Core-Aware Memory Access

g Scheduling Schemes

Zhibin Fang, Xian-He Sun, Y. Chen, and S. Byna
lllinois Institute of Technology

Multi-core 1s the Trend of High
Performance Processors

Dunnington

I1066 MT/s

AMD Penom:

IBM Cell: & slave cores 4 cores, 2007 Intel Dunnington: 6 cores, 2008

+ 1 master core, 2005

HES SRS e
_ Quadro FX 3700M: _
Kilocore: 256-core prototype 128-core, By nVIDIA GRAPE-DR chip:

By Rapport Inc. 512-core, By Japan

Processor-memory Performance Gap

= Processor performance

increases rapidly . /06/00
- Unl_processor: N52% until 100,000 MultiT-r:Z:’e/many-core processo ‘
2004, ~25% since then 10,000 | e I o
= New trend: . “‘iml‘;}":{:,' '
multi-core/many-core j e \@L
architecture * l
. Intel TeraFlops chip, 2007 R I ... P i
" Aggregate processor 119 . 1 9ISS 19‘90 1595 2OIOO 20!05 20|1§}0 "
performance much higher Year
= Memory: ~9% per year
= Processor-memory speed gap
Source: OCZ

keeps increasing

* Motivation

= Data access is the problem

= Multi-core has changed the hardware
structure

= Multi-core still uses single-core memory
scheduling schemes

= Requires a rethinking of data access
scheduling

Core-aware scheduling

* Outline

1 Conventional Memory access
scheduling

2 Core-aware memory access
scheduling

3 Performance evaluation and
analysis

4 Conclusion

Memory Access

DRAM architecture: bank. row. column

aThree dimension o Bazf-j"k !
aSteps of accessing]
=pre-charge | § wemor
"FOW aCCess F (Bank 0)
=column access Address mmm— =
-Faster
«different bank | Column Decoder |-
=Same row L

DRAM architecture

Existing
* Memory Access Scheduling

Bank-first scheduling (rixner et al.) : memory

operations to different banks are allowed to
proceed before those to the same bank

(Standard benchmark)

Row-first scheduling (shao et al.) : memory
operations are clustered into bursts that would

access the same row within a bank
(Most advanced)

* Multi—Core Memory Access

many cores are integrated into the same
microprocessor, the number of memory
requests increases abruptly

Competition for data access and transferring data
among cores may increase the stall time and
the length of the waiting queue

* Core—aware Memory Scheduling

Idea: Scheduling scheme should consider the
source of memory access

Reason: Requests from the same core can be

combined and have a better locality; reading into
the same core is faster

Feasibility: Coreid - the lowest address bits of
a cache request

Solution: Issues outstanding requests from the
same core together

* Core—aware memory scheduling

=

Memory System

DRAM 2y
-

* Core—aware memory scheduling

Memo| pystem

______ e By T———

DRAM DRAM
LA

Core—aware Scheduling Algorithm

ALGORITHM: CASA /*core-aware scheduling algorithm*/
INPUT: Random sequence of memory access requests from m cores
OUTPUT: Core-aware scheduled sequence of requests to memory controller
BEGIN
k < 0; /* k indicates the core id */
While true
n < q;/*q is the number of requests to be scheduled*/
succeed « 0O;
Repeat
cid «<— k mod m;

Select s = min(p, number of outstanding requests from core cid) requests from core
cid, and enqueue them to the issue_queue; /* p is the size of issue_queue */
nN<n-s;
If (n =0 OR (k mod m = 0)) Then succeed « 1; /* 2" condition prevents starvation
and guarantees requests are issued within at most one iteration */
K — k+1;
Until succeed = 1
End While
END

Core-Aware Scheduling Algorithm

Core—aware Scheduling Example

Sequence | A | B| C | D|E|F| G| H I J
Bank 1 112 |1 3|54 3|4]3| 1
Row 1 11211341 4 | 1 1
Core 1 2 1 2 1 3 1 1 2 1

Bank-first scheme sequence: A-C-D-F-E-B-G-H-J-1

Row-first scheme sequence: A-B-J-C-D-G-I-F-H-E

Core-aware bank-first scheme sequence: A-C-D-F-E-J-I-H-B-G
Core-aware row-first scheme sequence: A-J-B-C-D-I-G-F-H-E

* Bank—first scheme

Example: |} }) b4
sk | O|O|@|O|O|O|O|®

Scheduled sequence: A-C-D-F-E-B-G-H-J-I

* Row—first scheme

xample: || |
s[NP AIAIBA
SV CINCEVIIVILY,

Core

Scheduled sequence: A-B-J-C-D-G-I -F-H-E

* Core—aware bank—first scheme

Example: ||

LI

Sequence | A | B | C | D
2

D T|e—

l

)| o | —

F
Bank 1 1 4 3

Row

Core 1 2/ \1 2/ (\1/|\3/| \1 1/1\2 1

Scheduled sequence: A-C-D-F-E-]-I1-H-B-G

* Core—aware row—first scheme

Exampler |y b b bbb
Sequence | A | B| C | D|E|F| G| H/|I J
Bank 1 N\ 2\ B\ | /B\ | /4A\| B\ A\|/3\| [
Row 1 T2 3[4 41111 1
Core 1/0\2/ [\1/[\2/[\1/[\3/| \1 1/1\2/] \1

