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Abstract 
Effective task scheduling and deployment is hard to 

achieve in a Grid environment, where computing 
resources are heterogamous and shared between local 
and Grid users without a central control. Current 
scheduling systems, such as AppLeS, use NWS (Network 
Weather Service) for short-term estimation of resource 
availability and do not address the influence of the 
variation of resource availability in task scheduling. 
These inherent limitations prevent existing scheduling 
systems from working effectively to solve large-scale tasks 
in a Grid environment. Adopting APST (AppLeS 
Parameter Sweep Template) as the deployment 
environment, we have developed a task scheduling system 
for large-scale applications based on our recent results in 
performance prediction and task scheduling. Preliminary 
experimental results show that the newly developed 
system works well and is significantly more appropriate 
for large applications than existing systems. 
 
1. Introduction 

Evaluating the effect of resource sharing on 
application performance is a major challenge of task 
scheduling in shared environments. In a shared 
environment, a remote task competes with local jobs, or 
even other remote tasks, for resources.  The completion 
time of a task is not only determined by its workload but 
also the availability of resources. Scheduling systems, 
such as AppLeS, PEGASUS, CONDOR-G, CHIMERA, 
and Stork, have been developed recently for distributed 
shared environments. In these systems, scheduling 
decision is made based on the prediction of application 
performance with the consideration of the CPU 
availability, which is estimated by NWS (Network 
Weather Service) [Wols98]. However, NWS is designed 
for short-term predictions (up to 5 minutes as it claims) 
and cannot provide appropriate predictions for long-term 
applications. AppLeS [COBW00, BWCC03] is one of the 
most used Grid scheduling systems and has made extra 
efforts to adopt NWS for large scale applications. To 
compensate the known flaw of NWS prediction, AppLeS 
conducts periodic rescheduling. That is, an application is 
decomposed into or predefined as a set of numerous small 

subtasks and then the scheduling is re-performed 
periodically in small time period based on short-term 
predictions. Rescheduling involves task redeployment, 
while it mitigates the cost of inaccurate predictions, it 
adds in data movement cost. In addition, AppLeS 
scheduling decision is made based on minimizing each 
individual task completion time, where minimizing each 
task does not necessarily lead to an optimized completion 
time of a parallel application. It does not consider the 
variation of resource availability during each task 
deployment, other than repeating prediction/scheduling. 
To address these problems, we have introduced a new 
performance modeling technique to evaluate the effect of 
resource contention on the application performance and 
developed new scheduling algorithms [SuWu03]. A 
performance prediction system, named Grid Harvest 
Service (GHS), is thus proposed. Instead of using only 
utilization to describe the resource availability, GHS 
models the resource usage pattern with an M/G/1 queue 
system. The effects of machine utilization, computing 
power, local job service, and task allocation on the 
application performance are individually identified. 

Even after a scheduling decision is made, deploying a 
distributed task in a Grid computing environment still 
requires an integrated system solution. The deployment 
involves job submission, data movement, and resource 
monitoring. It is not an easy task in a shared environment, 
where the computing can cross multiple administration 
domains, which adopt different resource management 
middleware and policies. APST, a production application 
execution environment, is developed based on a 
component-oriented design and thus can be integrated 
with different middleware or components [COBW00]. 
Adopting an enhanced APST as the deployment 
environment, we have developed a task scheduling system 
based on our recent results in performance prediction and 
task scheduling [SuWu03].  Preliminary experimental 
results show that the new system works well and is 
significantly more appropriate for large applications than 
existing systems.  

 
2. Related work 



Job management has been studied intensively to 
develop efficient schedule and monitor systems for 
parallel and distributed computing. Existing systems, 
including LSF, PBS Pro, Sun Grid Engine/CODINE, and 
Maui Scheduler, are mainly designed for improving the 
utilization of expensive resources in high-performance 
computing and assume a relatively dedicated and stable 
computing environment. Issues such as load balance and 
fairness are often considered in the design and 
development of these systems instead of an individual 
job’s execution time. 

