SCALA: A PERFORMANCE SYSTEM
FOR SCALABLE COMPUTING

Xian-He Sun?
Thomas Fahringer2
Mario Pantano?

Abstract

Lack of effective performance-evaluation environments
is a major barrier to the broader use of high perfor-
mance computing. Conventional performance environ-
ments are based on profiling and event instrumentation. It
becomes problematic as parallel systems scale to hun-
dreds of nodes and beyond. A framework of developing
an integrated performance modeling and prediction sys-
tem, SCALability Analyzer (SCALA), is presented in this
study. In contrast to existing performance tools, the pro-
gram performance model generated by SCALA is based
on scalability analysis. SCALA assumes the availability
of modern compiler technology, adopts statistical and
symbolic methodologies, and has the support of browser
interface. These technologies, together with a new ap-
proach of scalability analysis, enable SCALA to provide
the user with a more intuitive level of performance anal-
ysis for scalable computing. A prototype SCALA system
has been implemented. Initial experimental results show
that SCALA is unique in its ability of revealing the scal-
ing properties of a computing system.

Key Words: Software System, Performance Evaluation,
Parallel and Distributed Processing, Scalability Analysis,
Symbolic Analysis, Statistical Analysis

The International Journal of High Performance Computing Applications,
Volume 16, No. 4, Autumn 2002, pp. 000-000
© 2002 Sage Publications

1 Introduction

Although rapid advances in highly scalable multiprocess-
ing systems are bringing petaflop performance within
grasp, software infrastructure for massive parallelism
simply has not kept pace. Modern compiler technology
has been developed to reduce the burden of parallel pro-
gramming through automatic program restructuring. There
are many ways to parallelize an application, but the rela-
tive performance of different parallelizations vary with
problem size and system ensemble sizerformance sys-
tems have been developed for parallel computing (Mohr
et al. 1996, Miller et al. 1995, Whaley and Dongarra
1998, Berman et al. 1996, Taylor et al. 2000). These
systems have different strengths and focus on different
applications. They are an important component of high
performance computing. In this study we introduce the
framework and initial implementation of the SCALability
Analyzer (SCALA) system, a performance system design-
ed for scalable computers. Distinguished from other exist-
ing performance tools, the program performance model
generated by SCALA is based on scalability analysis
(Sun 2002, Sun and Rover 194). SCALA is a system
which correlates static, dynamic and symbolic informa-
tion to reveal the scaling properties of parallel programs
and machines and for predicting their performance in a
scalable computing environment. SCALA serves three
purposes: to predict performance, to support performance
debugging and program restructuring, and to estimate the
influence of hardware variations. Symbolic and scalability
analysis are integrated into advanced compiler systems
to explore knowledge from the compiler and to guide
the program restructuring process for optimal perfor-
mance. A graphical user interface is developed to visu-
alize the performance variations of different program
implementations with different hardware resources.
Users can choose the performance metrics and parame-
ters they are interested in.

SCALA supports range comparison (Sun 2002), a new
concept which allows the performance of different code-
machine combinations to be compared over a range of
system and problem sizes. SCALA is an experimental
system that supports performance oriented program
development for OpenMP/MPI/HPF and mixed parallel
(e.g., OpenMP/MPI) programs. SCALA is designed to
explore the plausibility and credibility of new techniques,
and to use them collectively to bring performance analy-

' DEPARTMENT OF COMPUTER SCIENCE, ILLINOIS INSTITUTE
OF TECHNOLOGY, CHICAGO, IL 60616

2 INSTITUTE FOR SOFTWARE TECHNOLOGY AND PARALLEL
SYSTEMS, UNIVERSITY OF VIENNA LIECHTENSTEINSTR. 22
1090 VIENNA, AUSTRIA

sis environments to their most advanced level. In this
paper, we present the design and initial implementation
of SCALA. Section 2 presents the structure and primary
components of SCALA. Section 3 and 4 gives a short
description of scalability analysis and symbolic analysis
respectively. Implementation results are reported in Sec-
tion 5. Finally, Section 6 gives the summary and conclu-
sion.

2 The Design of SCALA

The design of SCALA is based on the integration of
symbolic cost models and dynamic metrics collected at
run-time. The resulting code-machine model is then ana-
lyzed to predict performance for different software (i.e.
program parameters) and architecture characteristics vari-
ations. To accomplish this process, SCALA combines
performance prediction techniques, data analysis and
scalability analysis with modern compiler techniques.
An important feature of SCALA is its capability to relate
performance information back to the source code in order
to guide the user and the compiler in the selection of
transformation and optimization strategies. Although
SCALA is an integrated system designed to predict the
scaling behavior of parallel applications, it supports
standard performance information via data analysis and
visualization techniques and can be used without com-
piler support.

The general structure of SCALA comprises several
modules which combined together provide a robust envi-
ronment for advanced performance analysis. SCALA has
three sources of information (compiler, measurement sys-
tem, and user) and two outputs (compiler and user). The
compiler provides symbolic models of the program and
information on the code regions measured. Dynamic per-
formance information is provided by the measurement
system in terms of tracefiles. The user can also be involved
in the process of supplying specific information on soft-
ware parameters and on the characteristics of the input
data. The three input sources can be used collectively
for the best result or can be used separately, based on
physical constraints and target applications. On the out-
put side, performance indices can be given directly to
the Compiler, annotating the syntax tree and call graph
of the application so that the compiler can automatically
select the most appropriate transformations to be applied
to each code region. Detailed information on the pre-
dicted behavioral characteristics of the application will
be given to the programmer by using visualization tech-
niques. Figure 1 depicts the design structure of SCALA
which is composed of the following modules:

* Data Management: This module implements data
filtering and reduction techniques for extrapolating
detailed information on each code region measured.
The input of this module is a tracefile in a specific
format while its output is given to the analysis mod-
ules and to the interface for visualization.

e Statistical Analysis: The statistical component of
SCALA determines code and/or machine effects, finds
the correlation between different program phases, iden-
tifies the scaling behavior of “difficult segments”, and
provides statistical data for the user interface.

e Symbolic Analysis: The symbolic module gathers cost
models for alternative code variants computed at com-
pile-time, and using dynamic data evaluates the resulting
expressions for specific code-machine combinations.