Scheduled sequence: A-]-B-C-D-I1-G-F-H-E

| Performance Evaluation and Analysis

2 Simulator
2 Simics and GEMS (General Execution-driven
Multiprocessor Simulator)
2 Enhanced the current GEMS
2 Set the threshold for one core as 16

2 Benchmark
2 NAS Parallel Benchmarks
a Five kernels: EP, DC, CG, MG, FT

Performance Evaluation and Analysis

Component

Parameters

CPU 16 Sun SPARC processor cores, each core is 2GHz 4-way issue
L1 I-cache 16 KB, 4-way L1 cache on each core, 64 bytes cache line

L1 D-cache 16 KB, 4-way L1 cache on each core, 64 bytes cache line

L2 cache 256 KB, 4-way cache on each core, 64 bytes cache line

Cache Coherence protocol

Directory and MESI protocol

FSB

64 bit, 800MHz (DDR)

Main Memory

4GB DDR2 PC2 6400 (5-5-5), 64 bit, burst length 8
Memory page is 4 KB

Channel/Rank/Bank

2/4/4 (a total 32 banks)

SDRAM Row Policy

Open Page

Address Mapping

Page Interleaving

Memory Access Pool

32 queues for each bank, each queue size is 16 entries

0S

Solaris 10

Machine Configuration on Simics/GEMS

simulator

Performance Evaluation and Analysis

Set Benchmarks

Single application with single | ep-1: EP running with one thread
thread dc-1: DC running with one thread
cg-1: CG running with one thread
mg-1: MG running with one thread
ft-1: FT running with one thread

Single application with ep-4: EP running with four threads
multiple threads dc-4: DC running with four threads
cg-4: CG running with four threads
mg-4: MG running with four threads
ft-4: FT running with four threads

Multiple applications mix-1: dc-1, cg-1,mg-1 and ft-1 running
concurrently
mix-4: dc-4, cg-4,mg-4 and ft-4 running
concurrently

Experiement Configuration

Simulation Results

umber of memory requests

O core-bank

Yy
UL :_:EEE:_:EEE:_:::::_:_:E::::_:EE:_:_:E%_:

ANMMIMIMIHIHIIHHHUHE Y

§§§%§§§§

_%//é
T

Y

§§§%\§§§§

12

8 bank
ow

AT

I T

12

— T

“.'
&

<

14

14

14

: H-XIW

-XIud

g
Single application W|th multiple

-6>

-op

ol
o)

threads and multiple applications.

All

thread. All values are normalized

Single application with single
to bank-first scheme.

to

values are normalized

bank-first scheme.

Analysis

Analysis of the number of memory requests

Compared with row-first scheme, the core-aware row-first scheme
reduced memory requests by 5% on average for five benchmarks
running with four threads, as shown in. This is mainly due to the
core-aware row-first scheme improving the row-first policy by
taking the request source into consideration.

Simulation Results

Waiting latency

8 bank

=
e

S

o ——————

:,::::::::::,,,,,,,,,,,,,,,,,,,,,,§§§§

I IO

a
%
th multiple

T-XIw -+

..,

N
&

2 Y

;

Single application w

Ty

;

o~ o
—
= =
o 8 8
x . @ o
(4o o (=]
o o O O
m 8 O o
TIIIIII] §§§
T §§§
I
N 4 0 O = ~ o
— (] [} O O

Single application with single

multiple

values

and

threads

thread. All values are normalized

to bank-first scheme.

are

All
normalized to bank-first scheme.

applications.

Analysis

Analysis of waiting latency

When DC, MG and FT ran with four threads, the core-aware
row-first decreased the latency by up to 25%, 22% and 23%
compared with the bank-first scheme, and by up to 10%,
5% and 5% compared with the row-first scheme.

Intuitively, row-first already gets the locality. But, core-aware
reduces the number of requests by 5% and 6% therefore
reduced the waiting latency.

Simulation Results

Execution time

8 bank

5 .-
P .VIX_

I N

N
&

Sf
Single application with muItipIe

o .-Vl@U

-opP

values are normalized to

bank-first scheme.

| -da

threads and multiple applications.

12

All

8 bank
0 row

]

;

thread. All values are normalized

i

o)

V)
Single application with single
to bank-first scheme.

Analysis

Analysis of execution time

Core-aware improves the performance for all five benchmarks.
Compared with the bank-first and row-first policy, the core-aware
row-first policy reduced the execution time by 14% and 5% on
average for all five benchmarks running with four threads, and by
10% and 5% on average for with multiple applications.

The performance improvement of one thread is better than that of
four threads. We believe this is caused by OS noises.

Conclusion

[0 The source core of memory requests is an important factor in
scheduling data access

[0 Experimental results confirmed that the proposed core-aware
scheduling schemes decreased the latency considerably

[l Actual results could be even better than the simulated ones

[0 The core-aware scheduling is simple in both hardware and
software, and the gain is big. It has a real commercial value.

* 2. Core—aware memory scheduling

Example:
Sequence | A | B| C | D|E|F| G| H/|I J
Bank 1 1 2 3|1 5|4]| 3 4 | 3 1
Row 1 1121113 |4]1 4 11 1
Core 1 2 1 2 1 3 1 1 2 1