Research on scheduling jobs in shared environments 
has attracted extensive attention recently. Condor system 
[RaLS98] provides a matchmaking mechanism to allocate 
resources with ClassAds. The scheduling strategy is based 
on the match of the users' specification of their job 
requirements and preferences, with the machines' 
characteristics, available time periods, and conditions. 
AppLeS uses a loop of task events to schedule subtasks of 
a meta-task dynamically (a meta-task is composed of a 
group of independent and indivisible subtasks) [COBW00, 
BWCC03]. AppLeS supports Min-min, Max-min, 
Sufferage, and Xsufferage heuristic algorithms with the 
consideration of file transfer cost. The APST software 
was developed to make easy to deploy and adaptively 
schedule meta-tasks in distributed environments. With 
APST, AppLeS can be easily deployed in Grid 
environments and gain popularity. However, the 
scheduling of AppLeS has three limitations. First, its 
estimation of task execution time is based on the 
prediction provided by NWS. NWS is designed for short-
term predictions (up to 5 minutes as it claims) and cannot 
provide appropriate prediction for long-term applications. 
As a result, AppLeS conducts periodic scheduling to 
compensate the flaw of prediction. This rescheduling 
method assumes an application can be partitioned into or 
composed of a group of fine-grained subtasks to fit into 
the short-term resource availability prediction (the default 
scheduling period is 500 second in APST). Second, the 
AppLeS scheduling plan is generated based on 
minimizing each individual task’s completion time where 
minimizing each task does not necessarily lead to an 
optimized completion time of a parallel application. Third, 
AppLeS makes the scheduling decision based on the 
determined resource availability estimation. It doesn’t 
consider the impact of the variance of resource 
availability on application performance. Recently, Yang 
and Casanova have proposed a multi-round algorithm for 
scheduling parallel application with divisible workloads 
[YaCa03]. A software, named APST-DV has been 
developed based on the multi-round scheduling [RaYC05]. 
However, their new work is based on the assumption that 
the computation capacit of machines and the 
communication speed of network links are fixed in each 
round. This methodology is more appropriate for a 

dedicated system instead of a shared environment. In 
PEGASUS and CHIMERA workflow management 
systems [DBGK03, FVWZ02], data duplication is 
considered in mapping an abstract workflow onto Grid 
environments. Their recent study in [BJDG05] also 
indicates that minimizing the completion time of each 
individual part of a workflow does not necessarily lead to 
the optimization of the whole workflow’s completion 
time. 

 
3. GHS-APST Software 

Short-term prediction is hardly appropriate for long-
term scheduling. To address these problems, we have 
introduced new performance modeling techniques for 
evaluating the effect of resource contention on a long-
term application’s performance. A series of task 
scheduling algorithms and resource measurement and 
performance data collection methodologies have been 
designed and developed accordingly. The Grid Harvest 
Service (GHS) system has been proposed to enable the 
collaboration among performance measurement, 
performance modeling, and task scheduling. The Alpha 
version of GHS is implemented and available on-line at 
http://www.cs.iit.edu/~scs/software.htm. An early report 
on the GHS performance prediction system can be found 
at [SuWu03]. This study extends the previous results to 
fully develop the GHS software system for task 
scheduling.  

    
3.1. GHS software 

The Grid Harvest Service is a performance and task 
scheduling system for Grid computing. Its major 
subsystems include performance evaluation, task 
allocation, and task scheduling. Coordinately, these 
subsystems provide appropriate services to harvest Grid 
computing. 

The major goal of the performance evaluation 
subsystem is to estimate resource availability and to find 
its influence on application performance. Thus this 
subsystem consists of two parts: Application-level 
Predictor and System-level Predictor. The goal of 
Application-level Predictor is to estimate the application 
completion time, with a given application workload 
distribution over a set of resources. The System-level 
Predictor estimates the resource availability. In a shared 
machine, application performance is mainly decided by 
the available computation power of the shared resource. 
To identify the impact of resource availability on 
application completion time, we model the resource usage 
pattern with an M/G/1 queue system. It considers the 
heterogeneous machine utilization and computing 
capacity, heterogeneous job arrival rate as well as 
heterogeneous service distribution. The model was 
derived from a combination of rigorous mathematical 
analysis and intensive simulation to make it generic and 



practically useful. For more detailed information, people 
can refer to our previous work in [GoSW02, SuWu03]. 

