
Core-Aware Memory Access
Scheduling Schemes

Zhibin Fang, Xian-He Sun, Y. Chen, and S. Byna

Illinois Institute of Technology

2

Multi-core is the Trend of High
Performance Processors

IBM Cell: 8 slave cores
+ 1 master core, 2005

Intel Dunnington: 6 cores, 2008
AMD Phenom:
4 cores, 2007

Kilocore: 256-core prototype
By Rapport Inc.

GRAPE-DR chip:
512-core, By Japan

Quadro FX 3700M:
128-core, By nVIDIA

3

Processor-memory Performance Gap

■ Processor performance
increases rapidly
■ Uni-processor: ~52% until

2004, ~25% since then
■ New trend:

multi-core/many-core
architecture

■ Intel TeraFlops chip, 2007
■ Aggregate processor

performance much higher
■ Memory: ~9% per year
■ Processor-memory speed gap

keeps increasing

Source:
Intel

Source: OCZ

25
%

52
%

20
%

9
%

60
%

9
%

 Motivation

■ Multi-core has changed the hardware
structure

■ Multi-core still uses single-core memory
scheduling schemes

■ Requires a rethinking of data access
scheduling

■ Data access is the problem

Core-aware scheduling

1 Conventional Memory access

scheduling
2 Core-aware memory access

scheduling
3 Performance evaluation and

analysis
4 Conclusion

Outline

Memory Access
DRAM architecture: bank、row、column

❑Three dimension
❑Steps of accessing

▪pre-charge
▪row access
▪column access

❑Faster
▪different bank
▪Same row

Bank-first scheduling (Rixner et al.) : memory
operations to different banks are allowed to
proceed before those to the same bank

Row-first scheduling (Shao et al.) : memory
operations are clustered into bursts that would
access the same row within a bank

Existing

Memory Access Scheduling

(Standard benchmark)

(Most advanced)

Multi-Core Memory Access

many cores are integrated into the same
microprocessor, the number of memory
requests increases abruptly

Competition for data access and transferring data
among cores may increase the stall time and
the length of the waiting queue

Core-aware Memory Scheduling

Idea: Scheduling scheme should consider the
source of memory access

Reason: Requests from the same core can be
combined and have a better locality; reading into
the same core is faster

Feasibility: Core id - the lowest address bits of
a cache request

Solution: Issues outstanding requests from the
same core together

Core-aware memory scheduling

Core-aware memory scheduling

Core-aware Scheduling Algorithm

←

←
←

←

←
←

←

Core-aware Scheduling Example

Bank-first scheme sequence: A-C-D-F-E-B-G-H-J-I

Row-first scheme sequence: A-B-J-C-D-G-I-F-H-E

Core-aware bank-first scheme sequence: A-C-D-F-E-J-I-H-B-G

Core-aware row-first scheme sequence: A-J-B-C-D-I-G-F-H-E

Bank-first scheme

Example:

Scheduled sequence: A-C-D-F-E -B-G-H-J-I

Row-first scheme

Example:

Scheduled sequence: A-B-J -C-D-G-I -F -H-E

Core-aware bank-first scheme

Example:

Scheduled sequence: A-C-D-F-E -J -I -H-B-G

Core-aware row-first scheme

Example:

Scheduled sequence: A-J-B-C-D-I -G-F -H-E

Performance Evaluation and Analysis

❑ Simulator
❑ Simics and GEMS (General Execution-driven
Multiprocessor Simulator)

❑ Enhanced the current GEMS
❑ Set the threshold for one core as 16

❑ Benchmark
❑ NAS Parallel Benchmarks
❑ Five kernels: EP, DC, CG, MG, FT

Performance Evaluation and Analysis

Performance Evaluation and Analysis

Simulation Results

Number of memory requests

Analysis

Analysis of the number of memory requests
Compared with row-first scheme, the core-aware row-first scheme

reduced memory requests by 5% on average for five benchmarks

running with four threads, as shown in. This is mainly due to the

core-aware row-first scheme improving the row-first policy by

taking the request source into consideration.

Simulation Results

Waiting latency

Analysis

Analysis of waiting latency
When DC, MG and FT ran with four threads, the core-aware

row-first decreased the latency by up to 25%, 22% and 23%

compared with the bank-first scheme, and by up to 10%,

5% and 5% compared with the row-first scheme.

Intuitively, row-first already gets the locality. But, core-aware

reduces the number of requests by 5% and 6% therefore

reduced the waiting latency.

Simulation Results

Execution time

.

Analysis

Analysis of execution time
Core-aware improves the performance for all five benchmarks.

Compared with the bank-first and row-first policy, the core-aware

row-first policy reduced the execution time by 14% and 5% on

average for all five benchmarks running with four threads, and by

10% and 5% on average for with multiple applications.

The performance improvement of one thread is better than that of

four threads. We believe this is caused by OS noises.

Conclusion

� The source core of memory requests is an important factor in
scheduling data access

� Experimental results confirmed that the proposed core-aware
scheduling schemes decreased the latency considerably

� Actual results could be even better than the simulated ones

� The core-aware scheduling is simple in both hardware and
software, and the gain is big. It has a real commercial value.

Thanks ！

2、Core-aware memory scheduling

Example:

