impact of concurrency-aware locality onmemory sys-
tem performance by analyzing its impact on two
fundamental memory metrics, APC and AMAT.
Understanding the impact allows us for better design
of the memory hierarchy and for providing locality-
centric designs which also are concurrency aware.
The two theorems are general and foundamental to
capture the key aspects of modern memory systems
and show their connections, and thus are vital for
rethinking and redesigning thememory systems.

(3) Using our model, we can decompose an application’s
entire execution into different phases based on its
data access patterns. We can then optimize CaL on
each of these phases individually. To verify and dem-
onstrate the values of our theoretical results and opti-
mizationmethodology, we have conducted four CaL-
driven optimization case studies, one for the potential
of CaL, and three for applying CaL in optimizing the
hardware configurations of dynamic cache block size,
dynamic MSHR, and selective cache array, respec-
tively. Aswe expected, CaL can be optimized system-
atically or semi-systematically, and is extremely
effective for big data applications. It achieves a per-
formance gain of 312 percent on the K-means big data

benchmark, which is a widely-used kernel in data
analytics.

In this paper, unless otherwise stated, the term concur-
rency denotes the memory level parallelism rather than the
thread level parallelism, and the term memory indicates
the whole hierarchical memory system rather than only the
main memory.

The remainder of the paper is organized as follows.
Section 2 presents the background about data concurrency
and locality. Section 3 defines and formulates the CaL
model. Section 4 derives the impact of CaL on hierarchical
memory system performance. Section 5 conducts software
optimization on big data benchmark, K-means. Section 6
presents three hardware optimization case studies. Section 7
discusses more about the usage of the CaL model and its
associated theorems. Section 8 reviews related work.
Finally, Section 9 concludes this study.

2 BACKGROUND: DATA CONCURRENCY AND

LOCALITY

Locality of data accesses is the fundamental principle driv-
ing hierarchical memory system design. Many traditional
optimizations on memory are focused on locality, to reduce
miss rate (MR) or to reduce the number of misses. Given the
significance of the locality principle, previous works have
attempted to quantify locality to better understand refer-
ence patterns and to guide compiler and architecture design
to exploit program locality. For temporal locality, the histo-
gram of reuse distances [53] or LRU (least recently used)
stack distances [8] is computed from a sequential address
trace. For spatial locality, however, there is a lack of consen-
sus for such a quantitative measure and several ad-hoc met-
rics are proposed based on intuitive notions [27], [34]. All
the models assume an ordered list of data accesses, where
concurrency is not considered. In this paper, we revisit the
concept of locality with the consideration of concurrency.

There have been a host of optimizations related to
improving data access concurrency in order to mitigate the
penalty of long-latency data accesses. Larger instruction
windows, reorder buffers and multithreading [49] collec-
tively provide a high rate of memory requests that the
underlying memory must handle. Some widely-used cache
optimization methods, such as non-blocking cache [30],
pipelined cache [2], multi-banked cache [42] and data pre-
fetching [7], allow data accesses generated by processors to
overlap with each other [11]. Mainstream processors now
contain many cores running different applications with dif-
ferent access patterns but share the same memory system. A
large amount of memory requests must be handled simulta-
neously to feed data for many-core computation to meet the
high data access demand. Failing to do so will cause even
longer data stall time on the order of 10x [50]. To achieve
this, concurrency-aware optimization is needed.

The complexity of modern memory systems urgently
calls for an explicit formula to link concurrency and locality
of data access patterns of applications to the corresponding
bandwidth and latency of hierarchical memory systems of
computing systems. Please note that in 2004, Patterson pre-
sented his important observation, latency lags band-
width [40]. Since latency and bandwidth are widely used
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for memory system performance optimization, it will be
important and interesting to know the relationship between
latency and bandwidth, and the impact of locality and concur-
rency of data access patterns on them. This question becomes
increasingly more important for data-intensive computing,
whereas data-intensive is the character of big data applica-
tions. The reason is that, to cope with the ever-widening
memory wall and bandwidth wall, locality-oriented and
concurrency-oriented technologies coexist andmakememory
systems increasinglymore complicated.

To showcase how locality can influence miss concur-
rency and bandwidth utilization, we assume there exist 10
outstanding concurrent data accesses (please note that in
real cases the concurrency degree can be even higher). On
one hand, if all these accesses concurrently target a common
data block which is not cached yet, the data access pattern
would have a high miss concurrency. During this period,
the cache miss rate is 100 percent, while data access locality
is high. This is case 1 which has strong locality. On the other
hand, if all the 10 accesses target different individual cache
blocks none of which are cached, the data access pattern still
has high miss concurrency. However, no locality exists and
10 different cache blocks need to be moved to the cache.
This is case 2 which has no locality. Note in the previous
case, only one cache block is enough to meet all the requests
and thus a 10-fold disparity of bandwidth requirement is
shown. The significance of the large disparity is important
due to the ever widening memory wall and bandwidth
wall. In addition, it is important to notice that the large dis-
parity is caused by variance in data access patterns in terms
of their locality and concurrency values.

With the CaL model, proper optimization techniques can
be enabled to transform the patterns from the low-end to
high-end as shown in Fig. 1, which illustrates how applica-
tion access patterns can shift between different states.
Assume the amount of data accesses needing to complete is
fixed. There exist four different patterns, where “1” corre-
sponds to high and “0” corresponds to low. P3 is the opti-
mal pattern, and P0 is the worst pattern. If all the data
access patterns are P3, the data accesses can be completed in
parallel with minimal bandwidth requirement, where the
effect of memory wall and bandwidth wall would not be
significant. On the other hand, if all the data access patterns
are P0, then the data accesses must be completed with a
large amount of bandwidth consumption, where the impact
of bandwidth wall would be significant. P1 and P2 can be
analyzed in a similar manner. However, without a powerful
model, it is difficult to quantify their differences.

Applications may move among the four data access pat-
terns phase by phase during their runtime. In fact, there is
no memory system configuration (e.g., the size of cache
block size, the capacity of MSHR, the cache capacity and the

number of cache channels as will be discussed in Case stud-
ies) that works best for all data access patterns. Each design
has its own pros and cons, depending on the interaction
between the data access patterns and underlying memory
system. This motivates us to investigate pattern directed
dynamic optimization. CaL can be used in both software
runtime optimization and hardware ASIC (application-spe-
cific integrated circuit) design.

3 THE PROPOSED CONCURRENCY-AWARE

LOCALITY (CAL)

Before deriving the formula of CaL, we need to define its
concept. The conventional data locality includes spatial
locality and temporal locality. Temporal locality indicates
that after an address is referenced, the same datum is likely
to be re-accessed in the near future. Spatial locality, on the
other hand, indicates that some neighbors of the referenced
address are likely to be accessed in the near future. Please
note that temporal locality is a special case of spatial locality
with the neighborhood size being zero bytes (i.e., multiple
accesses target the same data) [21]. Therefore, we only need
to focus on spatial locality.

Locality has been defined formally by Gupta et al. in
terms of probability as: given the condition that an arbitrary
address, A, is referenced, the likelihood of an address in its
neighborhood to be accessed in the near future [21]. Such
conditional probability can be expressed as Eq. (1), where
X0 is the address of current data access and Xn is the
address of a data access in the near future. In our study, we
regard Eq. (1) as the state-of-the-art definition of locality,
and note it as L.

L ¼ P ð9Xn in A0s neighborhood n < N j X0 ¼ A Þ (1)

L is measured based on the data access trace without
accurate timing information, since the “near future” is in the
unit of data access. L focuses on time-independent reference
activity, where event ordering and interleaving are of prime
importance, but the time duration and the overlapping of
events are ignored. To extend locality to concurrency-aware
locality, we first need to have accurate timing information
among data accesses. With accurate timing information, we
not only know whether data accesses are overlapping, but
also the number of overlaps. In our model, the time window
ismeasured in clock cycle for accuracy, so that the number of
overlapping in each clock cycle can be measured and the
data access concurrency is well measured.

We define concurrency-aware locality as the number of
accesses occurred in a time window within the neighbor-
hood of a previously fetched byte of data. Table 1 lists the
notations that will be used in our work. Here, only when
two accesses X and Y target the same cache block of size K,
they are deemed in the neighborhood of each other. When
two accesses are within the same neighborhood, the model
partitions them into the same group. The access sequence is
S for any given time window T . Assume there exist g cache
blocks that are accessed concurrently during time window
T . fS1; S2; ; Sgg is a partition of the data access set S with
regard to the g different access groups. Then concurrency-
aware locality (CaL) can be formulized as Eq. (2).

Fig. 1. Four classes of data access patterns with respect to locality (L)
and concurrency (C).

LIU AND SUN: CAL: EXTENDING DATA LOCALITY TO CONSIDER CONCURRENCY FOR PERFORMANCE OPTIMIZATION 275



CaL ¼ EðThe group size of G j X 2 G;G 2 fS1; S2; . . . ; SggÞ
The size of feteched bytes for each group

(2)

In Eq. (2), we take the size of access group as a random
variable, and we use its conditional expectation to quantify
how many times a data block can be reused. More detail of
conditional expectation can be seen in [24]. Eq. (2) is based
on the following observations: Given a fixed size of fetched
data, if each data block can be reusedmore times, the locality
is stronger. On the other hand, for a fixed reuse time for any
data block, if the size of fetched data is smaller, the locality is
also stronger. For example, the locality when reusing a cache
block of size x forN accesses is larger than the locality when
reusing a cache block of size 5x forN accesses.

As Eq. (2) is in closed-form that cannot be analyzed con-
veniently, we need an open-form metric to facilitate optimi-
zation. Due to concurrency in data access patterns, we
cannot view data accesses as a sequential sequence which
lacks the timing information. According to the definition of
neighborhood, we can group the accesses if they fall in the
same cache block. As shown in Fig. 2, each group includes
at least one data access, and the number of groups is g. We
propose a new formula shown in Eq. (3).

CaL ¼ N

g�K
(3)

Notice that the size of fetched bytes for each group, cache
line size, is K. Moreover, we can derive that the expectation
of group size is n=g. Therefore, Eq. (3) is equivalent to

Eq. (2) and thus can be taken as an easy-to-use analytical
formula. Meanwhile, we can derive that the value range of
CaL is [1=K, n=K]. Specifically, when g is one (i.e., all the
data accesses target a common data block), CaL equals n=K.
On the other hand, when every data access targets a differ-
ent cache block, CaL equals 1=K.

In mainstream processors, the cache line size (K) is con-
stant with a typical value 64 B. In this case, we only need to
see the Reuse-aware Locality (RaL) shown in Eq. (4), which
is defined as how many data accesses can be met by one off-
chip data movement. However, when the cache line size is
dynamic and adjustable, we still need to use Eq. (3) to reflect
the impact of parameterK.

RaL ¼ N

g
(4)

To show the effectiveness of CaL and also to show the
difference between CaL and L, let us consider a simple
instance. When five data accesses come in at the same clock
cycle, there are seven possible locality distributions. Case-I:
there exist no two accesses targeting the same cache block.
That is, we have five groups: <1> , <1> , <1> , <1> ,
<1> . Case-VII: all the five data accesses are in the same
group, which is represented as <5> . In a similar manner,
we can represent the other five cases as follows: Case-II:
<2> , <1> , <1> , <1> ; Case-III: <3> , <1> , <1> ;
Case-IV: <2> , <2> , <1> ; Case-V: <4> , <1> ; and
Case-VI: <3> , <2> .

We present a quick test for the correctness of the formula
in Eq. (3). First, by observation, we order the locality from
high to low, and we can get the following results. Case VII
has the highest CaL, while Case-I has the lowest CaL. The
other five cases are falling between the two extremes. Case-V
is close to Case-VI. They both have better CaL compared to
Case II, III and IV. Both Case-III and Case-IV are better than
Case-II. There is no difference between Case-III and Case-IV.
Please note that for simplicity in Table 2 the T and K are
taken as one since all the seven patterns have the same T and
K. However, in the measurements, T andK will be taken as
their real values that may be different in different cases.

In Table 2, all the accesses are misses, the MR is 100 per-
cent for all the cases, so MR cannot reflect the pattern local-
ity. As shown in the third column of Table 2, the CaL metric
values calculated by Eq. (3) accurately fit the observation
results. However, as shown in the fourth column of Table 2,
the L values cannot well differentiate various patterns and
thus departing from the observations. With regard to B,
case III is the same as case IV, and case V is the same as case

TABLE 1
Parameter Notations

Notation Description

X, Y Access
K Cache block size
S A set of accesses
G A group of accesses targeted the same block
T The total number of memory active cycles
g The number of groups
N The number of data accesses
Si The ith data access group (1 � i � g)
CaL Concurrency-aware locality
B Bandwidth
APC Access per memory active cycle
C The degree of data access concurrency
AMAT Average memory access time

Fig. 2. Concurrent data accesses.

TABLE 2
CaL Values of Different Data Access Patterns

Case Pattern CaL L B

I <1> , <1> , <1> , <1> , <1> 1 0 5
II <2> , <1> , <1> , <1> 5/4 2/5 4
III <3> , <1> , <1> 5/3 3/5 3
IV <2> , <2> , <1> 5/3 4/5 3
V <4> , <1> 5/2 4/5 2
VI <3> , <2> 5/2 1 2
VII <5> 5 1 1
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VI. Their CaL values can reflect the facts accordingly, but
their L values cannot. CaL will faciliate performance optimi-
zation to use bandwidth efficiently. Given the same concur-
rency degree, taking the seven data access patterns in
Table 2 for example, Fig. 3 shows the relationship between
bandwidth B and locality CaL. We can classify locality opti-
mizations into two categories. The designs based on CaL
will be referred to as CaL-aware. In comparison, the designs
based on L or MR will be referred to as CaL-oblivious.

Although good locality is traditionally thought can
improve hit rate, CaL illustrates the importance of miss local-
ity (the locality of cache misses) on bandwidth utilization and
cache pollution. A many-core processor would require extre-
mely many accesses to be completed in each clock cycle in
order to keep the computation components busy. If there
exists no miss locality, the chip needs to simultaneouslymove
many blocks, which may cause significant on-chip network
contention and cache pollution. However, when the miss
locality is high, many misses can be satisfied by one cache
block allowing one block movement to satisfy many misses.
Therefore, CaL plays a key role in the many-core and data-
intensive computing era. In the next section, we will formally
quantify the impact of CaL on keymetrics ofmemory systems.

4 IMPACT OF CAL ON MEMORY SYSTEM

PERFORMANCE

Access per memory active cycle (APC) [50] and average
memory access time [52] are two basic metrics that measure
memory system performance and can be used in each layer
of the hierarchy. CaL can considerably impact both APC
and AMAT. To achieve high data access performance,
under bandwidth (B) constraint, we want to maximize APC
and minimize AMAT. Understanding the impact will allow
better design of the memory hierarchy, which is locality-
centric and concurrency-aware.

By definition [46], data access concurrency C is equal to
Eq. (5).

C ¼
XT

i¼1

Ci � 1

T
(5)

In Eq. (5), T is the total number of memory active cycles.
In each memory active cycle, the number of outstanding
accesses is Ci (Ci � 1). The physical meaning of C is the
average number of accesses in a memory system during a
memory active cycle.

Here, an important issue is how to select the T value. To
address this issue, we first need to decide how to count the
cycles and how to identify the number of the counted cycles.

For counting cycles, please recall that “memory active
cycles” [50] is used in C-AMAT and APC for memory mea-
surement. This seems to be a natural choice, if you think from
amemory-centric or data-centric viewpoint. But, traditionally
we have been using CPU cycles for memory performance.
Note that not every CPU cycle is a memory active cycle. Only
when a cycle has at least one memory access, this cycle is
referred to as memory active cycle. For example, during a 20
CPU cycle period, the CPU has issued two data access
streams. The two access streams have the same number of
data accesses. The first access stream, however, completes the
data accesses in one cycle with a combined optimization of
locality and concurrency. The second access stream, due to its
inherited data access pattern, finishes the data accesses in ten
cycles. The T value, then, of the first stream is one, while the T
value of the second stream is ten. As a result, due to the differ-
ence of their inherited data access patterns, C and CaL of the
first request are 10x larger than those of the second request.

The size of the time window T should be carefully chosen.
Window size too small cannot reflect the stable state of the
program.Window size too large cannot facilitate fine-grained
optimization. In our practice, we set T as 1M cycles. That is,
the performance parameters are updated and outputted every
1 million cycles. Programs’ behaviors usually change every
hundreds of millions of cycles. Therefore, the T size selected
is small enough to adapt to the program’s dynamic behavior.

The CaL metric and other metrics, AMAT, B, APC, can be
applied in different levels, include thread-level, socket-level,
node-level and system-level. Aided by PAPI and HPCtool-
kit, the performance counter values can be collected for a
given thread or a group of threads on one or more sockets or
nodes. This property is valuable for programmers to conduct
data access optimization for their applications.

HPCToolkit has an option ”–force-metric”, which can be
enabled to force hpcprof to show all thread-level metrics.
Programmers can use the “-t” option to set the id of the
threads. In our case, we have used the option to calculate
more complex metrics (i.e., CaL, APC, AMAT, and B).

Depending on the level of interest, themeasuredparameters
can be used directly or need to be usedwith some simple sum-
mations. The N value in Eq. (3) means the number of L1
accesses. If CaL is for a single thread, N is the value of event
“L1 accesses” of the given thread. If CaL is formultiple threads,
N is the sum of event “L1 accesses” value of each given thread.
Other parameters such as g in Eq. (3) are measured and calcu-
lated in a similar manner. Note that inmainstream commercial
processors, there exist several performance counters per core
(e.g., 11 counters per core for Intel Xeon E5 processors), which
make themeasurement feasible.

4.1 Impact of CaL on APC

Theorem 1 shows the relation of APC and CaL. It also
reveals the role of (network/bus) bandwidth in memory
system performance.

Theorem 1. APC of a memory layer is the product of its lower
layer’s Bandwidth and CaL as given in Eq. (6).

APC ¼ B � CaL (6)

Fig. 3. B decreases with CaL when C and AMAT are fixed.
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Proof. Assume there are N outstanding data accesses dur-
ing any given consecutive T memory active cycles accord-
ing to the definition of APC [50], we get

APC ¼ N=T (7)

Recalling the definition of bandwidth is “the rate of
data transfer, measured in bits per second [41], we can
express B as follows.

B ¼ g�K

T
(8)

Then, based on Eq. (3), we have Theorem 1. tu
Corollary 1. When Bandwidth is fixed, increase CaL will

increase APC.

Proof. Corollary 1 is a direct result of Theorem 1. tu
Wang and Sun have proved that increasing APC will

improve IPC [50]. For data intensive applications, the
improvement of APC can increase IPC significantly. As
shown in Eq. (9), Wang and Sun [50] define an application
is data intensive if and only if its correlation coefficient of
APC and IPC is equal to or larger than 0.9.

Data Intensive; Application � coeðAPC; IPCÞ � 0:9 (9)

From memory system perspective, improving APC is
equal to optimizing performance. The question remain to be
answered is how to increase APC under different condi-
tions. Theorem 1 shows that with more available bandwidth
and higher concurrency-aware locality, more APC can be
achieved.

From Eq. (6) and Eq. (9), we can derive the relationship
between CaL and IPC into Eq. (10).

Data IntensiveApplication � coeðB� CaL; IPCÞ � 0:9

(10)

CaL plays a vital role in efficiently utilizing the valuable
bandwidth. The memory bandwidth should not be over-
utilized nor under-utilized. If bandwidth is over-utilized,
the contention among data accesses will be severe. If band-
width is under-utilized, data access concurrency cannot be
maximized for better performance.

In the following section, we will consider the impact of
CaL on AMAT.

4.2 Impact of CaL on AMAT

Theorem 2 gives the relation between CaL and AMAT.

Theorem 2. During any given consecutive T memory active
cycles, AMAT equals to the ratio of Concurrency over the prod-
uct of Bandwidth and CaL, as shown by Eq. (11).

AMAT ¼ C

B� CaL
(11)

Proof. Assume the number of concurrent data accesses is N
and the number of memory active cycles is T .

The summation of concurrency degree in each mem-
ory active cycle during the period of T, is the total time
that would be taken when concurrency does not exist,
which is referred to as serial time. If all the accesses are
conducted serially, the total time required is N �AMAT .

Therefore, we have

XT

i¼1

Ci ¼ N �AMAT (12)

Recalling the definition of APC,

APC ¼ N=T (13)

we get

N ¼ APC � T (14)

Combinning Eq. (12) and Eq. (13), we obtain that

XT

i¼1

Ci ¼ T �APC �AMAT (15)

That is,

1

T

XT

i¼1

Ci ¼ APC �AMAT (16)

Recalling the definition of C in Eq. (5), we have

C ¼ APC �AMAT (17)

Combining Theorem 1 and Eq. (17), we have

C ¼ B� CaL�AMAT (18)

tu
With Theorem 2, we have the following useful corollary 2

for the relation between Concurrency and CaL.

Corollary 2.When Bandwidth is fixed, to avoid AMAT increase,
CaL should increase proportionally with Concurrency, C.

Proof. Corollary 2 is a direct result of Theorem 2. tu
Theorem 2 connects latency and bandwidth (B), with

concurrency (C) and concurrency-aware locality (CaL). The
bandwidth of a memory system has its upper bound due to
physical constraints, so B may be very low. Moreover, a
memory system can simultaneously handle many active
data accesses, so C may be very high. As a result, according
to Theorem 2, AMAT would be very long due to the high
concurrency degree and low available bandwidth. How-
ever, theorem 2 tells us a new direction to reduce AMAT by
improving CaL. Based on Theorem 2, algorithm 2 is pre-
sented for shortening AMAT.

Theorem 1 and 2 can be applied in both single-thread and
multi-thread environments, single-core and multi-core envi-
ronments, and in single-node andmulti-nodes. All themodels
discussed above (i.e., AMAT, C, B, and CaL) can bemeasured
in each level of the memory hierarchy, and can be applied for
optimizing individual performance or group performance. If
we concern the performance of a given thread, we can attach
a threadID to each of its data access and then obtain its indi-
vidual values of AMAT, C, B, and CaL for that given thread.
If we concern the average performance, then there is no need
of threadID. We can measure the memory performance as all
threads coming from the same program, and get the values as
usual. In either case, Theorem 1 and 2 hold true.

Theorem 1 and 2 are applicable in both sing-node
and multi-node environments. In a multi-node cluster
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environment, the tasks in algorithm 1 and 2 can be distrib-
uted across multiple nodes. In a distributed memory envi-
ronment, remote memory (memory located under other
nodes) can be considered as another layer of the memory
hierarchy. The interconnection network controller of a node
can collect the model values for remote memory accesses.
Therefore, all the theoretical/analytical results of single-
node memory hierarchy can be applied to distributed mem-
ory environments.

The CaL model is designed for performance optimiza-
tions. Theorem 1 and 2 accurately show that a desired
increase in CaL causes a desired increase in APC, and
a decrease in AMAT. Once APC and/or AMAT can be
improved,memory systemperformance and overall comput-
ing system performance in instructions per cycle (IPC) can be
improved. Therefore, both theorem 1 and 2 suggest it is nec-
essary to improve CaL for performance optimization. In the
next two sections, we show increasing CaL can improve
memory performance. In Section 5,we show the effectiveness
of CaL for big data applications. In Section 6, we show how to
improve CaL systematically under different conditions.

5 CAL-DRIVEN SOFTWARE OPTIMIZATION CASE

STUDY

In this section, we conduct a case study on big data bench-
marks running on a sever cluster of Intel Xeon E5-2630 pro-
cessors. Table 3 shows the configuration of the experimental
system, which consists two Intel Xeon E5-2630 chip multi-
processor sockets. Experimental testing and case study can
be conducted on a real machine or a simulator (we have con-
ducted three case studies on simulator in the next section). In
either way, the CaL testing and optimization is a challenging
task. On a real machine, we cannot change the hardware, so
we only can increase CaL via software approach, which
means changing the algorithm or the implementation of the
algorithm. A good optimization requires the in-depth under-
standing of the targeted applications (algorithms), in addi-
tion to the understanding of the underlying hardware
support and the concept of CaL. Also, the optimization is
case by case. It is for the targeted application only, and may
ormay not be extendable to other applications.

Conducting experimental testing on a simulator is more
flexible, in the sense that we can change the hardware config-
urations. But, on the other hand, simulator is very slow [5], so

it is difficult to run large benchmarks. We measured that the
speed of GEM5 is about 50�500 KIPS (Kilo Instructions Per
Second), whereas the execution speed of an actual computing
system is in the order of 106 to 107 KIPS. Even simulating a
relatively small program that takes one minute to execute
requires approximately one month to a year to simulate.
Note that the simulation using GEM5 in Section 6 takes us 6
weeks to finish the evaluation of hardware designs on an
Intel Xeon E5 cluster, which includes 320 cores (16 nodes,
two CPU sockets per node, and 10-core per socket).

In this case study, we profile the banchmarks from Big-
DataBench. BigDataBench [18] is for large footprint work-
loads, modeling typical big data application domains:
search engine, social networks, e-commerce, multimedia
analytics, and bioinformatics.

Hardware counters, PAPI [15], HPCToolkits [16], Perfex-
pert [17], are used to identify the bottlenecks and their
memory access patterns. A code segment that consumes a
significant portion of total running time is referred to as hot-
spot. In our experiments, for each benchmark, hotspots that
take at least 5 percent of the running time are indentified.
Table 4 shows the indentified hotspots.

Fig. 4 shows the CaL values of hotspots of the bench-
marks from BigDataBench. In the Intel Xeon E5 processor,
the cache line size is a constant (64 B), so we use RaL to
represent CaL. Fig. 5 shows the memory stall degrees of
these hotspots. It shows that the CaL value of code segment

TABLE 3
The Experimental System Configuration

CPU chip Intel Xeon E5-2630 v4

Chip socket number 2
Cores per chip socket 10
Threads per core 2
L1 dcache and L1 icache latency 4 cycles
L2 cache latency 12 cycles
L3 cache latency 40 cycles
DRAMmemory latency 150 cycles
CPU freqency 2.2 GHz
FP latency 2 cycles
FP slow latency 18 cycles
TLB latency 45 cycles
Number of Memory channels 4
Capacity per channel 16 GB

TABLE 4
Hotspot Code Segments of Bigdata Benchmarks

ID Name Footprint ID Name Footprint

1 mpi-K-means 0.80 GB 10 omp-K-means 224.45 GB
2 mpi-K-means 53.73 GB 11 omp-K-means 0.256 GB
3 Bayes-predict 1.56 GB 12 Pagerank 2.72 GB
4 Bayes-predict 6.56 GB 13 Pagerank 0.704 GB
5 Bayes-predict 0.83 GB 14 Pagerank 0.16 GB
6 Bayes-train 1.76 GB 15 Wordcount 2.24 GB
7 Bayes-train 6.84 GB 16 Wordcount 4.96 GB
8 Bayes-train 0.74 GB 17 Wordcount 3.81 GB
9 omp-K-means 648.78 GB

Fig. 4. CaL values of different benchmarks from BigDataBench. Note
that in the experimental platform, the cache line size, K, is a constant
(64B), so we use RaL value to represent CaL.
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�9 �10 �12 �13 �14 is very low, where the memory stall degrees are
also low. Note that the CaL value of �9 is only 2.78, which
means one off-chip data movement only meets 2.78
accesses. In comparsion, �15 from wordcount benchmark has
a CaL value of 62,024.

The code segment �9 is the first hotspot of K-means algo-
rithm implemented in the OpenMP programming model.
This hotspot takes 75.84 percent of the total workload run-
ning time. The main step of K-means algorithm is searching
the nearest cluster center for each object and calculating
new cluster centers. Multiple threads process the data con-
currently to explore data parallelism. Each thread processes
part of the data elements, searching their nearest cluster
center and calculating the sum of these elements (the aver-
age value will be calculated in main thread).The hotspot of
K-means is shown below:

#pragma omp parallel shared(...)
f
int tid = omp_get_thread_num();
#pragma omp for
for (i = 0; i<numObjs; i++) f
index = find_nearest_cluster(numClusters, numCoords,
objects[i], clusters);
...
membership[i] = index;
...
local_newClusterSize[tid][index]++;
for (j = 0; j<numCoords; j++)
local_newClusters[tid][index][j] += objects[i][j];

g
g

In this piece of code, the data accesses for two arrays
named objects and membership have low temporal locality.
During the loop, the data size of the two arrays are
very large. As a result, the data (local newCluster and
local newClusterSize) with high temporal locality are
pushed out of the cache frequently. To avoid that, the above
code can be splited into two parts. The first part searches the
nearest cluster centers, and stores it into the array named

membership. The second part updates new cluster centers.
The optimized code is shown below:

#pragma omp parallel shared(...)
f
int tid = omp_get_thread_num();
#pragma omp for
for (i=0; i<numObjs; i++) f
index = find_nearest_cluster(numClusters, numCoords,
objects[i], clusters);
...
membership[i] = index;
...
g

#pragma omp for
for (i = 0; i<numObjs; i++) f
index = membership[i];
local_newClusterSize[tid][index]++;
for (j = 0; j<numCoords; j++)
local_newClusters[tid][index][j] += objects[i][j];

g
g

After optimization, the data local newClusterSize
and local newClusters can mostly stay in on-chip caches
without thrashing, so the efficiency of this code segment
has been improved. Due to the optimization, the CaL value
is changed from 2.78 to 126.4, and the total running time of
the K-means benchmark has been reduced from 123.26 s to
39.43 s. That is, the CaL-driven software optimization has
boosted performance of K-means by 3.12-fold.

As the K-means benchmark is a well-studied benchmark,
the 3.12 speedup is amazing and has shown the effect-
iveness of CaL-driven software optimization. Besides the
optimization method used on K-means, other software
approaches can be developed for other benchmarks follow-
ing the hints provided by the two theorems. In the next
section, we use the GEM5 simulator for case studies, where
hardware can be changed for performance optimization.

6 CAL-DRIVEN HARDWARE OPTIMIZATION CASE

STUDIES

The case studies given in this section focus on improving
CaL, based on its formulation in Eq. (3). The optimizations
will improve CaLwithout increasing the bandwidth require-
ment B. Note that, Eq. (3) includes three parameters. Each of
the following three case studies will focus on improving one
parameter while keeping the other two fixed.

� Given a fixed data block number g, and data access
numberN , case study I decreases cache block sizeK.

� Given a fixed data block number g, and cache block
sizeK, case study II increases data access numberN .

� Given a fixed cache block size K, and data access
number N , case study III decreases data block num-
ber g.

As shown in Fig. 6, CaL can guide hardware optimiza-
tion, workload characterization and code optimization. In
this section, we will focus on hardware optimization where
application workload characterization is also involved. The
code optimization will be discussed in Section 6.

Fig. 5. Memory stall degrees of different benchmarks from
BigDataBench.
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We use the modern cycle-accurate simulator GEM5 [5]
for our study. In our simulator, as shown in Table 3,
we model a many-core processor where each core is with
4-way issue, out-of-order superscalar, and a 128-entry reor-
der buffer. The memory hierarchy configuration is similar
to that of an Intel Xeon processor [33]. The detailed out-of-
order CPU model and the DRAMSim2 module in the GEM5
simulator are integrated. In our experiments, as shown in
Table 4, we executed the SPEC CPU2006 benchmarks [45]
with reference input sets. The benchmarks are compiled
using GCC 4.3.0 and the -O3 optimization level.

SPEC CPU2006 benchmarks are not big data bench-
marks. They are not as data intensive as big data bench-
marks. So, the CaL performance gain on SPEC benchmarks
is smaller than that on BigData Benchmarks. However,
SPEC is easy to be runned in simulators and serves a good
purpose to demonstrate CaL hardware optimization meth-
ods that cannot be conducted on real machines.

For each benchmark, we use 10 billion representative
instructions aided by SimPoint [22]. SimPoint uses the
phase clusterings generated by the off-line analysis to intel-
ligently choose where to simulate. Therefore, Simpoint can
help conduct efficient and accurate program analysis and
architecture simulation, and several researchers in acade-
mia and at Intel are using SimPoint to accurately guide their
architecture simulation research. In our study, we use
Simpoint to find 64 phases that are the most representative
to simulate. The data in the case studies are presented for
phases randomly selected within the 64 phases.

6.1 Case Study I: CaL-Driven Dynamic Data Block
Size

In this case study, we will consider using CaL to decide the
optimal data block size. In hierarchical memory systems, the
transfer units of data request and reply are different; a word
is requested by a load or store operation, but the word is car-
ried in by a cache block (line). If the cache block can be reused
multiple times, one data movement can support multiple
data accesses. A larger cache block generally consumes more
bandwidth but can presentmore reuse opportunities for later
accesses and thus the AMAT would be shorter if the locality
is stronger. Therefore, depending on the locality, the effect of
cache block size plays a key role in the tradeoff between
bandwidth B and latency AMAT. Moreover, because differ-
ent workloads can have distinct behaviors and even the
sameworkload can have different phases, a fixed cache block
size generally cannot achieve the finematching between data
access patterns and the underlyingmemory system.

Different implementation methods can be used to
achieve the effect of dynamic block sizes [9], [19], [21]. For

example, Gupta emulated large block size by augmenting
the cache with next-n-line prefetching [21]. Dubnicki used
split and merge operations executed by a protocol [19].
However, it is difficult to decide when to use large cache
block and which block size is optimal.

This issue is especially challenging to solve during appli-
cation runtime, since data access patterns are dynamic.
Gupta et al. used GPU to analyze off-line data access traces
and plotted the locality values in a 3-D mesh [21]. Insights
from the 3-D mesh can help determine optimal block sizes.
In this work, a lightweight on-line optimization is con-
ducted without any prior knowledge or off-line analysis.
We use CaL to classify data access patterns and decide the
optimal cache block size.

When the data access pattern has strong CaL so that
enough bandwidth is available, a large cache block size is
preferred. However, when the CaL of the data access pat-
tern becomes poor leading to insufficient bandwidth, a
short cache block size is preferred.

As shown in Fig. 7, the number of blocks needed (i.e.,
working set size) decreases as we increase the cache block
size. However, the B requirement increases with the cache
block size, as shown in Fig. 8. Therefore, we can find the
optimal cache block size that maximizes the APC (i.e., B �
CaL) during this period. Fig. 9 shows CaL values, in which
the 16-byte cache line size achieves the best bandwidth effi-
ciency for the selected data access pattern.

During application runtime, each phase has its preferred
cache block size. As shown in Fig. 10, we randomly selected
seven phases, which have different CaL values under four

Fig. 6. CaL-driven optimization framework.

Fig. 8. Bandwidth utilization for different cache block sizes during a ran-
domly selected phase.

Fig. 7. Working set sizes for different cache block sizes during a ran-
domly selected phase.
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cache block sizes. As shown in Fig. 11, different phases
require different cache block sizes to achieve optimal perfor-
mance. For phase I, IV, V, VI, the least amount of time is spent
when cache block size equals 64 B while for others 32 B does
the best. We see for phases, such as II and VII, 64 B is beaten
by 32 B in terms of IPC due to high bandwidth consumption.
Thus, we design a methodology for dynamic cache block
sizes in order to have the optimal size for different data
access pattern phases which are characterized by CaL.

As shown in Fig. 12, we use pattern directed prefetching
to implement a dynamic cache block size. With the CaL and
C runtime profiling information, we prefetch the next sev-
eral cache blocks with the 16 B basic cache block size into a
stream buffer. For example, when a 128-byte data block is
needed, we prefetch the next 7 cache blocks. When a miss
occurs in L1, say at address A, the stream buffer immedi-
ately starts to prefetch the next several cache blocks. We
divided the CaL values into eight grades from low to high,

0-7, which is the number of blocks needed to prefetch. Sub-
sequent accesses check the head of the stream buffer before
going to L2. Similar design of stream buffer can be seen
in [21], but our experiment is completely driven by CaL and
thus is easy to implement.

The stream buffer consists of 7 entries, and zero entry
will be used when the minimal block size is preferred. Each
entry consists of a tag, an available bit, and a data block.
When a miss occurs, according to the CaL value, the stream
buffer begins prefetching zero to seven successive blocks
starting at the miss target. Note that the prefetched cache
blocks are placed in the stream buffer not the cache. This
avoids polluting the cache with data that may never be
needed. Subsequent accesses to the cache also compare their
address against the items stored in the buffer. If a reference
misses in the cache but hits in the buffer, the cache can be
reloaded in a single cycle from the stream buffer. In this
manner, we are able to emulate different cache block sizes
without changing the cache configuration. Even when only
implemented for the L1 data cache, the performance can be
improved by an average of 8.39 percent, and at best by 12.6
percent, as shown in Fig. 13.

We have replaced CaL detector with L detector to do the
same optimization, and found that L-driven optimization
can also achieve performance improvement. However, as
shown in Fig. 13, there only exists 2.41 percent improve-
ment on average, and at most 3.92 percent. Compared with
L, CaL obtains a much better performance due to its unique
ability of reflecting the combined effect of concurrency and
locality on bandwidth.

Fig. 9. CaL values for different cache block sizes during a randomly
selected phase.

Fig. 10. CaL values with different cache block size during seven ran-
domly selected phases.

Fig. 11. IPC values with different cache block size during seven ran-
domly selected phases.

Fig. 12. CaL-driven prefetching.

Fig. 13. IPC improvement of different applications.
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We also have replaced CaL detetor with MR detector to
repeat the same experiment. However, MR detector cannot
achieve performance improvement, making IPC less than
before for all the applications. This verifies that MR cannot
reflect the locality among the cache misses.

6.2 Case Study II: CaL-Driven Dynamic MSHR

Miss status handling registers (MSHRs) are structures
added in non-blocking cache to facilitate memory level par-
allelism. MSHRs are needed to support concurrency C> 1.
MSHRs keep track of outstanding misses. Each MSHR con-
tains enough state to handle one or more accesses to a single
memory line.

CaL is directly influenced by MSHR, which can be used
as a floodgate for data access flow between cache layers.
Each MSHR contains information about a particular miss to
a given cache line. Each target within a MSHR contains
metadata information such as the word requested in the
cache line and the thread which requested the word. When
a miss occurs for a cache block, the MSHR is scanned to see
if this is the first miss to the cache block. If so, a new MSHR
is allocated. If a previous miss has already occurred for the
same cache block, the miss will be allocated a target in the
cache block’s MSHR. Thus, the number of allocated targets
per MSHR is proportional to the miss locality, and the num-
ber of allocated targets of all the MSHRs is proportional to
the miss concurrency.

There exist three cases for the utilization of MSHR: no
locality, that is, each block loaded into the cache satisfies only
one access; high locality, that is, each block loaded into the
cache can simultaneously satisfy many accesses; and inter-
mediate locality, which falls between the former two cases.

In state-of-the-art processors, due to high register cost,
the number of targets per MSHR is fixed, which can be a
performance bottleneck. For this issue, James et al. pro-
posed a hierarchical MSHR structure [48]. Driven by CaL,
we present a simpler design that dynamically modifies the
number of targets per MSHR. In terms of the CaL model,
the number of blocks, g, and block size, K, will remain fixed
while the number of concurrent misses, N, increases. The
number of MSHRs will be represented by g, since the num-
ber of MSHRs equals the number of requested blocks.

We propose a pattern directed dynamic MSHR(PDDM)
which allows multiple MSHRs to share targets. We ana-
lyzed the variation in MSHR allocation and target alloca-
tion. When the number of allocated targets for an MSHR is
high, most of the other allocated MSHRs have few allocated

targets. A cache miss needs to wait to be serviced when
either targets or MSHRs are not enough. PDDM provides
higher quality of service by stealing the targets of other
MSHRs, since the other MSHRs achieve low locality and
they have unused targets. Since misses must wait to be
served, a simple solution would be to create miss handling
structure with more MSHRs and more targets per MSHRs.
However, this is not a practical solution due to hardware
constraints. Thus we need to provide a higher performing
dynamic MSHR without increasing hardware costs.

We enhance the conventional MSHR structure to imple-
ment PDDM, which allows a larger amount of miss concur-
rency at the same hardware cost. As shown in Fig. 14, a
dynamic MSHR includes a private target field and a shared
target field. Each miss access corresponds with a MSHR in
the PDDM structure, beginningwith a “Valid” field showing
whether the MSHR is used or not and a private target field,
containing a number of private targets. The “Next” field falls
between private field and shared field, and stores a link that
points to another MSHR. The link is allocated when private
targets have been used up. Note that a “Target/Link” pair
fills the rest of the line. “Link” field in the Target/Link pair
identifies the next “Target/Link” pair, which it links to,
allowing the pairs to be organized as a singly linked list. All
unused pairs make up a list as the free shared field. During
application runtime, initially, the elastic target MSHR struc-
ture behaves as usual. When the private target field over-
flows, the free public target zone allocates an unused
“Target/Link” pair to store the new target.

The two main improvements of PDDM are improved
capability of tolerating a high amount of misses without
increasing the register hardware cost. To better explain the
role of theorem 1 in the design of the dynamic MSHR,
Fig. 15 shows the memory bus utilization for the different
cases shown in Table 5. As the number of MSHR entries
(i.e., the parameter g) increases from configuration S1 to S8,
the memory bus utilization rapidly increases, however the
number of targets does not affect bus utilization. The
PDDM uses this fact by allowing more targets to be allo-
cated, holding more concurrent misses, and minimally
increasing bandwidth.

Note that the MSHR lookup latency varies each time,
depending on the data access patterns. This variation does
little in influencing data access performance, since lookup
operations are carried out very fast by hardware.

Theorem 2 is used to guide the optimization. We run four
applications at the same time. These application interfer-
ence each other on the shared bus, which can hurt their
performance severely.

Fig. 14. Pattern directed dynamic MSHR (PDDM).

Fig. 15. Memory bus utilization ratio.
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Higher concurrency demands higher bandwidth when
CaL is low, and thus the bandwidth contention may become
heavier (AMAT will be longer). Therefore, higher concur-
rency does not always bring in higher performance, espe-
cially when many applications running together on shared
resources.

Fig. 16 shows the overall performance in IPC as well as
CaL and C values of various MSHR structures. Compared
to infinite static configuration S8, the newly proposed
PDDM (configuration D2) achieves 15.9 percent perfor-
mance improvement in terms of IPC. Compared to S3, D2
achieves 7 percent improvement. D2 only uses 16 targets
that are only 25 percent of that S3 used. Although S8 uses
much more hardware than S3 and D2, its performance is
not better. This tells us that more hardware does not always
imply better performance if the hardware does not match
the application’s need. Performance tools, such as CaL, can
help us to find a match.

The goal of the PDDM is to increase the concurrency and
locality while minimizing the increase in bandwidth. The
C/CaL of S8 is 1.56, while C/CaL of D2 is 1.2. This will
decrease AMAT by 16 percent on average based on Theo-
rem 2 and result in improved memory performance.

The C/CaL of S8 is high because configuration S8 can
allow for a large amount of concurrent outstanding misses
but since the locality of these misses is not large the band-
width consumption is increased. Thus, misses take longer
to fetch and thus IPC suffers. This suggests that simply issu-
ing as many concurrent misses as possible is not optimal
since bandwidth will be insufficient and requests will

become queued. PDDM uses CaL to limit the increase in
bandwidth which occurs when concurrency is increased,
allowing the structure to handle high amount of concurrent
misses efficiently.

6.3 Case Study III: CaL-Driven Selective Cache
Array

In this case study, we use CaL to classify data access patterns
from many cores and then to reduce the interference among
multiple applications by cache array selection. Running sev-
eral independent applications on many-core processor are
common in a wide range of computing platforms. A repre-
sentative example is the simulation program for design
space exploration in science and engineeringwhere the same
simulation program is runwith different input data sets.

To reduce main memory interference in multicore sys-
tems, Muralidhara et al. proposed to partition memory
channels among different applications [39]. In contrast to
partition memory channels, we provide a cache partitioning
structure for different data access patterns that are gener-
ated from many cores or threads.

According to the CaL and C values, we can classify data
access patterns into different phases. Allmemory active cycles
can be classified into four categories, H-H,H-L, L-H and L-L.

We randomly select four workloads with different data
access patterns, and measure their performance when they
run independently. Then we run any two of them simulta-
neously, and get the performances under interference. We
can get the speed ratio between the performances with or
without interference for each workload. As shown in Fig. 17,
we can see that the same type of data access patterns do not
significantly interfere with each other; however, the four pat-
terns, once combined, can severely interfere with each other
and cause the cache pollution. In particular, L-H patterns can
significantly impact other data access patterns.

Based on these observations, as shown in Fig. 18, we par-
tition the whole cache into four different cache arrays. The
cache controller wisely selects its cache arrays according to
the data access pattern features. When there exist four types
of patterns, each cache array is responsible for processing
only one type of data access pattern. When some types of
the patterns do not exist, their corresponding cache arrays
will be used for other types of patterns.

For the L-H data access patterns, its desired cache array
has large capacity because the data block has little opportu-
nity to be reused in a short future. If the capacity is small, a

TABLE 5
Different MSHR Structures

Structure #MSHRs #targets per MSHR

S1 1 64
S2 2 32
S3 4 16

Static S4 8 8
Structures S5 16 4

S6 32 2
S7 64 1
S8 128 128

D1 4 Dynamic (1–8 targets)
Dynamic D2 4 Dynamic (1–16 targets)
Structures D3 16 Dynamic (1–16 targets)

D4 16 Dynamic (1–32 targets)

Fig. 16. IPC values of different MSHR structures.

Fig. 17. Interference between data access patterns.
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large number of conflict misses will occur. Also, more chan-
nels are needed to meet the high concurrency requirement.
For the L-L patterns, large capacity and low concurrency
are required. For the H-H patterns, smaller capacity and
more channels are needed. For the H-L patterns, smaller
capacity and fewer channels are provided. It is sensible to
use on-demand capacities to accommodate different work-
ing sets of diverse patterns to reduce cache pollution, and it
is sensible to let on-demand channels to move data in paral-
lel without destroying their inherent parallelisms.

As shown in Fig. 19, the data block movements of the
applications have been reduced on average by 21.1 percent,
at best by 32.4 percent. That is, given a fixed block size K
and access number N , selective cache array decreases the
number of data movements g, and thus CaL has been
improved. Fig. 20 shows that system performance IPC
can be improved on average by 12.7 percent, and at best by
16.6 percent for the bwaves benchmark.

We have also used L and C to conduct the same classifi-
cation and optimization. As shown in Fig. 19 and 20, the
two types of classification have significant performance dif-
ference, which again verify that CaL can reflect concurrency
aware locality more accurately than L.

7 DISCUSSIONS

In this section we further discuss the usage of CaL, and
present more future optimization directions.

7.1 Usage of the CaL Model

Memory wall is the killer of computing system perfor-
mance. Memory wall refers to the performance gap between

CPU and memory. Memory wall is caused by latency wall
and bandwidth wall. Latency wall is caused by the large
performance gap between different layers of a memory hier-
archy, while bandwidth wall refers to the limited number of
off-chip pins can be manufactured for transferring data.

The CaL model and its associated two theorems can drive
many optimizations for memory performance improve-
ments, which are not limited to the case studies given above.
Theorem 1 and 2 can be applied to each layer of a memory
hierarchy with that layer’s APC, CaL, AMAT, C and B. The
default metrics for whole memory system are measured in
L1. But all the five metrics can be applied and measured at
each layer of amemory hierarchy. Therefore, layered optimi-
zation can be done by following the same theorems.

Given a fixed bandwidth B, if CaL is not improved,
higher concurrency C will result in longer AMAT. This is
due to the delay caused by contention on shared resources,
including queuing delay, bus delay, etc. For each of the 28
benchmarks from SPEC CPU2006 [45], we sampled 10 bil-
lion instructions, and measured the AMAT and C values.
The 28 benchmarks are ranked in terms of AMAT (from
short to long) and C (from high to low), respectively. As
shown in Fig. 21, most of the applications are close to the
diagonal. We can see that without optimizations, current
applications rarely achieve short AMAT and strong C
simultaneously. For example, benchmark 458:sjeng has
highest C but has long AMAT; benchmark 998:specrand has
least AMAT but has low C. As we shown in Section 5, the
situation is much worse in big data applications. CaL is
timely important for big data applications.

Fig. 18. Pattern directed selective cache array.

Fig. 19. Reduction of g (the number of data blocks need to move) due to
selective cache array.

Fig. 20. Speedup ratio due to selective cache array.

Fig. 21. SPEC CPU2006 benchmarks rarely achieve small AMAT and
strong C simultaneously.
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Theorem 2 presents insight for reducing AMAT for large
working set applications which are common in the big-data
era. Applications with a large working set need to access
low level memory to get their data. In this case, the cache
miss rate is very large. To amortize single miss latency
caused by the widening memory wall, modern processors
allow multiple concurrent outstanding misses; the number
of concurrent misses can be represented by C in CaL. How-
ever, bandwidth B provides an upper bound on the number
of outstanding misses. As shown in Fig. 22, when locality is
low and bandwidth approaches its upper bound, any fur-
ther decrease in CaL will make AMAT increase signifi-
cantly. Additionally, increasing concurrency C of misses at
this time will further increase AMAT. The insights here are
that: (1) Enabling higher memory concurrency does not
always bring better performance. (2) When the bandwidth
wall impact is significant, optimizations should focus on
improving CaL rather than increasing C.

Improving CaL can reduce bandwidth utilization allowing
higher miss concurrency. However, such optimizations can-
not be done with miss rate since it does not directly relate to
concurrency or bandwidth. For example, Fig. 23 shows miss
rate and the percentage of low CaL. A low CaL means each
cache miss will require a cache block to be fetched causing a
direct effect on bandwidth.We can see that the two curves are
inconsistent, and we can conclude that improving miss rate
cannot provide the same benefits as improvingCaL.

7.2 Future CaL-Driven Optimization Directions

The three case studies in Section 5 only exemplify CaL-
driven hardware optimizations. Other optimization direc-
tions exist to be explored such as:

Evaluating and enabling current techniques: During the past
decades, many techniques have been proposed for optimiz-
ing distinct components or features of a memory system.
Such kind of specific techniques can be deemed a toolkit or
a technique pool of CaL optimizations. One instance is disk
defragmenter [25] which is designed to increase access
speed by rearranging files stored on a disk to occupy contig-
uous storage locations. These existing techniques can be
evaluated and selectively enabled with the newly proposed
CaL and its associated theorems introduced in this study.

Labeling and reorganizing data: Based on CaL, data can be
classified into high CaL data (termed as dense data) and low
CaL data (termed as sparse data). Justin et al. used record
access frequencies to identifying hot and cold data [32]. We
plan to cluster the hot data to reduce the working set size to

let this type of data reside in on-chip memory. We also plan
to cluster the cold data to reduce the bandwidth require-
ment; however, it may not be necessary to let them reside in
the on-chip memory. As such, for dense-hot, dense-cold,
sparse-hot and sparse-cold data, algorithms can be designed
to adaptively process them, respectively.

8 RELATED WORK

The study of locality goes back about half a century ago
when Denning established working set theory in 1968 [12],
[13], and Mattson proposed LRU stack distance in 1970 [37].
Working set and reuse distance have served for a variety of
locality analysis. In the CaL model, working set size can be
denoted by parameter g, and the impact of reuse distance is
also considered. The working set theory presented a mis-
conception that good locality is deemed high hit rate which
is no longer always true due to the prevalence of data con-
currency in modern hierarchical memory systems. Fortu-
nately, the CaL model has avoided the side-effects.

Following the working set theory and reuse distance con-
cept, specific metrics were proposed. Weinberg presented
weighted stride in HPC application optimization [51]. Berg
et al. [4] and Gu et al. [20] proposed to quantify locality
based on measuring the change of miss rates or reuse dis-
tances. Anghel et al. proposed to use a probability distribu-
tion of reuse distance to quantify locality [1]. Although
these metrics are based on heuristics and lack of formal
mathematical definition [21], we have considered their
advantages when we developed the CaL model.

Ding and Xiang successfully discussed the relationships
among the five locality metrics: footprint, inter-miss time,
volume fill time, miss ratio and reuse distance [6], [14].
Although being based on a sequential data access trace, their
consideration is insightful for us to develop a concurrency-
awaremodel and link general memorymetrics together.

Jiang et al. realized the shortcoming of the traditional
reuse distance for sequential programs running on unicore
processors and proposed “concurrent reuse distance for
multithreaded programs [27]. The CaL model can also be
used in a multi-threaded environment, but has a clearer for-
mulation and is easier-to-use.

Gupta et al. quantified the data access locality as a condi-
tional probability [21], making the locality concept no longer
elusive. Gupta’s work enlightened us to employ conditional
expectation for modeling CaL. However, the research also
assumes an ordered list of data access traces, where data
access concurrency and the cost of data movement are not

Fig. 22. Impact of CaL on AMAT. Fig. 23. Inconsistence between Miss rate and CaL locality.
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considered. Moreover, their model requires a significant
amount of computation time, particularly for a large trace.
However, the CaL model introduced in our work does not
need trace-based computation, thus can be measured and
used online to capture the concurrency feature.

Aggarwal et al. explored the significant impact of memory
performance (in terms of bandwidth and latency) on the perfor-
mance of three specific types of applications [3]. Their experi-
mental results fit well to two theorems in our work, which
clearly show the elusive relationships within complex memory
systems and canmotivatemany newoptimizationmethods.

Memory Level Parallelism (MLP) [11] has been proposed
in recent years. MLP is a common memory metric and is the
average number of long-latency main memory outstanding
accesses when there is at least one such outstanding access.
MLP does not consider locality. WithMLP, we cannot derive
the relationship between general memory metrics directly.
In this paper, we have generalizedMLP to data concurrency,
C, that occurs in all the levels of the memory hierarchy, and
CaL is proposed for quantifying C-aware locality.

C-AMAT considers locality and concurrency at the same
time in optimizingdata access time [35], [46].Although the rela-
tionship between locality and concurrency is not explicitly con-
sidered in C-AMAT, it enlightens us to think about the
trueness of the conventional rule of thumb that high locality is
deemed lowmiss rate. Realizing that locality cannot completely
be reflected bymiss rate, we first distinguish between hit local-
ity andmiss locality and then redefined locality.

Compared to previous attempts on quantifying locality,
the advantages of the newly proposed CaL model include:
(1) CaL is a quantitative model with feasible measurements
and thus can be incorporated into engineering practices; (2)
the CaL model has a clear mathematical and physical mean-
ing, as shown through the theorems, with which we can
show the connection among bandwidth, concurrency, and
locality; and (3) the CaL model considers the data concur-
rency and the cost of data movement, which is important
for data-intensive computation in practice, not only in terms
of performance, but also in terms of power consumption.

9 CONCLUSION

Big data applications have put unprecedented pressure on
memory systems. Utilizing data locality and concurrency are
two vital methods to boost memory system performance.
However, while locality is a well studied subject, concur-
rency is a relatively new optimization method. They have
been mostly optimized separately in current theoretic analy-
sis and engineering practice. How does locality and concur-
rency influence each other and how to reach a balanced
optimization of locality and concurrency is still a subject of
study. The key contribution of this paper is an accurate defi-
nition and analytical formulation of locality with the consid-
eration of data concurrency. Therefore, existing locality
optimization methods can be applied to consider data con-
currency and to reach a balanced optimization of locality
and concurrency. We have derived the impact of the newly
proposed concurrency-aware locality (CaL) model on mem-
ory system performance. We observed that high locality
does not necessarily imply high cache hit rate (HR), since the
data accesses that have high reuse opportunity may all be

outstanding cache misses. The bandwidth and working set
size are significantly impacted by CaL.

The newly proposedCaLmodel, with its combined power
of locality and concurrency, can be used in various memory
optimizations. We conducted four CaL-driven case studies
in Section 5 and Section 6, with one case study to show the
effect of CaL on big data applications, and three on different
design approaches in dynamic block size, dynamic MSHR
structure, and selective cache array, to demonstrate how to
apply CaL in performance optimization. Experimental
results show that CaL-driven optimizations have achieved
significant improvement on final performance, a 3x speedup
in the K-means big data benchmark. These three case studies
given in Section 6 provide three different design approaches
to improvememory performance and are important research
results on their own right.

As future work, we plan to use CaL for the performance
optimization of data-intensive applications on GPGPU and
accelerators. In addition to the open problems and future
works mentioned in Section 6, more CaL-driven optimiza-
tions can be conducted to significantly improve perfor-
mance under highly concurrent environments.

ACKNOWLEDGMENTS

This work is supported in part by the National Science
Foundation, under grant CCF-1536079, CNS-1162540 and
grant CCF-0937877, the National High Technology Research
and Development Program(“863” Program) of China,
under grant 2015AA015303, the National Natural Science
Foundation of China, under grant 61521092, 61272132 and
61772497, and State Key Laboratory of Computer Architec-
ture foundation under grant CARCH2601.

REFERENCES

[1] A. Anghel, G. Dittmann, R. Jongerius, and R. Luijten, “Spatio-
temporal locality characterization,” in Proc. Workshop Near-Data
Process, 2013, pp. 1–5.

[2] A. Agarwal, K. Roy, and T. N. Vijaykumar, “Exploring high band-
width pipelined cache architecture for scaled technology,” in Proc.
Conf. Des. Autom. Test Europe, 2003, Art. no. 10778.

[3] A. H. A. Badawy, A. Aggarwal, D. Yeung, and C. W. Tseng,
“Evaluating the impact of memory system performance on soft-
ware prefetching and locality optimizations,” in Proc. Int. Conf.
Supercomputing, 2001, pp. 486–500.

[4] E. Berg and E. Hagersten, “Fast data-locality profiling of native
execution,” ACM SIGMETRICS Perform. Eval. Rev., vol. 33, no. 1,
pp. 169–180, 2005.

[5] N. Binkert, et al., “The gem5 simulator,” ACM SIGARCH Comput.
Archit. News, vol. 39, no. 2, pp. 1–7, 2011.

[6] C. Ding and X. Xiang, “A higher order theory of locality,” in Proc.
ACM SIGPLAN Workshop Memory Syst. Perform. Correctness, 2012,
vol. 48, pp. 68–69).

[7] S. Byna, Y. Chen, and X. H. Sun, “Taxonomy of data prefetching
for multicore processors,” J. Comput. Sci. Technol., vol. 24, no. 3,
pp. 405–417, 2009.

[8] M. J. Cade and A. Qasem, “Balancing locality and parallelism on
shared-cache mulit-core systems,” in Proc. IEEE Int. Conf. High
Perform. Comput. Commun., 2009, pp. 188–195.

[9] J. F. Cantin, M. H. Lipasti, and J. E. Smith, “Improving multipro-
cessor performance with coarse-grain coherence tracking,” in
Proc. Int. Symp. Comput. Archit., 2005, vol. 33, pp. 246–257.

[10] D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting inter-
thread cache contention on a chip multi-processor architecture,”
in Proc. Int. Symp. High-Perform. Comput. Archit., 2005, pp. 340–351.

[11] Y. Chou, B. Fahs, and S. Abraham, “Microarchitecture optimiza-
tions for exploiting memory-level parallelism,” in Proc. Int. Symp.
Comput. Archit., 2004, vol. 32, Art. no. 76.

LIU AND SUN: CAL: EXTENDING DATA LOCALITY TO CONSIDER CONCURRENCY FOR PERFORMANCE OPTIMIZATION 287



[12] P. J. Denning, “The working set model for program behavior,”
Commun. ACM, vol. 26, no. 1, pp. 43–48, 1968.

[13] P. J. Denning, “The locality principle,” Commun. ACM, vol. 48,
no. 7, pp. 19–24, 2005.

[14] C. Ding and Y. Zhong, “Predicting whole-program locality
through reuse distance analysis,” ACM Sigplan Notices, vol. 38,
no. 5, pp. 245–257, 2003.

[15] J. Dongarra, K. London, S. Moore, P. Mucci, and D. Terpstra,
“Using PAPI for hardware performance monitoring on Linux sys-
tems,” in Proc. Conf. Linux Clusters: The HPC Revolution, National
Center for Supercomputing Applications (NCSA), University of
Illinois, Urbana, EL, pp. 25–27, June 2001.

[16] L. Adhianto, et al., “HPCTOOLKIT: Tools for performance analy-
sis of optimized parallel programs,” Concurrency Comput. Practice
Experience, vol. 22, no. 6, pp. 685–701, 2009.

[17] M. Burtscher, B. D. Kim, J. Diamond, and J. Mccalpin, “PerfExpert:
An easy-to-use performance diagnosis tool for HPC applications,”
in Proc. IEEE Int. Conf. High Perform. Comput. Netw. Storage Anal.,
2010, pp. 1–11.

[18] L. Wang, J. Zhan, C. Luo, and Y. Zhu, “BigDataBench: A big data
benchmark suite from internet services,” in Proc. IEEE Int. Symp.
High Perform. Comput. Archit., 2014, pp. 488–499.

[19] C. Dubnicki and T. J. Leblanc, “Adjustable block size coherent
caches,” in Proc. Int. Symp. Comput. Archit., 1992, vol. 20, pp. 170–180.

[20] X. Gu, I. Christopher, T. Bai, C. Zhang, and C. Ding, “A compo-
nent model of spatial locality,” in Proc. Int. Symp. Memory Manage.,
Jun. 2009, pp. 99–108.

[21] S. Gupta, P. Xiang, Y. Yang, and H. Zhou, “Locality principle
revisited: A probability-based quantitative approach,” Inst. Elec-
tric. Electron. Eng., vol. 73, no. 7, pp. 1011–1027, 2012.

[22] G. Hamerly, E. Perelman, and B. Calder, “How to use simpoint to
pick simulation points,” ACM SIGMETRICS Perform. Eval. Rev.,
vol. 31, no. 4, pp. 25–30, 2004.

[23] N. Hardavellas, I. Pandis, R. Johnson, N. Mancheril, A. Ailamaki,
and B. Falsafi, “Database servers on chip multiprocessors: Limita-
tions and opportunities,” in Proc. Biennial Conf. Innovative Data
Syst. Res. OAI., 2007, pp. 79–87

[24] A. Inoue,. “On the worst conditional expectation,” J. Math. Anal.
Appl., vol. 286, no. 1, pp. 237–247, 2003.

[25] C. Jensen, “Fragmentation, the Condition, the Cause, the Cure,”
Exec Sftwa, 2004.

[26] K. J. Min, D. H. Yoon, D. Sunwoo, M. Sullivan, I. Lee, and M. Erez,
“Balancing DRAM locality and parallelism in shared memory
CMP systems,” in Proc. IEEE Int. Symp. High-Perform. Comput.
Archit., 2012, pp. 1–12.

[27] Y. Jiang, E. Z. Zhang, K. Tian, and X. Shen, “Is reuse distance
applicable to data locality analysis on chip multiprocessors?” in
Proc. Compiler Construction Int. Conf., 2010, vol. 6011, pp. 264–282.

[28] A. Kagi, J. R. Goodman, and D. Burger, “Memory bandwidth limi-
tations of future microprocessors,” in Proc. Int. Symp. Comput.
Archit., 1996, vol. 24, pp. 78–89.

[29] K.Kennedy andK. S.Mckinley, “Optimizing for parallelismanddata
locality,” inProc. ACM Int. Conf. Supercomputing, 1997, pp. 323–334.

[30] D. Kroft, “Lockup-free instruction fetch/prefetch cache organ-
ization,” inProc. 25 Years Int. Symp. Comput. Archit., 1998, pp. 195–201.

[31] G. Kurian, O. Khan, and S. Devadas, “The locality-aware adaptive
cache coherence protocol,” in Proc. Int. Symp. Comput. Archit.,
2013, vol. 41, pp. 523–534.

[32] J. J. Levandoski, P. A. Larson, and R. Stoica, “Identifying hot and
cold data in main-memory databases,” in Proc. IEEE Int. Conf.
Data Eng., 2013, pp. 26–37.

[33] D. Levinthal, “Performance analysis guide for Intel Xeon 5500
processors,” Intel Perform. Anal. Guide, 2009.

[34] Y. Li, B. Lee, D. Brooks, and Z. Hu, “CMP design space explora-
tion subject to physical constraints,” in Proc. 25th Int. Symp. High-
Perform. Comput. Archit., 2006, pp. 17–28.

[35] Y. Liu and X. Sun, “Reevaluating data stall time with the consider-
ation of data access concurrency,” J. Comput. Sci. Technol. vol. 30,
no. 2, 2015, Art. no. 227245.

[36] M. M. K. Martin, M. D. Hill, and D. J. Sorin, “Why on-chip cache
coherence is here to stay,” Commun. ACM, vol. 55, no. 7, pp. 78–
89, 2012.

[37] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation
techniques for storage hierarchies,” IBM Syst. J., vol. 9, no. 2,
pp. 78–117, 1970.

[38] J. Meng, J. W. Sheaffer, and K. Skadron, “Exploiting inter-thread
temporal locality for chip multithreading,” in Proc. IEEE Int.
Symp. Parallel Distrib. Process. 2010, pp. 1–12.

[39] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir, and
T. Moscibroda, “Reducing memory interference in multicore sys-
tems via application-aware memory channel partitioning,” in
Proc. IEEE/ACM Int. Symp. Microarchitecture, 2011, pp. 374–385.

[40] D. A. Patterson, “Latency lags bandwith,” Commun. ACM, vol. 47,
no. 10, pp. 71–75, 2004.

[41] R. Prasad, C. Dovrolis, M. Murray, and K. Claffy, “Bandwidth
estimation: Metrics, measurement techniques, and tools,” IEEE
Netw., vol. 17, no. 6, pp. 27–35, Nov./Dec. 2003.

[42] J. A. Rivers, G. S. Tyson, E. S. Davidson, and T. M. Austin, “On
high-bandwidth data cache design for multi-issue processors,” in
Proc. 30th IEEE/ACM Int. Symp. Microarchitecture, 1997, pp. 46–56.

[43] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Solihin,
“Scaling the bandwidth wall: Challenges in and avenues for CMP
scaling,” in Proc. Int. Symp. Comput. Archit. 2009, vol. 37, pp. 371–382.

[44] S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi, “Spatio-
temporal memory streaming,” ACM SIGARCH Comput. Archit.
News, vol. 37, no. 3, pp. 69–80, Jun. 2009

[45] C. D. Spradling, “SPEC CPU2006 benchmark tools,” ACM Sigarch
Comput. Archit. News, vol. 35, no. 1, pp. 130–134, 2007.

[46] X. H. Sun and D. Wang, “Concurrent average memory access
time,” IEEE Comput., vol. 47, no. 5, pp. 74–80, 2014.

[47] J. Torrellas, H. S. Lam, and J. L. Hennessy, “False sharing and spa-
tial locality in multiprocessor caches,” IEEE Trans. Comput.,
vol. 43, no. 6, pp. 651–663, Jun. 1994.

[48] J. Tuck, L. Ceze, and J. Torrellas, “Scalable cache miss handling for
high memory-level parallelism,” in Proc. IEEE/ACM Int. Symp.
Microarchitecture, 2006, pp. 409–422.

[49] H. M. Levy, J. L. Lo, J. S. Emer, R. L. Stamm, S. J. Eggers, and D. M.
Tullsen, “Exploiting choice: Instruction fetch and issue on an
implementable simultaneous multithreading processor,” Proc.
ACMSigarch Comput. Archit. News, vol. 24, no. 2, pp. 191–191, 1996.

[50] D. Wang and X. H. Sun, “APC: A novel memory metric and mea-
surement methodology for modern memory systems,” IEEE
Trans. Comput., vol. 63, no. 7, pp. 1626–1639, Jul. 2014.

[51] J. Weinberg, M. O. Mccracken, E. Strohmaier, and A. Snavely,
“Quantifying locality in the memory access patterns of HPC
applications,” inProc. ACM/IEEE SCConf. Supercomputing, 2005, p. 50.

[52] W. A. Wulf and S. A. Mckee, “Hitting the memory wall: Implica-
tions of the obvious,” ACM Sigarch Comput. Archit. News, vol. 23,
no. 1, pp. 20–24, 1995.

[53] Y. Zhong, X. Shen, and C. Ding, “Program locality analysis using
reuse distance,” ACM Trans. Programm. Languages Syst., vol. 31,
no. 6, pp. 1–39, 2002.

Yuhang Liu received the PhD degree in
computer science from the Beihang University,
Beijing, China. He is an associate professor in
the Institute of Computing Technology (ICT),
Chinese Academy of Sciences. He has been a
postdoctoral researcher in the Scalable Comput-
ing Software laboratory, Illinois Institute of Tech-
nology (IIT), Chicago. He is a member of the
CCF, ACM and the IEEE. His research interests
include high performance computing, computer
architecture, and memory performance optimiza-

tion. He is currently working on multi-core memory scheduling, partition-
ing and prefetching area to improve multi-core memory access
bandwidth utilization and minimize access latency.

Xian-He Sun is a distinguished professor in the
Computer Science, IIT. He is the director of the
Scalable Computing Software laboratory, IIT, an
IEEE fellow, the past Chairman of the Computer
Science Department of IIT, and is a guest faculty
in the Mathematics and Computer Science Divi-
sion, the Argonne National Laboratory. Before
joining IIT, he worked at DoE Ames National Lab-
oratory, ICASE, NASA Langley Research Center,
Louisiana State University, Baton Rouge. His
research interests include parallel and distributed

processing, memory and I/O systems, software systems, and perfor-
mance evaluation and optimization.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

288 IEEE TRANSACTIONS ON BIG DATA, VOL. 5, NO. 2, APRIL-JUNE 2018



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