The major motivation of distributed computing is that 
it can provide the “integrated” computation power that is 
needed for solving large-scale scientific applications by 
connecting numberous resources. The required computing 
power can not be satisfied by any single computer. 
Correspondently, the first thing of running these 
applications in distributed computing is to decide how to 
partition an application into subtasks and then maps them 
to a chosen set of resources for optimal performance via 
task scheduling. In GHS, this task is performaned by the 
task allocation subsystem. Considering the heterogeneous 
and dynamic resource availability and capacity in shared 
distributed environments such as Grid computing, we 
develop a mean-time task partition algorithm to distribute 
the workload of a parallel program to each resource so 
that the difference of the mean of expected execution 
times of the subtasks is minimal instead of using the 
conventional workload balance approach widely applied 
in parallel computing. The task allocation subsystem of 
GHS partitions the workload of parallel applications with 
respects of CPU, memory, network resource 
heterogeneity and resource sharing [WuSu04]. 

The task scheduling subsystem of GHS determines a 
scheduling plan for a large-scale application to provide an 
optimal or near-optimal solution for its running in a 
shared environment. It implements different scheduling 
algorithms for Grid computing according to the 
application’s requirement, such as a single task 
scheduling, parallel processing, and meta-task scheduling. 
Based on the prediction from the performance evaluation 
subsystem and task partition from the allocation 
subsystem, it checks potential available resources in the 
system and then searches for the best set of resources to 
assign the application. Two searching methodologies are 
supported: heuristic and optimal. A heuristic search is to 
find a near optimal solution with a reasonable cost. A 
task-rescheduling algorithm is also implemented to handle 
different abnormal situations, such as abnormal 
computing and I/O performance, system shut down, un-
trusted system behavior, failure of Globus software 
package, and undermined security. The subtasks of an 
application on resources showing abnormal performance 
are assigned to other appropriate resources based on a re-
estimation of the application completion time. The task 
reallocation is enabled by the High Performance 
Computing Mobility (HPCM) [DuSC03]. 

In the implementation of the Alpha version of GHS, 
we fully decouple these subsystems. They are presented 
to users as normal UNIX utilities. Each subsystem can be 
independently integrated into other performance 
evaluation and task scheduling tools. 

 
3.2. APST execution management 

Resources in Grid computing are usually heterogeneous 
and geographically distributed and are administrated by 
different domains. Much effort is being made to establish 
standard, open, general-purpose protocols and interfaces 
for resource sharing and coordination [FoKe04]. Many 
middleware are developed for different concerns in a 
general network computing: security, information sharing, 
file transfer, and remote execution. The interaction with 
these middleware is essential for task deployment in Grid 
environments.  

APST stands for AppLeS Parameter Sweep Template 
[APST]. It is a production application execution 
environment. It was developed in University of California, 
San Diego and originally designed for scheduling 
distributed implementations of “Parameter Sweep 
Applications” in Grid environments. The parameter 
sweep applications are structured as a set of 
“experiments”, each of which is executed independently 
with different set of parameters. The strengths of APST 
are two-fold: flexible software architecture and easy-of-
use. APST software is decoupled into four components: 
Controller, Scheduler, Actuator, and Metadata 
Bookkeeper. Standard APIs are provided for the 
interaction among these components while their 
implementations can be different to adapt to the 
underlying Grid resources and middleware. APST can be 
easily deployed in a wide range of distributed 
environments and integrated with a number of 
middleware. For example, it can utilize various data 
transport mechanisms (GASS, IBP, GridFtp, scp, or NFS) 
to transfer input and output files among different sites and 
different task execution mechanisms (ssh, NetSolve, 
GRAM, Condor) to run applications on remote resources. 

APST is easy-to-use. The software is composed of a 
client, apst, and a daemon, apstd. The apstd handles task 
assignment, job execution, and data file transfer. The apst 
is a client program, an interface portion that allows users 
to communicate with apstd. Through apst, a user can add 
new resources/tasks, check current status of 
resources/tasks, and stop the execution of apstd. APST 
uses a XML file to describe tasks and resources. Each 
task description specifies the task’s executable and its 
required command-line arguments, the relative 
computational cost, its input and output files. Each 
resource (compute, storage) description specifies the 
location and the way to access. The XML file also 
includes a gridinfo element, which is used to specify the 
source of information about the resources. 

 
4. Integration GHS prediction and scheduling 
with APST 

APST has been developed over years and tested with 
many applications, such as Mcell, Volume Rendering, 
Encyclopedia of life, in Grid computing. A common 
characteristic of these applications is that they can be 



partitioned into or composed of fine-grained subtasks so 
that AppLeS scheduling supported in APST can estimate 
their subtask completion time with the short-term 
prediction of resource availability provided by NWS. This 
limits the application of APST system and affects the 
scheduling algorithm design. To remove this limitation, 
we integrate GHS prediction and scheduling with APST. 
APST daemon consists of four components: Metadata 
Bookkeeper, Scheduler, Actuator, and Controller. In the 
following, we introduce their major functionalities and 
then present the modification component by component. 

Meta-data Bookkeeper is in charge of accessing 
resource meta-data. The Bookkeeper component has a 
facility called Elagi. It extracts performance metrics of 
resources from a variety of information services, such as 
NWS, MDS, or Ganglia. The currently supported 
performance metrics are CPU count, CPU load, network 
bandwidth and latency. In GHS, we model the resource 
usage pattern with an M/G/1 queue system to evaluate the 
impact of resource availability on the performance of a 
long-term application. The job arrival rate, job service 
time standard deviation, and resource utilization, have to 
be collected in order to calculate the mean, the standard 
deviation, and the distribution of applications completion 
time in a shared environment. Among them, only resource 
utilization is supported as a performance metric in APST 
in the term of ELMETRIC_CPU_LOAD. To integrate 
GHS prediction into APST, we first modify the 
MetricType and ServiceType data structure in the Meta-
data Bookkeeper. Job arrival rate and job service time 
standard deviation are included to reflect the new 
performance modeling. To support the retrieve of these 
two new resource metrics, we add a GHS server 
information service. It interacts with GHS Performance 
Measuring Engine (PME) and System-level Predictor 
(SLP) on each machine to collect resource information. 
The updated MetricType and ServiceType data structure 
is given in Figure 1. The added ServiceType, 
ELMETRIC_GHS, indicates a new information service is 
supported. Correspondingly, two functions, GhsFillKey 
and GhsFillMetric, are added in Elagi.  

Scheduler implements several APST scheduling 
algorithms, maxmin, minmax, sufferage and Xsufferage, 
besides the workqueue algorithms. These algorithms 
generate a scheduling plan based on the user’s submitted 
task and resource information. The scheduling plan is 
then executed by Actuator. In the Scheduler component, 
APST uses a procedure, FillGanttCharts(), to generate the 
scheduling plan. We enhance this procedure by adding a 
new API for meta-task scheduling, named 
GhsMetataskSched(). In GhsMetataskSched(), the Task 
Allocator is first called to partition a meta-task into a 
cluster of subtask groups and then the Application-level 
Predictor is called for the estimation of the application 
completion time for a given task partition plan. This 

process is repeated until an optimal or near-optimal 
scheduling plan is found. The generated scheduling plan 
is still stored in the GanttChart data structure and thus the 
execution of Actuator is not affected. 

Actuator implements two standard APIs, env_api and 
transport_api to handle task execution and file transfer on 
Grid resources accessible to different middleware 
software. It executes the scheduling plan generated by 
Scheduler. We keep this component intact in our 
modification. 

Controller interacts with the APST client to accept 
and response user’s request. One of the major 
functionalities of Controller is to parse the XML file to 
collect the task and resource information and store them 
into correspondent hash tables where the other 
components can access. Because a new information 
service, GHS server, is supported, we modify the 

ProcessXmlFile() function in the Controller component so 
that the new information service can be parsed in the 
XML file. 

Figure 2 gives the software architecture of the 
updated APST. In this Figure, components from GHS are 
marked with the orange color; components newly added 
or modified to facilitate the integration are marked with 
the green and yellow color respectively; components from 
APST are marked with the grey color. 

 
5. Experimental results 

We have conducted experiments to compare GHS 
scheduling and AppLeS scheduling. An experiment is 
first carried to estimate the execution time of a long-term 
application based on resource availability prediction 
provided by NWS and GHS. This experiment is used to 

Fig. 1. Extended MetricTypes and MetricServiceTypes



verify that short-term prediction cannot provide a 
satisfactory solution to long-term task scheduling. We 
then test the efficiency of GHS long-term prediction with 
a real Grid application, Cactus, on an actual Grid 
environment.  After that, we compare application 
execution time using the AppLeS’s multi-phase 
scheduling approach with NWS prediction and the one-
phase scheduling approach with GHS prediction. The 
better performance of GHS is not only due to its long-
term performance prediction but also due to its advanced 
scheduling algorithms. Finally, an experiment is 
conducted to compare the AppLeS and GHS scheduling 
algorithms only. 

The test platforms used in our experiments are the 
Sunwulf cluster and the DOT Grid Testbed [DiOT]. 
Sunwulf is a heterogeneous 84-node Sun ComputeFarm at 
IIT. The DOT connects clusters at ANL, NCSA, NU, UC, 
UIC, and IIT via the advanced "I-Wire" network. Each 
cluster is composed of one sever and multiple computing 
nodes. Local jobs on each resource in these test platforms 
are simulated with different job arrival rates and service 
rates, which follows the observation of over one million 
real-life processes generated from different academic 
workloads in Berkeley, as well as the machine usage 
pattern observation by researchers at Wisconsin-Madison, 
Maryland, Carnegie Mellon, et al [BaDo02]. Cactus 
[ABGH01], a numerical simulation of a 3D scalar field 
produced by two orbiting astrophysical sources, is used as 
our test application. In the test, we use the parallel version 
of Cactus application. It decomposes the 3D scalar field 
into sub-fields and each sub-field along with a small 
overlap region is mapped onto a different processor in the 
cluster 

 
5.1. Long-term task scheduling based on short-
term resource prediction 

AppLeS’ scheduling decision is made based on the 
estimate of the application completion time [COBW00, 
BWCC03]. AppLeS predicts the application computation 
time with the formula AvailCPUTT dedicated /=  where   

dedicatedT  denotes the application computation time in a 
dedicated resource and AvailCPU  denotes the 
prediction of the percentage of available CPU for this 
resource. The prediction of   is provided by the NWS 
[Wols98]. Scheduling decision based on NWS prediction 
has two limitations. First, NWS targets short-term system-
level performance prediction. As its claims, it is only 
suitable for jobs of five minutes time span or less. It 
cannot provide a satisfactory solution to long-term task 
scheduling. Secondly, NWS only provides resource 
availability. The effects of other system specific factors 
on the task execution time are not analyzed and thus not 
considered in task scheduling in AppLeS. 

An experiment is conducted to confirm that short-
term prediction cannot provide a satisfactory solution to 
long-term task scheduling. We compare the prediction 

error of the application completion time on the Sunwulf 
ComputeFarm based on resource availability provided by 
NWS and GHS. The applications are NAS Benchmarks 
(BT, CG, LU, MG, IS and SP, with the class type of “A” 
or “W”). Using the AppLeS formula 

AvailCPUTT dedicated /= , we estimate different application 
completion times based on resource predictions provided 
by NWS in terms of 10 seconds (default set of NWS) and 
5 minutes and provided by GHS, respectively. In GHS, 
since we assume that a remote task is assigned with a 
lower priority than local jobs, we can calculate 
AvailCPU  with ρ−= 1AvailCPU  where the prediction 
of ρ  is provided by System-level Predictor.  

To have a thorough comparison, in this experiment, 
we calculate two performance metrics: percentage 
prediction error and square prediction error. Percentage 
prediction error is defined as 

|/)(Pr| tMeasurementMeasuremenediction−  [Wols98]. 
Square prediction error is defined as 

2)(Pr tMeasuremenediction −  [Wols98, DiHa00]. Both 
performance metrics are generally used in the literature to 
evaluate the prediction accuracy. Figure 3 shows that the 
percentage prediction error based on NWS remains very 
high while the percentage prediction error based on GHS 
decreases with the increase in application workload. 
Figure 4 shows that the square prediction error based on 
NWS is always higher than the square prediction error 
based on GHS. In this Figure, the square prediction error 
is normalized with the function 

Fig. 2.Software architecture of updated APST



)999*)/()(1(log minmaxmin1000 DDDX −−+  where 
maxD  is 

the maximum original square prediction error and minD  is 
the minimum original square prediction error. The results 
indicate that the estimation of the completion time of a 
large application based on short-term prediction of 
resource availability provided by NWS is far from 
satisfactory no matter which metric is used. 

To verify the efficiency of GHS application-level 
prediction in actual Grid environments, we have tested the 
Cactus application on the DOT Grid Testbed. In the 
experiments, we use one server and one node from the IIT 
cluster, three nodes from the ANL cluster, and three 
nodes from the UC cluster. Two factors influence the 
accuracy of this kind actual testing, workload 
determination and system software interference. As a user 
we only can estimate the workload of Cactus based on its 
iteration number and input values – which is error prone.  
Also the underlying DOT management system may take 
CPUs away from time to time. Nevertheless, Figure 5 
shows the model working well even with these two 
factors. 

 
5.2. Multiple-phase scheduling with NWS 
prediction and one-phase scheduling with GHS 
prediction 

 Due to the short range of NWS prediction, AppLeS 
doesn’t give a fixed scheduling for a large-scale parallel 
application. Instead, AppLeS adopts a multiple-phase 
scheduling approach for large scale meta-tasks. In other 
words, it constantly reschedules the tasks within the NWS 

prediction scope. At each scheduling event, NWS online 
prediction is used for task scheduling. This multiple-phase 
scheduling, in addition to the increased cost, has an 
inherited drawback. The later phases of online prediction 
are tampered by the assigned remote subtasks. 
Rescheduling based on the tampered resource availability 
is inappropriate. This situation wouldn’t happen in GHS 
because its prediction is made before the task scheduling. 
We have conducted an experiment to confirm that the 
multi-phase approach is not a quick fix for short-term 
prediction.  

A Grid environment simulator was built to compare 
the performance of GHS scheduling with AppLeS 
scheduling. The reason why we use a simulator is because 
of the difficulty to access a large-scale, appropriate Grid 
environment to conduct the testing. The simulated Grid 
environment is composed of a number of clusters of 
machines, which can be scaled from dozens of resources 
to thousands of resources. We set different job arrival 
rates and service rates for these machines to simulate 
heterogeneous machine usage patterns in a Grid 
environment. The local job lifetime is generated with the 
bounded Pareto distribution [Balt02]. The application has 
a set of independent subtasks. The input of each subtask is 
a set of files and a single file might be input to more than 
one subtask. In our experiment, the phase scheduling 
length is set at 500 seconds as used in AppLeS. The 
number of clusters and the map of input files onto 
subtasks are randomly generated in each simulation time. 
The system consists of 20 machines. The simulation runs 
20 times for a given number of subtasks. We compare the 
average, minimum, and maximum of the task completion 
time (seconds) with two types of scheduling strategies. 
One is using the multiple-phase scheduling with NWS 
prediction. The other one is performing one-phase 
scheduling with GHS prediction. In both cases, we use a 
standard AppLeS scheduling algorithm, min-min heuristic. 
The simulation results are summarized in Table 1. It 
shows that with GHS prediction the average task 
completion time decreases by 17%-30% compared with 
that of NWS prediction. This is because, in multiple-

Fig. 5. Mean and variance of prediction error 
of Cactus’s execution time 
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phase scheduling, NWS online prediction is distorted by 
the execution of the meta-task at runtime. 

 
5.3. Comparison of AppLeS and GHS on task 
scheduling 

We have shown that GHS scheduling outperforms 
AppLeS scheduling because short-term resource 
prediction cannot satisfactorily support the scheduling of 
long-term applications. What will happen if AppLeS is 
supported with a long-term resource prediction? To 
answer this question, we repeat the above simulation 
except that both scheduling algorithms are provided with 
the same resource prediction. The comparison of task 
completion time (seconds) and the number of machine 
used with the two different scheduling systems is given in 
Table 2. The experimental results show that with GHS the 
task completion time decreases by 10%-20% compared 
with that of AppLeS system while GHS only uses about 
one-half of the machines used in AppLeS. When the 
system size is 400, GHS uses 113 computers and achieves 
a better performance than AppLeS while AppLeS uses all 
machines. This is because AppLeS scheduling uses a 
determined approach to estimate the application execution 
time, AvailCPUTT dedicated /= . This deterministic 
estimation of application performance may work well for 
single task scheduling. However, it has limitation for 
parallel task scheduling. In parallel processing, the 
application execution time is decided by the maximum 
subtask completion time. The effect of variation of 
resource availability on application performance should 
be considered. With more resources, the chance of 
inaccurate availability prediction at one machine (due to 
resource variation) will be higher, which leads to a longer 
application execution time than the estimated using the 
deterministic approach. In contrast, GHS uses M/G/1 to 
describe the machine usage pattern of each resource. The 
application performance is expressed with a cumulative 
density distribution (CDF) of the application execution 
time. The impact of resource availability variation on 
application performance is reflected in this CDF 
expression. Thus GHS provides a more accurate 
prediction of application performance in parallel 
processing. This indicates GHS scheduling algorithms can 
provide a better scheduling decision than AppLeS 
scheduling algorithms, especially in a large-scale system 
like a Grid.  

 
6. Conclusions 

Task scheduling requires an integrated solution of 
performance prediction, scheduling algorithms, and 
system development. Due to this reason, developing a 
suitable and broadly applicable scheduling system has 
been elusive.  This is especially true for Grid computing, 
where computing resources are shared, local jobs are 

autonomic, and Grid tasks are distributed and deployed 
under different middleware and local management 
systems. Based on our previous results in performance 
prediction and task scheduling, in this study we have 
presented the development of the GHS (Grid Harvest 
Service) task scheduling system for Grid computing. We 
have introduced the system structure of GHS and the 
implementation of its major components; in particular we 
discussed the task deployment component. The 
performances of GHS are analyzed and compared with 
existing systems.  

GHS consists of the GHS performance prediction, 
GHS task scheduling, and APST task execution 
environment. GHS performance prediction identifies the 
impact of resource sharing on the application execution 
time. GHS task scheduling selects the best machine set for 
execution. APST is a production application execution 
environment. It can be integrated with a number of 
middleware for job submission, data movement, and 
resource monitoring on Grid environments. To integrate 
GHS prediction and scheduling with APST, we have 
modified the three major components of APST: Metadata 
Bookkeeper, Scheduler, and Controller. A meta-task 
scheduling algorithm based on the GHS performance 
modeling is added into the APST Scheduler to support 
long-term application scheduling. A GHS Server 
component is also developed and integrated into the 
APST Metadata Bookkeeper to provide the performance 
metric information retrieving needed for performance 
modeling. Experiments and simulations are conducted to 
verify the accuracy and feasibility of the new developed 
system. The experimental results show that the GHS 
scheduling system outperforms the AppLeS scheduling 

Table 2. Comparison of AppLeS and GHS 
scheduling (machine number and task completion 

time) 
Workload 

(Max. machine number)
13801.7

(25) 
27619.2 

(50) 
53779.5 

(100) 
108642.5

(200)
215141.0

(400)
task time (s) 496.4 557.7 712.8 874.5 1140.4

GHS
number 13 26 57 99 113 

task time (s) 547.4 637.4 818.3 1022.7 1266
AppLeS

number 25 50 100 200 400 

Table 1. Comparison of multiple-phase scheduling 
with NWS prediction and one-phase scheduling 

with GHS prediction 
Number of subtasks 250 500 1000 2000 

Average time (s) 3892.0 6636.7 12819.4 24717.2
Min. time (s) 2869.9 5003.3 10743.7 21000.1GHS 

Max.  time (s) 4671.2 7579.5 14516.4 29537.8
Average time (s) 4567.6 8553.2 16399.2 32121.2

Min. time (s) 3733.2 7298.3 14321.7 28180.9AppLeS

Max. time (s) 5225.5 9557.9 18561.2 36627.1



system in both the scheduled application performance and 
the number of occupied resources. The experiment with 
the Cactus application on the DOT testbed shows that the 
GHS prediction works well in an actual Grid environment. 
By introducing APST into GHS scheduling, both fine-
grained meta-tasks and coarse-grained meta-task can be 
scheduled with the newly developed GHS task scheduling 
system. An alpha version of the GHS task scheduling 
system has been developed and released (see 
http://www.cs.iit.edu/~scs/software.htm). More 
experimental tests and refinements will be conducted in 
the future work. 
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