* Scalability Analysis: The development of this module
is based on the most advanced analytical results on
scalability analysis as described in Section 3. The
scalability module implements newly developed algo-
rithms for predicting performance in terms of execution
time and scalability of a code-machine combination.

* Model Generator and Database: The performance
model generator determines the model of system exe-
cution. The database keeps previously measured infor-
mation which will be used to find appropriate values
of symbolic constants and statistic data for perfor-
mance prediction.

* [Interface: The measured and predicted results can be
visualized via a user-friendly graphical interface. The
appearance of the interface can be justified by the
user and the visualization can be “zoomed” in and out
for a specific computing phase and component. The
results also can be passed through the interface to the
compiler for automatic optimization purposes.

While each module of SCALA has its specific design
goal, they are closely interconnected for a cooperative
analysis process that provides the user with advanced
performance information for a deep investigation of the
application itself as well as of the interaction with the
underlying parallel machine. The other important point in
this design is the complete integration of SCALA in the
Vienna Fortran Compiler (VFC) (Benkner 1999, Benkner
et al. 1995) which translates Fortran programs (Fortran90,
MPI, OpenMP, HPF, and mixed program) into Fortran90/
MPI or mixed OpenMP/MPI programs. Moreover, the
Scala Instrumentation System (SIS) has been integrated
into VFC to alleviate generic instrumentation of source
codes for a variety of performance overheads and met-
rics for arbitrary code regions ranging from the entire
program to single statements.

This integration allows the tool to directly gather
detailed information on the source code being trans-

‘ Scc:):)l(ri(;e Browser Interface
Symbolic Scalability Performance
C il | _| Analysis Analysis Model
ompiuer Generator
Statistical Data Database
Analysi M t
Message Passing ratysis anageien
Code T
D :
Target Machine —>‘])SI;?;IHC }—‘

Fig. 1 Structure of SCALA.

formed. As a consequence, performance predictions can
be linked back to the user source code providing sug-
gestions for code optimizations. A brief discussion of the
scalability analysis, symbolic analysis, and data analysis
modules is given in the following sections. The imple-
mentation of these modules, as well as others, can be
found in Section 5 where the implementation issues are
addressed.

3 Scalability Analysis

Several scalability metrics and prediction methodolo-
gies have been proposed (Gustafson et al. 1988, Kumar
et al. 1994, Sahni and Thanvantri 1996, Hwang and Xu
1998). SCALA’s approach is based on isospeed scalability
(Sun and Rover 1994): a code-machine combination
(CMQ) is scalable if the achieved average unit speed
can remain constant when the number of processors
scales up, provided the problem size can be increased
with the system size.

The performance index considered in isospeed scala-
bility, therefore, is speed which is defined as work
divided by time. Average unit speed (or, average speed,
in short) is the achieved speed of the given computing
system divided by p, the number of processors. The

speed represents a quantity that ideally would increase
linearly with the system size. Average speed is a mea-
sure of efficiency of the underlying computing system.
Unlike the widely used, speedup based parallel efficiency,
average speed does not need the comparing of sequen-
tial single node performance. While the speedup based
efficiency is a good measure for parallel performance
gain, average speed is a more appropriate metric for the
study of scalability.

For a large class of CMCs, the average speed can be
maintained by increasing the problem size. The necessary
problem size increase varies with code-machine combina-
tions. This variation provides a quantitative measurement
of scalability. Let W be the amount of work of a code
when p processors are employed in a machine, and let
W’ be the amount of work of the code when p’ > p pro-
cessors are employed to maintain the average speed,
then the scalability from system size p’ to system size of
the code-machine combination is:

4

wp.p) =" (1)

p-w

where the work W’ is determined by the isospeed con-
straint.

size p

Range Comparison
Begin

IfO(p, p')>o¥(p, p’) then
p’ is the smallest scaled crossing point;

Else

End{If}
End{Range Comparison}

Assumption of the Algorithm: Assume code-machine combinations 1 and 2 have execution time #(p, W)
and T'(p, W) respectively, and #(p, W) =aT (p, W) at the initial state, where o> 1.

Objective of the Algorithm: Find the superior range of combination 2 starting at the ensemble

Compute the scalability of combination 1 ®(p, p*);
Compute the scalability of combination 2 W(p; p”);
Until(@(p, p’) >o¥(p, p’) or p’= the limit of ensemble size)

Combination 2 is superior at any ensemble size p', p<p' < p”;

Combination 2 is superior at any ensemble size p', p<p' <p

’

Fig.2 Range Comparison Via Crossing Point Analysis.

In addition to measuring and computing scalability,
the prediction of scalability and the relation between
scalability and execution time have been well studied. A
mechanism is developed to predict the scalability auto-
matically (Sun et al. 1999). Theoretical and experimen-
tal results show that scalability combined with initial
execution time can provide good performance predic-
tion, in terms of execution times.

New concepts of crossing-point analysis and range
comparison are introduced. Crossing-point analysis finds
fast/slow performance crossing points of parallel pro-
grams and machines. If CMC 1 is faster (slower) than
CMC 2 at ensemble size p, and p’ > p is the first scaled
ensemble size such that CMC 1 becomes slower (faster)
than CMC 2 at p’, then we say p’ is a performance crossing-
point of CMC 1 and CMC 2, and CMC 1 overperforms
CMC 2 over the ensemble range between p and p’—1. In
contrast with execution time which is measured for a par-
ticular pair of problem and system sizes, range comparison
compares performance over a wide range of ensemble
and problem size via scalability and crossing-point anal-
ysis. Only the two most relevant theoretical results are
given here. More results can be found in Sun (2002).

Result 1: If a code-machine combination is faster at
the initial state and has a better scalability than that of
other code-machine combinations, then it will remain
superior over the scalable range.

Result 1 shows that a better scalability will maintain a
better execution time over the scalable range. Range
comparison becomes more challenging when the initial
faster CMC has a smaller scalability. When the system
ensemble size scales up, an originally faster code with
smaller scalability can become slower than a code that
has a better scalability. Finding the fast/slow crossing
point is critical for achieving optimal performance.
CMC 1 and CMC 2 may have different scalability and
different scaled problem size W/, W at the scaled ensem-
ble size p’ > p, respectively. By equation (1), we can use
the scalability of CMC 1 and CMC 2 to find the perfor-
mance crossing point in terms of the scaled problem
size W’, W", which we call the scaled crossing point.
As given by Result 2, the scaled crossing point can be
used to identify the performance crossing point (with
the same problem size) and conduct range comparison.

Result 2: Assume code-machine combination 1 has a
larger execution time than code-machine combination 2
at the initial state, then the scaled ensemble size p’ is not
a scaled crossing point if and only if combination 1 has a
larger execution time than that of combination 2 for solv-
ing any scaled problem W' such that W' is between W’
and W™ at p’, where W and W' is the scaled problem
size of combination 1 and combination 2 respectively.

Result 2 gives the necessary condition for range compari-
son of scalable computing: p” is not a crossing point of p
if and only if the fast/slow relation of the codes does not
change for any scaled problem size within the scalable
range of the two compared code-machine combinations.
Based on this theoretical finding, with the comparison
of scalability, we can predict the relative performance
of codes over a range of problem sizes and machine
sizes. This special property of the scalability comparison
is practically valuable. Programming optimization in a
large sense is to compare different programming options
and to choose the best option available. Pre-measured
performance can be sorted and used for performance
prediction. Since execution time is determined by prob-
lem size, using pre-measured execution time to predict
performance requires an extremely large database and is
impractical. On the other hand, scalability is “dimension-
less” and only need to be stored at each ensemble size.
Result 2 provides a foundation for the performance pre-
diction component of SCALA. Figure 2 gives the range
comparison algorithm in terms of finding the smallest
scaled crossing point via scalability comparison. More
algorithms can be found in Sun (2002). In general, there
could be more than one scaled crossing point over the
consideration range for a given pair of CMCs. This
algorithm can be used iteratively to find successive
scaled crossing points.

4 Symbolic Analysis

The quality of scalability analysis depends significantly
on the ability to determine crucial program information
such as how much work is contained in a program, how
much work has to be processed by a specific processor,
communication overhead, etc. This as well as many other
program analyses are seriously hampered by program
unknowns (problem and machine sizes) and complex
expressions that can stem from recurrences, tiling with
symbolic block sizes (Benkner et al. 1995), linearized
subscripts, and non-linear terms in subscript expressions.
Ineffective approaches to gather and propagate sufficient
information about variables through the program con-
tinue to have a detrimental impact on many compiler
analyses and optimizations (Fahringer and Scholz 1997,
Fahringer 1998, Blume and Eigenmann 1994, Tu and
Padua 1995, Tu 1995). As a consequence worst case

assumptions are frequently made or program analysis is
done at runtime which increases the execution overhead.
Therefore, sophisticated symbolic analysis that can cope
with program unknowns is needed to alleviate these
compiler deficiencies.

We use symbolic evaluation (Fahringer and Scholz
1997) which combines both data and control flow analy-
sis to determine variable values, assumptions about and
constraints between variable values, and conditions
under which control flow reaches a program statement.
Computations are represented as symbolic expressions
defined over the program’s problem and machine size.
Each program variable is associated with a symbolic
expression describing its value at a specific program
point. In addition a path condition — represented by a
first-order logic formula — describes the condition under
which control flow reaches a given program point and
the assumptions on variable values made for a given
control flow branch.

The goal of our symbolic evaluation with respect to
loops is to detect the recurrence variables, determine the
recurrence system and finally find closed forms for recur-
rence variables at the loop exit by solving the recurrence
system. We have implemented a recurrence solver writ-
ten on top of Mathematica. Our symbolic evaluation
techniques comprise accurate modeling of assignment
and input/output statements, branches, loops, recurrences,
arrays and procedures. Efficiency and accuracy are highly
improved by aggressive simplification techniques. All of
our techniques target both linear as well as non-linear
expressions and constraints.

Symbolic evaluation is used as a basis for a variety
of symbolic algorithms to compute statement execu-
tion counts as well as the work contained in a program
and the amount of data transferred as a function of the
problem and machine size (Fahringer 1998). The work
to be done by an individual processor with respect to a
specific program statement S is computed to be the
number of times this processor is executing S weighted
by the time it takes to execute a single instance of S.
Symbolic execution times are functions over machine
and problem sizes. The execution time of a single state-
ment is obtained by the measurement system. Based on
actual measurements on the target machines of interest
the data management component is extracting and sum-
ming up all execution times for the operations contained
in S. We are currently developing a symbolic execution
time estimator for data-parallel Fortran programs which is
based on our techniques for computing symbolic statement
execution counts combined with execution times of opera-
tions (obtained by the data management component).

In the following we describe how to estimate the
amount of work to be processed by every processor of a
data parallel program. The following code shows a High

Performance Fortran (HPF) (1996) code excerpt with a
processor array PR of size p (machine size) and two
problem sizesn, andn,,

INTEGER A (n,)

'HPF$ PROCESSORS :: PR(p)

'HPFS$ DISTRIBUTE (BLOCK) ONTO PR :: A
DO J, =1, n,

DO J, =1, J,% n,

IF (J, < n,) THEN

S: A(J,) =

ENDIF

ENDDO
ENDDO

The loop contains a write operation to a one-dimen-
sional array A which is block-distributed onto p proces-
sors. Let k (1<k < p) denote a specific processor of the
processor array. Computations that define the data ele-
ments owned by a processor k are performed exclusively
by k. For the sake of simplicity we assume that p evenly
divides n,. Therefore, a processor k is executing the
assignment to A based on the underlying block distribu-
tionifn, *(k=1)/ p+1<J, <n, *k/ p. The precise work
to be processed by a processor k is the number of times
k is writing A, which is defined by work (k).

The problem of estimating the amount of work to be
done by processor k can now be formulated as counting
the number of integer solutions to Z which is given by:

1<J, <n,
1<J, <J, #n,
J, <n,
#*(k—1 *k
LR ()+1£ 2_7”2
4 p

7 contains constraints for every loop bound and condition
expression in the above example code. Furthermore, the
constraints of the data distribution are included in Z. All
constraints are defined over loop variables and machine
and problem sizes. Note that if we omit the last two con-
straints of Z then we obtain the overall work contained in
a program. In the following we replace n, *(k—1)/ p+1
by LB and n, * k/ p by UB. By using various techniques
to simplify systems of constraint (Fahringer 1998) we
can determine that 1<J, is made redundant by B<J,
and J, <n, by J, <UB. Therefore, the simplified Z with
all redundant inequalities removed is given by

1<J, <n,
LB<J, <UB

J, <J, #n,

Determining how many times processor k is executing
statement S is identical with the problem to find the
number of solutions of Z. We estimate work(k) by work(k)
which is given as follows:

work(k)= 2,¥(C,)* E, (k)

15723
where

C,={UB<n],p<n,}
_(n, +UB~-LB)*(LB=2%n, +2% LB%n, +UB)

2%n;

E, (k)

C,= %>nl,%ﬁnl}
E, (=01, —2+D% (5= +1)
C, =, >2p,n} 2UB+l}
E (k=" #(n, =5+

and vy is defined as follows:

c {l: if C=TRUE
vO)= 0: otherwise

Notice that the result is given as a function of k (proces-
sor identification), machine and problem sizes. We have
implemented a symbolic sum algorithm (Fahringer 1998)
that estimates the number of solutions to a system of lin-
ear and non-linear symbolic constraints.

Most conventional performance estimators must repeat
the entire performance analysis whenever the problem size
or the number of processors used are changing. How-
ever, our symbolic performance analysis provides the
solution of the above problem as a symbolic expression
of the program unknowns (p, n,, n,, and k). For each
change in the value of any program unknown we simply
re-evaluate the result, instead of repeating the entire per-
formance analysis. Table 1 shows an experiment which
compares measured against estimated values for a 4
processor (p =4) version of the example code by varying
the values for n, and n,. The measurements have been
done by executing the example code on an iPSC/860
hypercube system and enumerating for each processor
the number of times it writes array A in the loop of the
example code. It can be seen that the estimates (work(k))
are very close to the measurements (work(k)). In the
worst case the estimates are off by 1.19% for a relatively
small problem size (n, =200, n, =100). Moreover, we
also observe that for larger problem sizes the estimation
accuracy consistently improves.

Table 1

Measured versus estimated values for the amount of work to be done by all processors for p = 4

n, n, > work(k) > work(k) error in %
15k%p 1ékep
100 100 10000 10025 0.25
200 100 20000 20238 1.19
200 200 40000 40450 1.12
400 200 80000 80474 0.59
400 400 160000 160900 0.56
800 400 320000 320950 0.29
800 800 640000 641800 0.28

In order to obtain an execution time estimate for S we
weight this figure with the pre-measured execution times
for each operation contained in S as obtained from the
data management component.

To compute the amount of data transferred as implied
by a parallel program we specify a similar set of con-
straints that describes the non-local data accesses of a
specific processor k. The number of solutions to this set
of constraints determines the amount of data transferred
with respect to k. In both cases we use a symbolic sum
algorithm to compute the number of solutions to a set of
constraints. We also can use this approach to determine
whether two processors are exchanging data. For instance,
let Z, and Z, determine the local data of a processor k,
and the non-local data needed by a processor k, , respec-
tively. Then k, is sending data to k, if and only if there
exists at least one solution to Z, U Z,. We can therefore
use our symbolic sum algorithm as a basis to compute the

e overall work contained in a program

¢ amount of work to be processed by a specific proces-
sor

e amount of data transferred, and
e number of transfers.

All of these performance metrics are functions over
machine and problem sizes. Communication times can
be computed based on the well-known linear communi-
cation model p+f* D, where p is the message startup
overhead, and [is the message transfer overhead for send-
ing a single data element. SIS can be used to determine
measurements for p and B. Symbolic analysis can then
combine these parameter values with symbolic functions
for amount of data transferred and number of transfers in
order to compute symbolic communication times as func-
tions of machine and problem size.

We have implemented a prototype of our symbolic
evaluation framework (Fahringer and Scholz 1997) as
well as symbolic sum algorithm (Fahringer 1998) that
estimates the number of solutions to a set of symbolic
constraint. These techniques are used as part of the
VFC - a parallelizing compiler for Fortran programs,
PT (Fahringer 1995, 1996a) — a performance estima-
tor, and SCALA in order to effectively parallelize and
optimize Fortran programs for distributed and shared
memory architectures.

5 Prototype Implementation

The implementation of SCALA involves several steps,
which include the development of each component
module, integration of these components, and testing,
modification and enhancement of each component as
well as of the integrated system. As a collective effort,
we have conducted the implementation of each compo-
nent concurrently and have successfully tested a proto-
type of the SCALA system.

Restructuring a program can be seen as an iterative
process in which a parallel program is transformed at
each iteration. The performance of the current parallel
program is analyzed and predicted at each iteration. Then,
based on the performance result, the next restructuring
transformation is selected for improving the performance
of the current parallel program. Integrating performance
analysis with a restructuring system is critical to support
automatic performance tuning in the iterative restructur-
ing process. As a collaborative effort between Illinois
Institute of Technology and University of Vienna, a first
prototype of SCALA was developed and tested under
the VFC as an integrated performance tool for revealing
scaling behavior of simple and structured codes. In this
framework, the static performance data have been pro-

2000.0
o 1500.0 -
£
=
c
2o
(@3
it
1000.0
G—=>0 2D distribution
3—- Column distribution
500.0 ! L !

Processors

1400.0

1200.0
(o}
_g 1000.0
c
kel
b)3
()2 800.0 -
|
600.0 - G—>© 2D distribution
O—-H Column distribution
400.0 “‘ é 1w6
Processors

Fig. 2 Scaled crossing point (a) and crossing point (b) for the Jacobi with n =20

vided by P’ T. The integration of P* T into VFC enables
the user to exploit considerable knowledge about the
compiler’s program structural analysis information and pro-
vides performance estimates for code restructuring. Among
others P’ T traverses an abstract syntax tree generated
by VFC in order to locate communication statements
inserted by the compiler. For each communication state-
ment, a list of constraints is determined by P*T that
determines which processor is communicating with what
other processors. These constraints are based on the
owner-computes model which indicates that a processor
updates data if this data is owned by the processor. Any
remote data that is needed to update local data must be
transferred via message passing. In Fahringer (1996b)
we have demonstrated how P’ T determines the amount
of data transferred and the number of transfers for par-
allel programs by incorporating compile-time analysis.
Such analysis is restricted to so-called regular programs
which contain only linear array index and loop bound
functions defined over loop variables of enclosing loops.
The resulting constraints are incorporated by our sym-
bolic analysis to determine the amount of data trans-
ferred and number of transfers as symbolic functions
defined over problem and/or machine sizes (see Sec-
tion 4). The SCALA system has been integrated to pre-
dict the scaling behavior of the program by using static
information provided by P’ T and the dynamic perfor-
mance information collected at run-time. In particular,
the Data Management Module of SCALA filters the raw
performance data obtained, executing the code on a paral-
lel machine, and provides selected metrics which com-
bined with the static models of P* T allows an accurate
scalability prediction of the algorithm-machine combi-
nation. Naturally, the interactions between SCALA and

the estimator P* T is an interactive process where at each
iteration the scalability analysis model is refined to con-
verge at the most precise prediction. For this purpose we
have designed and implemented within SCALA an itera-
tive algorithm to automatically predict the scalability of
code-machine combinations and compare the perfor-
mance over a range of algorithm implementation (range
comparison). As a result, the automatic range compar-
ison is computed within a data-parallel compilation
system. Figure 3 shows the predicted crossing point for
solving a scientific application with two different data-
distributions in VFC environment on an Intel iPSC/860
machine. We can see that the column distribution becomes
superior when the number of processors is greater than or
equal to 8. The superiority of 2-D block-block distribu-
tion ends when the system size equals 4. The prediction
has been confirmed by experimental testing.

In order to verify Result 2, we measured both codes
with n =30 and n =50, respectively. In accordance with
Result 2, before p=8 there is no performance crossing
point, and p =8 may correspond to a crossing point for a
given problem size in the scalable range. The results are
shown in Figure 3(b).

As a first step for investigating the performance of
parallelized codes, we embedded in the VFC the SCALA
Instrumentation System (SIS). SIS is a tool that allows
the automatic instrumentation, via command line options,
of various code regions such as subroutines, loops, inde-
pendent loops and any arbitrary sequence of executable
statements. The data management module accepts trace-
files obtained executing the code instrumented with SIS
and computes a set of statistical metrics for each code
region measured. Here, P° T is substituted by a new tool
that will provide SCALA with symbolic expressions of the

Table 2
Communication Models (in us)

Cray T3E QWS CS-2
1-d 2-d 1-d 2-d
short long short long short long short long
p 35.6 71.2 40.3 77.5 220.3 297.2 150.4 192.9
B 20-10°? 125.10°° 21-107° 141.10°° 55-10? 35-102 67-1072 44.1072
Table 3
Bidirectional 2D torus on CRAY T3E: Predicted (P) and measured (M) scalability
Jacobi 2-d
y(p,p’) p’=8n=1519 p’=16,n =2186 p’=32,n=3124 p’=64,n =4372
P M % P M % P M % P M %
p=4 0908 0.899 1.0 0.877 0.871 0.6 0.859 0.856 0.3 0.877 0.871 0.6
p=8 1.000 1.000 - 0.966 0.969 0.3 0.946 0.952 0.6 0.966 0.969 0.3
p=16 - - - 1.000 1.000 - 0.979 0.982 0.3 1.000 1.000 -
p =32 - - - - - - 1.000 1.000 - 1.021 1.018 0.2

code regions. The value of the parameters used in the
symbolic expression, however, may vary when system or
problem size increase. For this purpose in SCALA we
compute and save run-time information in SCALA data-
base (see Figure 1) for specific code-machine combina-
tions. For example, on a Cray T3E and QSW (Quadrics
Supercomputers World) scalable computing system, the
communication cost is given as 7, =p+B-D. D is the
length of a single message, p and [are values describing
the startup time and the time required for the transmis-
sion of a single byte. These machine dependent values
are either supplied by the manufacturer or can be exper-
imentally measured. In order to reproduce the interfer-
ence between the messages we compute p and B for
each specific communication pattern used in the appli-
cation. Table 2 presents the communication values com-
puted for the communication patterns 1D and 2D Torus
used in the Jacobi implementation. As shown in Table
3, SCALA accurately predicts the scalability of the algo-
rithm and therefore range comparison. More detailed
information can be found in Noelle et al. (1998).

In the third experiment we used an OpenMP/MPI
Fortran90 version of a code that simulates the ocean in
order to explain the westward intensification of wind-
driven ocean currents (Stommel 1948). The experiments
were conducted on a cluster of SMP nodes, connected
by Fast-Ethernet, each node consisting of 4 Intel
Pentium IIT Xeon 700 MHz CPU, with IMB full-speed

L2 cache, 2 GByte ECC RAM, Ethernet and runs Linux
2.2.18-SMP. Jobs are scheduled on dedicated nodes by
using PBS (Portable Batch queuing System, Veridian
Systems). Our prototype implementation automatically
invoked all the corresponding experiments and stored
the output results and performance data in a database.
We studied the scalability behaviour and the impact of
various OpenMP loop distribution strategies on the
resulting performance.

The scalability of the code was examined by varying:
(1) the machine size, which consists of two dimensions:
(i) the number of SMP nodes, controlled by directives
inserted in the PBS script in order to schedule jobs;
(i1) the number of threads per SMP node, controlled by
the input parameter to the omp set num threads
OpenMP library routine; and (2) the problem size, by
varying the grid (ocean) size and the number of iterations
on the grid. An experiment was conducted to examine
the different OpenMP loop scheduling strategies and
their performance effects. A key issue for OpenMP pro-
grammers is to find an appropriate work distribution for
parallel loops that are executed by a set of threads. Vari-
ous options are provided to change the work distribution
of loop iterations, which includes the scheduling strat-
egy (i.e. STATIC, DYNAMIC and GUIDED) and the size
of iterations (chunk) distributed onto a set of threads.
STATIC means that the iterations are assigned to threads
statically, before getting executed; DYNAMIC means that

) T
o O

o)
o

w
o

Execution Time [sec.]
N B
o o

-
o
|

o

Chunk Size

——STATIC —a- DYNAMIC —— GUIDED

Fig. 4 Performance Study of an Ocean Simulation.

as each thread finishes a set of iteration space, it dynam-
ically gets the next one; GUIDED means that the itera-
tion space is divided into pieces such that the size of
each successive piece is exponentially decreasing (Dagum
and Menon 1998).

Figure 4 shows that for the problem size examined,
STATIC scheduling performs better than DYNAMIC and
GUIDED. The optimal chunk size is 50. Static scheduling
is most likely superior because it implies the least runtime
scheduling overhead. SCALA has been used to instru-
ment the OpenMP/MPI Fortran code and measure the
various execution times for different chunk sizes.

5.1 DATA MANAGEMENT

Many performance measurement systems exist right
now (Miller et al. 1995, Mohr et al. 1996). While these
performance systems have made their contribution to
the state-of-the-art of performance evaluation, none of
them has addressed the data presentation and understand-
ing issue adequately. In SCALA, the (dynamic) data col-
lection module, the data management module, and the
database module are integrated to form a Performance
Data Representation System (PDRS) (Sun and Wu 2000).
Trace Data Module. This module is in charge of col-
lecting original performance data of parallel programs,
and stores them with SDDF (Aydt 1995). The large vol-
ume of data involved in parallel computations requires
that instrumentation to collect the data selectively and
intelligently. One way to collect data of a parallel pro-

gram is to instrument the program executable so that
when the program runs, it generates the desired infor-
mation. PDRS is designed to use the Scala Instrumenta-
tion System (SIS) (Fahringer et al. 2000) to get the
SDDF trace data file. PDRS also provides a general
interface that can be used under any system, which pro-
vides the SDDF trace data interface.

Data Management Module. As discussed in Section
2, this module is in charge of performance data filtering
and mapping. Event histories of parallel programs are
valuable information sources for performance analysis
but the problem is how to extract the useful information
from massive amounts of low-level event traces. Our
system performs the data filtering as a preparation to
store the event history into a relational database. The
SDDF is a trace description language that specifies both
data record structures and data record instances. The
SCALA performance database is based on the SDDF
specification. The data management module is designed
to be implemented in Oracle DBMS.

Performance Database. We classify the performance
data saved in the SDDF tracefiles into five groups: pro-
cessor information, memory information, program infor-
mation, communication information and I/O information.
Each group is represented as an entity relation in the per-
formance database. An individual event in a relation is
treated as a tuple with a given unique identifier. The
information retrieval is achieved by the relational data-
base queries. The example below shows how objects
can be retrieved using JDBC (Sun Microsystems 1997).

For instance, suppose that we want to get the communi-
cation events that occurred in processor 0, the query

select sourcePE, destinationPE,
messagelLength, event startTimestamp,
event endTimestamp from Communication
Information where processor = 0.

We may make the following SQL query by JDBC:

ResultSet rs = stmt.executeQuery("select
sourcePE, destinationPE, messagelength,
event startTimestamp, event endTimestamp
from Communication Information where
processor = 0");
while (rs.next()) {
Object il = rs.getObject ("sourcePE");
Object i2 =
rs.getObject ("destinationPE") ;
Object rl =
rs.getObject ("messageLength") ;
Object r2 =
rs.getObject ("event startTimestamp") ;
Object r3 =
rs.getObject ("event endTimestamp") ;

Multiple versions of performance data are handled by
specifying a version attribute in each tuple. By specify-
ing a version number in each database query, we can get
multiple versions of program performance for compari-
son. In addition to the default PDRS performance param-
eters, new performance parameters such as sound files
can also be added by users and be supported by the
database.

Relational Queries. Relational query is a function
built on top of the database module to support the per-
formance analysis modules. It includes four parts: Sym-
bolic Analysis, Statistical Analysis, Scalability Analysis,
and Performance Model Generator, corresponding to the
analysis modules. This function is implemented in JDBC.
Java applications include the PDA, PVA, and GUI mod-
ule implemented by Java. The JDBC provides a bridge
between Java applications and performance database. This
function finds the appropriate performance data for the
Performance Diagostic Agent (PDA) function and GUIL
PDA invokes the performance modules for performance
analysis.

Performance Diagnostic Agent (PDA). This func-
tion calls for performance analysis. Its function opera-
tion algorithm is as follows.

Algorithm (Performance diagnosis):

Performance analysis requests;
switch (analysis type) {
Statistical:

Retrieve the performance information
required;
Get or compute the predicted
performance range;
Compute the real result of requested
performance parameter;
Compare the result with the
performance range;
If (the result is not in the
performance range)
Give an explanation (using graphics
and sound) ;
break;
Scalability:
Retrieve the performance information
required;
Get or compute the predicted
scalability results;
Compute the real scalability results;
Compare the real result with the
predicted results;
Explain the compared results (using
graphics and sound) ;
break;
Models:
Retrieve the performance information
required;
Get the predicted performance range;
Compute the real result of requested
performance parameter;
Compare the result with the
performance range;
If (the result is not in the
performance range)
Give an explanation (using graphics
and sound) ;
break;
Default: printf ("No such analysis
type");
break;

The PDA retrieves the performance information from
the performance database, and invokes the appropriate
analysis module for performance analysis.

5.2 BROWSER INTERFACE

A Java 3D visualization environment is also developed for
the SCALA interface. This visualization tool is designed
based on a client-server model. The server side mainly
provides data services. At startup, the server accesses
certain data files, creates data objects, and waits for the
client to call. Currently the server supports two data file
formats: Self-Defining Data Format (SDDF) and a simple
text format used by SCALA. The driving force behind the
client/server approach is to increase accessibility, as
most users may not have SDDF installed on their machines

-ommunication

Fig. 5 Cpi, Communication Latency, and parallel speed
as a Function of Problem Size.

and may like to use SCALA over the net. Moreover, the
current distribution of SDDF supports only a few com-
puting platforms. Partitioning our tool into separate objects
based on their services makes it possible to deploy the data
server in a central site and the client objects anywhere on
the Internet. The client is implemented in pure Java and
the data servant is implemented as a CORBA compliant
object so that it can be accessed by clients coded in
other programming languages.

For effective visualization, a good environment should
allow users to interact with graphics objects and recon-
figure the interface. The basic configuration supported
by the Java interface includes changing scale and color,
and selecting specific performance metrics and views.
At the run-time, the user can rotate, translate, and zoom
the graphics objects. Automatic rotation similar to the ani-
mation is also an enabled feature. The graphics objects are
built using Java 2D/3D API, which are parts of the
JavaMedia suite of APIs.

We have implemented a custom canvas which serves
as a drawing area for graphics objects. The paint() method
in canvas class is extended to the full capability of draw-
ing a complete 2D performance graph. The classes for
2D performance graphics are generic in the sense that
the resulting graph depends only on the performance
data. Besides 2D performance graphics objects, Java 3D
is used to build three-dimensional graphics objects. Java
3D uses the scene-graph based programming model in
which individual application graphics elements are con-
structed as separate objects and connected together into

Fig. 6 Execution Time as a Function of Work and Num-
ber of Processors.

a tree-like structure. It gives us high-level constructs for
creating and manipulating 3D geometry and for con-
structing the structures used in rendering that geometry.
As in developing 2D graphics classes, we analyze the 3D
performance data and build several generic 3D graphics
classes. A terrain grid class based on IndexedQuadArray
can be used to describe the performance surface. Rota-
tion, translation, and zooming by mouse are supported.

Figure 5 is the kiviat view which shows the variation
of ¢cpi (sequential computing capacity), communication
latence, and parallel speed when problem size increases.
Figure 6 shows the execution time as a function of work
and number of processors on a given machine. These
views and more are currently supported by the JAVA
3D visualization tool. While this Java visualization envi-
ronment is developed for SCALA, its components are
loosely coupled with other SCALA components and can
be easily integrated into other performance tools. It sep-
arates data objects from GUI objects and is portable and
reconfigurable.

6 Conclusion

The purpose of the SCALA project is to improve the
state of the art in performance analysis of parallel codes
by extending current methodologies and by testing and

integrating newly proposed methodologies. SCALA com-
bines symbolic and static analysis of the parallelized code
with dynamic performance data. The static and sym-
bolic analysis are provided by the restructuring com-
piler, while dynamic data are collected by executing the
parallel code on a small number of processors of the tar-
get machine. A performance model is then generated for
predicting the scaling behavior of the code with varying
input data size and machine characteristics. This approach
to performance prediction and analysis provides the user
with detailed information regarding the behavior of the
parallelized code and the influences of the underlying
architecture.

Current development of SCALA has made its contri-
bution to the state-of-the-art of performance evaluation.
However, SCALA is a continuing research. Only a pro-
totype system has been tested for the proof of concept.
Many research issues remain open. In the near future we
plan to continue this research with three focuses: enhance
the symbolic analysis module to support more sophisticate
program paradigms, adopt low-level hardware monitor
information for advanced performance analysis and
characterization, and extend the research to grid com-
puting.

ACKNOWLEDGMENTS

The authors are indebted to several individuals for their
help with this research. In particular, Dr. Xingfu Wu
participated in the development of the PDRS; Hong
Linh Truong and Radu Prodan contributed to the imple-
mentation and testing of the scalability analysis module
and the SIS system, respectively, and Zhaohua Zhan
contributed to the implementation of the visualization
environment. The authors are grateful to the referees for
their valuable suggestions that helped improve the tech-
nical quality and presentation of the paper.

AUTHORS BIOGRAPHIES

Xian-He Sun received his Ph.D. degree in Computer
Science from Michigan State University. He was a staff
scientist at ICASE, NASA Langley Research Center and
was an associate professor in the Computer Science
Department at Louisiana State University (LSU). Cur-
rently he is a professor and the director of the Scalable
Computing Software laboratory in the Computer Science
Department at Illinois Institute of Technology (IIT), and
a guest faculty member at the Argonne National Labora-
tory. Dr. Sun’s research interests include parallel and
distributed processing, software systems, performance
evaluation, and scientific computing. He has published
extensively in the field and his research has been sup-
ported by DoD, DoE, NASA, NSF, and other govern-

ment agencies. He is a senior member of IEEE, a mem-
ber of ACM, New York Academy of Science, PHI
KAPPA PHI, and has served and is serving as the chair-
man or is on the program committee for a number of
international conferences and workshops. He received
the ONR and ASEE Certificate of Recognition award in
1999, and received the Best Paper Award from the Inter-
national Conference on Parallel Processing (ICPPO1) in
2001.

Thomas Fahringer received a Masters degree in 1988
and a Ph.D. in 1993, all in Computer Science from the
Technical University of Vienna, Austria. Between 1988
and 1990 he was a visiting scientist at the Engineering
Design Research Center at Carnegie Mellon University
in Pittsburgh, PA. From 1990-1998 he was Assistant
Professor of Computer Science of Computer Science at
the Institute for Software Science, University of Vienna.
Since 1998 he has been an associate professor of Com-
puter Science at the Institute for Software Science, Uni-
versity of Vienna. His research focuses on software tools
and programming environments for distributed and con-
current systems, in particular, programming paradigms
and methods, parallelizing compilers, debuggers, sym-
bolic program and performance analysis, and perfor-
mance-oriented application development for cluster and
Grid architectures. Readers may contact Fahringer at
the Institute for Software Science, University of Vienna,
Liechtensteinstr. 22, A-1090 Vienna, Austria. e-mail:
tf@par.univie.ac.at.

Mario Pantano received a Laurea degree in Computer
Science from the University of Milan, Italy in 1990 and a
Ph.D. in Electronic Engineering and Computer Science
from the University of Pavia, Italy in 1994. From 1994
to 1998 he was with the Institute for Software Technol-
ogy and Parallel Systems, University of Vienna, Aus-
tria, first as researcher and then as project manager of the
EU Esprit project “HPF+: Optimizing HPF for Advanced
Applications”. In May 1998 he joined the Department
of Computer Science at the University of Illinois at
Urbana-Champaign. His main research interests include
performance measurement, modeling and analysis of par-
allel programs, scalability analysis, tools and run-time
systems for parallel program instrumentation and mea-
surements, and design of automatic parallelization envi-
ronments.

REFERENCES

Adve, V.S., Crummey, J.M., Anderson, M., Kennedy, K., Wang,
J.-C., and Reed, D.A. 1995. “An integrated compilation
performance analysis environment for data parallel pro-

grams,” in Proc. of Supercomputing, (San Diego, CA)
December.

Aydt, R. 1995. “The Pablo Self-Defining Data Format.” Depart-
ment of Computer Science, University of Illinois, ftp://
bugle.cs.uiuc.edu/pub/Release/Documentation/SDDF.ps,
April.

Benkner, S. 1999. “VEC: The Vienna Fortran Compiler,” Sci-
entific Programming 7(1): 67-81.

Benkner, S., Andel, S., Blasko, R., Brezany, P., Celic, A.,
Chapman, B., Egg, M., Fahringer, T., Hulman, J., Hou, Y.,
Kelc, E., Mehofer, E., Moritsch, H., Paul, M., Sanjari,
K., Sipkova, V., Velkov, B., Wender, B., and Zima, H.
1995. Vienna Fortran Compilation System — Version 2.0 —
User’s Guide.

Berman, F., Wolski, R., Figueira, S., Schopf, J., and Shao, G.
1996. “Application-level scheduling on distributed het-
erogeneous networks,” in Proc. of Supercomputing ’96.

Blume, W. and Eigenmann, R. 1994. “An Overview of Symbolic
Analysis Techniques Needed for the Effective Parallel-
ization of the Perfect Benchmarks,” in Proceedings of
the 1994 International Conference on Parallel Processing,
(St. Charles, IL).

Dagum, L. and Menon, R. 1998. “OpenMP: An industry-standard
API for shared-memory programming,” /EEE Computa-
tional Science and Engineering 5(Mar.): 46-55.

Fahringer, T. 1995. “Estimating and optimizing performance
for parallel programs,” IEEE Computer 28(Nov.): 47-56.

Fahringer, T. 1996a. Automatic Performance Prediction of
Parallel Programs. Kluwer Academic Publishers, Boston.

Fahringer, T. 1996b. “Compile-Time Estimation of Commu-
nication Costs for Data Parallel Programs,” Journal of
Parallel and Distributed Computing 39(Nov.): 46-65.

Fahringer, T. 1998. “Efficient Symbolic Analysis for Parallel-
izing Compilers and Performance Estimators,” Journal
of Supercomputing 12: 227-252.

Fahringer, T., and Scholz, B. 1997. “Symbolic Evaluation for
Parallelizing Compilers,” in Proc. of the 11th ACM Inter-
national Conference on Supercomputing, (Vienna, Aus-
tria), pp. 261-268, ACM Press.

Fahringer, T., Scholz, B., and Sun, X-H. 2000. “Execution-
driven performance analysis for distributed and parallel
systems,” in Proc. of the Second ACM International
Workshop on Software and Performance (WOSP'2000),
September.

Gustafson, J., