

The GHS Grid Scheduling System:

Implementation and Performance Comparison

Ming Wu, Xian-He Sun
Department of Computer Science

Illinois Institute of Technology
Chicago, Illinois 60616, USA

{ wuming, sun }@iit.edu

Abstract
Effective task scheduling and deployment is hard to

achieve in a Grid environment, where computing
resources are heterogamous and shared between local
and Grid users without a central control. Current
scheduling systems, such as AppLeS, use NWS (Network
Weather Service) for short-term estimation of resource
availability and do not address the influence of the
variation of resource availability in task scheduling.
These inherent limitations prevent existing scheduling
systems from working effectively to solve large-scale tasks
in a Grid environment. Adopting APST (AppLeS
Parameter Sweep Template) as the deployment
environment, we have developed a task scheduling system
for large-scale applications based on our recent results in
performance prediction and task scheduling. Preliminary
experimental results show that the newly developed
system works well and is significantly more appropriate
for large applications than existing systems.

1. Introduction

Evaluating the effect of resource sharing on
application performance is a major challenge of task
scheduling in shared environments. In a shared
environment, a remote task competes with local jobs, or
even other remote tasks, for resources. The completion
time of a task is not only determined by its workload but
also the availability of resources. Scheduling systems,
such as AppLeS, PEGASUS, CONDOR-G, CHIMERA,
and Stork, have been developed recently for distributed
shared environments. In these systems, scheduling
decision is made based on the prediction of application
performance with the consideration of the CPU
availability, which is estimated by NWS (Network
Weather Service) [Wols98]. However, NWS is designed
for short-term predictions (up to 5 minutes as it claims)
and cannot provide appropriate predictions for long-term
applications. AppLeS [COBW00, BWCC03] is one of the
most used Grid scheduling systems and has made extra
efforts to adopt NWS for large scale applications. To
compensate the known flaw of NWS prediction, AppLeS
conducts periodic rescheduling. That is, an application is
decomposed into or predefined as a set of numerous small

subtasks and then the scheduling is re-performed
periodically in small time period based on short-term
predictions. Rescheduling involves task redeployment,
while it mitigates the cost of inaccurate predictions, it
adds in data movement cost. In addition, AppLeS
scheduling decision is made based on minimizing each
individual task completion time, where minimizing each
task does not necessarily lead to an optimized completion
time of a parallel application. It does not consider the
variation of resource availability during each task
deployment, other than repeating prediction/scheduling.
To address these problems, we have introduced a new
performance modeling technique to evaluate the effect of
resource contention on the application performance and
developed new scheduling algorithms [SuWu03]. A
performance prediction system, named Grid Harvest
Service (GHS), is thus proposed. Instead of using only
utilization to describe the resource availability, GHS
models the resource usage pattern with an M/G/1 queue
system. The effects of machine utilization, computing
power, local job service, and task allocation on the
application performance are individually identified.

Even after a scheduling decision is made, deploying a
distributed task in a Grid computing environment still
requires an integrated system solution. The deployment
involves job submission, data movement, and resource
monitoring. It is not an easy task in a shared environment,
where the computing can cross multiple administration
domains, which adopt different resource management
middleware and policies. APST, a production application
execution environment, is developed based on a
component-oriented design and thus can be integrated
with different middleware or components [COBW00].
Adopting an enhanced APST as the deployment
environment, we have developed a task scheduling system
based on our recent results in performance prediction and
task scheduling [SuWu03]. Preliminary experimental
results show that the new system works well and is
significantly more appropriate for large applications than
existing systems.

2. Related work

Job management has been studied intensively to
develop efficient schedule and monitor systems for
parallel and distributed computing. Existing systems,
including LSF, PBS Pro, Sun Grid Engine/CODINE, and
Maui Scheduler, are mainly designed for improving the
utilization of expensive resources in high-performance
computing and assume a relatively dedicated and stable
computing environment. Issues such as load balance and
fairness are often considered in the design and
development of these systems instead of an individual
job’s execution time.

Research on scheduling jobs in shared environments
has attracted extensive attention recently. Condor system
[RaLS98] provides a matchmaking mechanism to allocate
resources with ClassAds. The scheduling strategy is based
on the match of the users' specification of their job
requirements and preferences, with the machines'
characteristics, available time periods, and conditions.
AppLeS uses a loop of task events to schedule subtasks of
a meta-task dynamically (a meta-task is composed of a
group of independent and indivisible subtasks) [COBW00,
BWCC03]. AppLeS supports Min-min, Max-min,
Sufferage, and Xsufferage heuristic algorithms with the
consideration of file transfer cost. The APST software
was developed to make easy to deploy and adaptively
schedule meta-tasks in distributed environments. With
APST, AppLeS can be easily deployed in Grid
environments and gain popularity. However, the
scheduling of AppLeS has three limitations. First, its
estimation of task execution time is based on the
prediction provided by NWS. NWS is designed for short-
term predictions (up to 5 minutes as it claims) and cannot
provide appropriate prediction for long-term applications.
As a result, AppLeS conducts periodic scheduling to
compensate the flaw of prediction. This rescheduling
method assumes an application can be partitioned into or
composed of a group of fine-grained subtasks to fit into
the short-term resource availability prediction (the default
scheduling period is 500 second in APST). Second, the
AppLeS scheduling plan is generated based on
minimizing each individual task’s completion time where
minimizing each task does not necessarily lead to an
optimized completion time of a parallel application. Third,
AppLeS makes the scheduling decision based on the
determined resource availability estimation. It doesn’t
consider the impact of the variance of resource
availability on application performance. Recently, Yang
and Casanova have proposed a multi-round algorithm for
scheduling parallel application with divisible workloads
[YaCa03]. A software, named APST-DV has been
developed based on the multi-round scheduling [RaYC05].
However, their new work is based on the assumption that
the computation capacit of machines and the
communication speed of network links are fixed in each
round. This methodology is more appropriate for a

dedicated system instead of a shared environment. In
PEGASUS and CHIMERA workflow management
systems [DBGK03, FVWZ02], data duplication is
considered in mapping an abstract workflow onto Grid
environments. Their recent study in [BJDG05] also
indicates that minimizing the completion time of each
individual part of a workflow does not necessarily lead to
the optimization of the whole workflow’s completion
time.

3. GHS-APST Software

Short-term prediction is hardly appropriate for long-
term scheduling. To address these problems, we have
introduced new performance modeling techniques for
evaluating the effect of resource contention on a long-
term application’s performance. A series of task
scheduling algorithms and resource measurement and
performance data collection methodologies have been
designed and developed accordingly. The Grid Harvest
Service (GHS) system has been proposed to enable the
collaboration among performance measurement,
performance modeling, and task scheduling. The Alpha
version of GHS is implemented and available on-line at
http://www.cs.iit.edu/~scs/software.htm. An early report
on the GHS performance prediction system can be found
at [SuWu03]. This study extends the previous results to
fully develop the GHS software system for task
scheduling.

3.1. GHS software

The Grid Harvest Service is a performance and task
scheduling system for Grid computing. Its major
subsystems include performance evaluation, task
allocation, and task scheduling. Coordinately, these
subsystems provide appropriate services to harvest Grid
computing.

The major goal of the performance evaluation
subsystem is to estimate resource availability and to find
its influence on application performance. Thus this
subsystem consists of two parts: Application-level
Predictor and System-level Predictor. The goal of
Application-level Predictor is to estimate the application
completion time, with a given application workload
distribution over a set of resources. The System-level
Predictor estimates the resource availability. In a shared
machine, application performance is mainly decided by
the available computation power of the shared resource.
To identify the impact of resource availability on
application completion time, we model the resource usage
pattern with an M/G/1 queue system. It considers the
heterogeneous machine utilization and computing
capacity, heterogeneous job arrival rate as well as
heterogeneous service distribution. The model was
derived from a combination of rigorous mathematical
analysis and intensive simulation to make it generic and

practically useful. For more detailed information, people
can refer to our previous work in [GoSW02, SuWu03].

The major motivation of distributed computing is that
it can provide the “integrated” computation power that is
needed for solving large-scale scientific applications by
connecting numberous resources. The required computing
power can not be satisfied by any single computer.
Correspondently, the first thing of running these
applications in distributed computing is to decide how to
partition an application into subtasks and then maps them
to a chosen set of resources for optimal performance via
task scheduling. In GHS, this task is performaned by the
task allocation subsystem. Considering the heterogeneous
and dynamic resource availability and capacity in shared
distributed environments such as Grid computing, we
develop a mean-time task partition algorithm to distribute
the workload of a parallel program to each resource so
that the difference of the mean of expected execution
times of the subtasks is minimal instead of using the
conventional workload balance approach widely applied
in parallel computing. The task allocation subsystem of
GHS partitions the workload of parallel applications with
respects of CPU, memory, network resource
heterogeneity and resource sharing [WuSu04].

The task scheduling subsystem of GHS determines a
scheduling plan for a large-scale application to provide an
optimal or near-optimal solution for its running in a
shared environment. It implements different scheduling
algorithms for Grid computing according to the
application’s requirement, such as a single task
scheduling, parallel processing, and meta-task scheduling.
Based on the prediction from the performance evaluation
subsystem and task partition from the allocation
subsystem, it checks potential available resources in the
system and then searches for the best set of resources to
assign the application. Two searching methodologies are
supported: heuristic and optimal. A heuristic search is to
find a near optimal solution with a reasonable cost. A
task-rescheduling algorithm is also implemented to handle
different abnormal situations, such as abnormal
computing and I/O performance, system shut down, un-
trusted system behavior, failure of Globus software
package, and undermined security. The subtasks of an
application on resources showing abnormal performance
are assigned to other appropriate resources based on a re-
estimation of the application completion time. The task
reallocation is enabled by the High Performance
Computing Mobility (HPCM) [DuSC03].

In the implementation of the Alpha version of GHS,
we fully decouple these subsystems. They are presented
to users as normal UNIX utilities. Each subsystem can be
independently integrated into other performance
evaluation and task scheduling tools.

3.2. APST execution management

Resources in Grid computing are usually heterogeneous
and geographically distributed and are administrated by
different domains. Much effort is being made to establish
standard, open, general-purpose protocols and interfaces
for resource sharing and coordination [FoKe04]. Many
middleware are developed for different concerns in a
general network computing: security, information sharing,
file transfer, and remote execution. The interaction with
these middleware is essential for task deployment in Grid
environments.

APST stands for AppLeS Parameter Sweep Template
[APST]. It is a production application execution
environment. It was developed in University of California,
San Diego and originally designed for scheduling
distributed implementations of “Parameter Sweep
Applications” in Grid environments. The parameter
sweep applications are structured as a set of
“experiments”, each of which is executed independently
with different set of parameters. The strengths of APST
are two-fold: flexible software architecture and easy-of-
use. APST software is decoupled into four components:
Controller, Scheduler, Actuator, and Metadata
Bookkeeper. Standard APIs are provided for the
interaction among these components while their
implementations can be different to adapt to the
underlying Grid resources and middleware. APST can be
easily deployed in a wide range of distributed
environments and integrated with a number of
middleware. For example, it can utilize various data
transport mechanisms (GASS, IBP, GridFtp, scp, or NFS)
to transfer input and output files among different sites and
different task execution mechanisms (ssh, NetSolve,
GRAM, Condor) to run applications on remote resources.

APST is easy-to-use. The software is composed of a
client, apst, and a daemon, apstd. The apstd handles task
assignment, job execution, and data file transfer. The apst
is a client program, an interface portion that allows users
to communicate with apstd. Through apst, a user can add
new resources/tasks, check current status of
resources/tasks, and stop the execution of apstd. APST
uses a XML file to describe tasks and resources. Each
task description specifies the task’s executable and its
required command-line arguments, the relative
computational cost, its input and output files. Each
resource (compute, storage) description specifies the
location and the way to access. The XML file also
includes a gridinfo element, which is used to specify the
source of information about the resources.

4. Integration GHS prediction and scheduling
with APST

APST has been developed over years and tested with
many applications, such as Mcell, Volume Rendering,
Encyclopedia of life, in Grid computing. A common
characteristic of these applications is that they can be

partitioned into or composed of fine-grained subtasks so
that AppLeS scheduling supported in APST can estimate
their subtask completion time with the short-term
prediction of resource availability provided by NWS. This
limits the application of APST system and affects the
scheduling algorithm design. To remove this limitation,
we integrate GHS prediction and scheduling with APST.
APST daemon consists of four components: Metadata
Bookkeeper, Scheduler, Actuator, and Controller. In the
following, we introduce their major functionalities and
then present the modification component by component.

Meta-data Bookkeeper is in charge of accessing
resource meta-data. The Bookkeeper component has a
facility called Elagi. It extracts performance metrics of
resources from a variety of information services, such as
NWS, MDS, or Ganglia. The currently supported
performance metrics are CPU count, CPU load, network
bandwidth and latency. In GHS, we model the resource
usage pattern with an M/G/1 queue system to evaluate the
impact of resource availability on the performance of a
long-term application. The job arrival rate, job service
time standard deviation, and resource utilization, have to
be collected in order to calculate the mean, the standard
deviation, and the distribution of applications completion
time in a shared environment. Among them, only resource
utilization is supported as a performance metric in APST
in the term of ELMETRIC_CPU_LOAD. To integrate
GHS prediction into APST, we first modify the
MetricType and ServiceType data structure in the Meta-
data Bookkeeper. Job arrival rate and job service time
standard deviation are included to reflect the new
performance modeling. To support the retrieve of these
two new resource metrics, we add a GHS server
information service. It interacts with GHS Performance
Measuring Engine (PME) and System-level Predictor
(SLP) on each machine to collect resource information.
The updated MetricType and ServiceType data structure
is given in Figure 1. The added ServiceType,
ELMETRIC_GHS, indicates a new information service is
supported. Correspondingly, two functions, GhsFillKey
and GhsFillMetric, are added in Elagi.

Scheduler implements several APST scheduling
algorithms, maxmin, minmax, sufferage and Xsufferage,
besides the workqueue algorithms. These algorithms
generate a scheduling plan based on the user’s submitted
task and resource information. The scheduling plan is
then executed by Actuator. In the Scheduler component,
APST uses a procedure, FillGanttCharts(), to generate the
scheduling plan. We enhance this procedure by adding a
new API for meta-task scheduling, named
GhsMetataskSched(). In GhsMetataskSched(), the Task
Allocator is first called to partition a meta-task into a
cluster of subtask groups and then the Application-level
Predictor is called for the estimation of the application
completion time for a given task partition plan. This

process is repeated until an optimal or near-optimal
scheduling plan is found. The generated scheduling plan
is still stored in the GanttChart data structure and thus the
execution of Actuator is not affected.

Actuator implements two standard APIs, env_api and
transport_api to handle task execution and file transfer on
Grid resources accessible to different middleware
software. It executes the scheduling plan generated by
Scheduler. We keep this component intact in our
modification.

Controller interacts with the APST client to accept
and response user’s request. One of the major
functionalities of Controller is to parse the XML file to
collect the task and resource information and store them
into correspondent hash tables where the other
components can access. Because a new information
service, GHS server, is supported, we modify the

ProcessXmlFile() function in the Controller component so
that the new information service can be parsed in the
XML file.

Figure 2 gives the software architecture of the
updated APST. In this Figure, components from GHS are
marked with the orange color; components newly added
or modified to facilitate the integration are marked with
the green and yellow color respectively; components from
APST are marked with the grey color.

5. Experimental results

We have conducted experiments to compare GHS
scheduling and AppLeS scheduling. An experiment is
first carried to estimate the execution time of a long-term
application based on resource availability prediction
provided by NWS and GHS. This experiment is used to

Fig. 1. Extended MetricTypes and MetricServiceTypes

verify that short-term prediction cannot provide a
satisfactory solution to long-term task scheduling. We
then test the efficiency of GHS long-term prediction with
a real Grid application, Cactus, on an actual Grid
environment. After that, we compare application
execution time using the AppLeS’s multi-phase
scheduling approach with NWS prediction and the one-
phase scheduling approach with GHS prediction. The
better performance of GHS is not only due to its long-
term performance prediction but also due to its advanced
scheduling algorithms. Finally, an experiment is
conducted to compare the AppLeS and GHS scheduling
algorithms only.

The test platforms used in our experiments are the
Sunwulf cluster and the DOT Grid Testbed [DiOT].
Sunwulf is a heterogeneous 84-node Sun ComputeFarm at
IIT. The DOT connects clusters at ANL, NCSA, NU, UC,
UIC, and IIT via the advanced "I-Wire" network. Each
cluster is composed of one sever and multiple computing
nodes. Local jobs on each resource in these test platforms
are simulated with different job arrival rates and service
rates, which follows the observation of over one million
real-life processes generated from different academic
workloads in Berkeley, as well as the machine usage
pattern observation by researchers at Wisconsin-Madison,
Maryland, Carnegie Mellon, et al [BaDo02]. Cactus
[ABGH01], a numerical simulation of a 3D scalar field
produced by two orbiting astrophysical sources, is used as
our test application. In the test, we use the parallel version
of Cactus application. It decomposes the 3D scalar field
into sub-fields and each sub-field along with a small
overlap region is mapped onto a different processor in the
cluster

5.1. Long-term task scheduling based on short-
term resource prediction

AppLeS’ scheduling decision is made based on the
estimate of the application completion time [COBW00,
BWCC03]. AppLeS predicts the application computation
time with the formula AvailCPUTT dedicated /= where

dedicatedT denotes the application computation time in a
dedicated resource and AvailCPU denotes the
prediction of the percentage of available CPU for this
resource. The prediction of is provided by the NWS
[Wols98]. Scheduling decision based on NWS prediction
has two limitations. First, NWS targets short-term system-
level performance prediction. As its claims, it is only
suitable for jobs of five minutes time span or less. It
cannot provide a satisfactory solution to long-term task
scheduling. Secondly, NWS only provides resource
availability. The effects of other system specific factors
on the task execution time are not analyzed and thus not
considered in task scheduling in AppLeS.

An experiment is conducted to confirm that short-
term prediction cannot provide a satisfactory solution to
long-term task scheduling. We compare the prediction

error of the application completion time on the Sunwulf
ComputeFarm based on resource availability provided by
NWS and GHS. The applications are NAS Benchmarks
(BT, CG, LU, MG, IS and SP, with the class type of “A”
or “W”). Using the AppLeS formula

AvailCPUTT dedicated /= , we estimate different application
completion times based on resource predictions provided
by NWS in terms of 10 seconds (default set of NWS) and
5 minutes and provided by GHS, respectively. In GHS,
since we assume that a remote task is assigned with a
lower priority than local jobs, we can calculate
AvailCPU with ρ−= 1AvailCPU where the prediction
of ρ is provided by System-level Predictor.

To have a thorough comparison, in this experiment,
we calculate two performance metrics: percentage
prediction error and square prediction error. Percentage
prediction error is defined as

|/)(Pr| tMeasurementMeasuremenediction− [Wols98].
Square prediction error is defined as

2)(Pr tMeasuremenediction − [Wols98, DiHa00]. Both
performance metrics are generally used in the literature to
evaluate the prediction accuracy. Figure 3 shows that the
percentage prediction error based on NWS remains very
high while the percentage prediction error based on GHS
decreases with the increase in application workload.
Figure 4 shows that the square prediction error based on
NWS is always higher than the square prediction error
based on GHS. In this Figure, the square prediction error
is normalized with the function

Fig. 2.Software architecture of updated APST

)999*)/()(1(log minmaxmin1000 DDDX −−+ where
maxD is

the maximum original square prediction error and minD is
the minimum original square prediction error. The results
indicate that the estimation of the completion time of a
large application based on short-term prediction of
resource availability provided by NWS is far from
satisfactory no matter which metric is used.

To verify the efficiency of GHS application-level
prediction in actual Grid environments, we have tested the
Cactus application on the DOT Grid Testbed. In the
experiments, we use one server and one node from the IIT
cluster, three nodes from the ANL cluster, and three
nodes from the UC cluster. Two factors influence the
accuracy of this kind actual testing, workload
determination and system software interference. As a user
we only can estimate the workload of Cactus based on its
iteration number and input values – which is error prone.
Also the underlying DOT management system may take
CPUs away from time to time. Nevertheless, Figure 5
shows the model working well even with these two
factors.

5.2. Multiple-phase scheduling with NWS
prediction and one-phase scheduling with GHS
prediction

 Due to the short range of NWS prediction, AppLeS
doesn’t give a fixed scheduling for a large-scale parallel
application. Instead, AppLeS adopts a multiple-phase
scheduling approach for large scale meta-tasks. In other
words, it constantly reschedules the tasks within the NWS

prediction scope. At each scheduling event, NWS online
prediction is used for task scheduling. This multiple-phase
scheduling, in addition to the increased cost, has an
inherited drawback. The later phases of online prediction
are tampered by the assigned remote subtasks.
Rescheduling based on the tampered resource availability
is inappropriate. This situation wouldn’t happen in GHS
because its prediction is made before the task scheduling.
We have conducted an experiment to confirm that the
multi-phase approach is not a quick fix for short-term
prediction.

A Grid environment simulator was built to compare
the performance of GHS scheduling with AppLeS
scheduling. The reason why we use a simulator is because
of the difficulty to access a large-scale, appropriate Grid
environment to conduct the testing. The simulated Grid
environment is composed of a number of clusters of
machines, which can be scaled from dozens of resources
to thousands of resources. We set different job arrival
rates and service rates for these machines to simulate
heterogeneous machine usage patterns in a Grid
environment. The local job lifetime is generated with the
bounded Pareto distribution [Balt02]. The application has
a set of independent subtasks. The input of each subtask is
a set of files and a single file might be input to more than
one subtask. In our experiment, the phase scheduling
length is set at 500 seconds as used in AppLeS. The
number of clusters and the map of input files onto
subtasks are randomly generated in each simulation time.
The system consists of 20 machines. The simulation runs
20 times for a given number of subtasks. We compare the
average, minimum, and maximum of the task completion
time (seconds) with two types of scheduling strategies.
One is using the multiple-phase scheduling with NWS
prediction. The other one is performing one-phase
scheduling with GHS prediction. In both cases, we use a
standard AppLeS scheduling algorithm, min-min heuristic.
The simulation results are summarized in Table 1. It
shows that with GHS prediction the average task
completion time decreases by 17%-30% compared with
that of NWS prediction. This is because, in multiple-

Fig. 5. Mean and variance of prediction error
of Cactus’s execution time

0

10

20

30

40

50

60

70

80

1 2 4 8 16

parallel task execution time (hours)

pr
ed

ic
tio

n
er

or
 (%

)

mean

variance

Fig. 4. Mean of the square prediction error
based on NWS and GHS

0

20

40

60

80

100

120

1 2 4 8 16 24

rem ote task dem and (hours)

sq
ua

re
 p

re
di

ct
io

n
er

ro
r (

%
)

NW S (10 seconds)
NW S (5 m inutes)
GHS

0
20
40
60
80

100
120
140

1 2 4 8 16 24

remote task demand (hours)

p
r
e
d
i
c
t
i
o
n

e
r
r
o
r

(
%
)

NWS (10 seconds)
NWS (5 minutes)
GHS

Fig. 3. Mean of the percentage prediction
error based on NWS and GHS

phase scheduling, NWS online prediction is distorted by
the execution of the meta-task at runtime.

5.3. Comparison of AppLeS and GHS on task
scheduling

We have shown that GHS scheduling outperforms
AppLeS scheduling because short-term resource
prediction cannot satisfactorily support the scheduling of
long-term applications. What will happen if AppLeS is
supported with a long-term resource prediction? To
answer this question, we repeat the above simulation
except that both scheduling algorithms are provided with
the same resource prediction. The comparison of task
completion time (seconds) and the number of machine
used with the two different scheduling systems is given in
Table 2. The experimental results show that with GHS the
task completion time decreases by 10%-20% compared
with that of AppLeS system while GHS only uses about
one-half of the machines used in AppLeS. When the
system size is 400, GHS uses 113 computers and achieves
a better performance than AppLeS while AppLeS uses all
machines. This is because AppLeS scheduling uses a
determined approach to estimate the application execution
time, AvailCPUTT dedicated /= . This deterministic
estimation of application performance may work well for
single task scheduling. However, it has limitation for
parallel task scheduling. In parallel processing, the
application execution time is decided by the maximum
subtask completion time. The effect of variation of
resource availability on application performance should
be considered. With more resources, the chance of
inaccurate availability prediction at one machine (due to
resource variation) will be higher, which leads to a longer
application execution time than the estimated using the
deterministic approach. In contrast, GHS uses M/G/1 to
describe the machine usage pattern of each resource. The
application performance is expressed with a cumulative
density distribution (CDF) of the application execution
time. The impact of resource availability variation on
application performance is reflected in this CDF
expression. Thus GHS provides a more accurate
prediction of application performance in parallel
processing. This indicates GHS scheduling algorithms can
provide a better scheduling decision than AppLeS
scheduling algorithms, especially in a large-scale system
like a Grid.

6. Conclusions

Task scheduling requires an integrated solution of
performance prediction, scheduling algorithms, and
system development. Due to this reason, developing a
suitable and broadly applicable scheduling system has
been elusive. This is especially true for Grid computing,
where computing resources are shared, local jobs are

autonomic, and Grid tasks are distributed and deployed
under different middleware and local management
systems. Based on our previous results in performance
prediction and task scheduling, in this study we have
presented the development of the GHS (Grid Harvest
Service) task scheduling system for Grid computing. We
have introduced the system structure of GHS and the
implementation of its major components; in particular we
discussed the task deployment component. The
performances of GHS are analyzed and compared with
existing systems.

GHS consists of the GHS performance prediction,
GHS task scheduling, and APST task execution
environment. GHS performance prediction identifies the
impact of resource sharing on the application execution
time. GHS task scheduling selects the best machine set for
execution. APST is a production application execution
environment. It can be integrated with a number of
middleware for job submission, data movement, and
resource monitoring on Grid environments. To integrate
GHS prediction and scheduling with APST, we have
modified the three major components of APST: Metadata
Bookkeeper, Scheduler, and Controller. A meta-task
scheduling algorithm based on the GHS performance
modeling is added into the APST Scheduler to support
long-term application scheduling. A GHS Server
component is also developed and integrated into the
APST Metadata Bookkeeper to provide the performance
metric information retrieving needed for performance
modeling. Experiments and simulations are conducted to
verify the accuracy and feasibility of the new developed
system. The experimental results show that the GHS
scheduling system outperforms the AppLeS scheduling

Table 2. Comparison of AppLeS and GHS
scheduling (machine number and task completion

time)
Workload

(Max. machine number)
13801.7

(25)
27619.2

(50)
53779.5

(100)
108642.5

(200)
215141.0

(400)
task time (s) 496.4 557.7 712.8 874.5 1140.4

GHS
number 13 26 57 99 113

task time (s) 547.4 637.4 818.3 1022.7 1266
AppLeS

number 25 50 100 200 400

Table 1. Comparison of multiple-phase scheduling
with NWS prediction and one-phase scheduling

with GHS prediction
Number of subtasks 250 500 1000 2000

Average time (s) 3892.0 6636.7 12819.4 24717.2
Min. time (s) 2869.9 5003.3 10743.7 21000.1GHS

Max. time (s) 4671.2 7579.5 14516.4 29537.8
Average time (s) 4567.6 8553.2 16399.2 32121.2

Min. time (s) 3733.2 7298.3 14321.7 28180.9AppLeS

Max. time (s) 5225.5 9557.9 18561.2 36627.1

system in both the scheduled application performance and
the number of occupied resources. The experiment with
the Cactus application on the DOT testbed shows that the
GHS prediction works well in an actual Grid environment.
By introducing APST into GHS scheduling, both fine-
grained meta-tasks and coarse-grained meta-task can be
scheduled with the newly developed GHS task scheduling
system. An alpha version of the GHS task scheduling
system has been developed and released (see
http://www.cs.iit.edu/~scs/software.htm). More
experimental tests and refinements will be conducted in
the future work.

Acknowledgments
This research was supported in part by national

science foundation under NSF grant SCI-0504291, CNS-
0406328, and EIA-0224377.

References
[ABGH01] G. Allen, W. Benger, T. Goodale, H.-C. Hege, G.
Lanfermann, A. Merzky, T. Radke, E. Seidel, J. Shalf, Cactus
Tools for Grid Applications, Cluster Computing, 4 (2001) pp.
179-188, 2001.
[APST] AppLeS Parameter Sweep Template,
http://grail.sdsc.edu/projects/apst/.
[Balt02] M. Harchol-Balter, “Task Assignment with Unknown
Duration,” J. ACM, Vol. 49, No. 2, pp. 260-288, 2002.
[BJDG05] J. Blythe, S. Jain, E. Deelman, Y. Gil, et al, Task
Scheduling Strategies for Workflow-based Applications in Grids,
in the Proc. of CCGrid 2005, Cardiff, UK, 2005.
[BWCC03] F. Berman, R. Wolski, H. Casanova, W. Cirne, et al,
Adaptive computing on the Grid using AppLeS, IEEE
Transactions on Parallel and Distributed Systems, Vol. 14, No. 4,
pp 369-382, 2003.
[COBW00] H. Casanova, G. Obertelli, F. Berman, Rich Wolski,
The AppLeS parameter sweep template: user-level middleware
for the Grid, in the Proc. of SuperComputing’2000, Dallas, TX,
November 2000.
[DBGK03] E. Deelman, J. Blythe, Y. Gil, C. Kesselman,
Gaurang Mehta, et al. Mapping abstract complex workflows
onto Grid environments, Journal of Grid Computing, 1 (2003)
25-39.
[DiHa00] P. Dinda, D. O'Hallaron, Host load prediction using
linear models, Cluster Computing, 3 (2000) 265-280.
[DOT] Distributed Optical Testbed,
http://www.dotresearch.org/
[DuSC03] C. Du, X.-H.Sun, and K. Chanchio, HPCM: a pre-
compiler aided middleware for the mobility of legacy code, in
the Proc. of IEEE International Conf. on Cluster Computing,
2003, Hong Kong, Dec. 2003.
[FoKe04] I. Foster and C. Kesselman, The Grid2: Blueprint for a
New Computing Infrastructure, Morgan-Kaufman, 2004.
[FVWZ02] I. Foster, J. Voeckler, M. Wilde, and Y. Zhao,
Chimera: A virtual data system for representing, querying, and
automating data derivation, in the Proc. of the 14th Conference
on Scientific and Statistical Database Management, 2002.
[GoSW02] L. Gong, X.H. Sun, and E. F. Waston, Performance
modeling and prediction of non-dedicated network computing,
IEEE Trans. on Computers, Vol. 51, No. 9, pp. 1041-1055,
September, 2002.

[RaLS98] Rajesh Raman, Miron Livny, and Marvin Solomon,
Matchmaking: Distributed Resource Management for High
Throughput Computing, in the Proc. of the Seventh IEEE
International Symposium on High Performance Distributed
Computing, July 28-31, 1998, Chicago, IL.
[RaYC05] K. van der Raadt, Y. Yang, H. Casanova, Practical
divisible load scheduling on Grid platforms with APST-DV, in
the Proc. of 2005 IEEE International Parallel and Distributed
Processing Symposium Denver, CO, April 2005.
[SuWu03] X.-H. Sun and M. Wu, Grid Harvest Service: a
system for long-term, application-level task scheduling, in the
Proc. of 2003 IEEE International Parallel and Distributed
Processing Symposium, Nice, France, April, 2003.
[Wols98] R. Wolski, Dynamically forecasting network
performance using the network weather service, Cluster
Computing, 1 (1998) 119-132.
[WuSu04] M. Wu, and X.-H. Sun, Memory conscious task
partition and scheduling in Grid environments, in the Proc. of
5th IEEE/ACM International Workshop on Grid Computing (in
conjunction with SC 2004), Pittsburgh, Nov. 2004.
[YaCa03] Y. Yang, H. Casanova, UMR: A multi-round
algorithm for scheduling divisible workloads, in the Proc. of the
International Parallel and Distributed processing Symposium,
Nice, France, April 2003..

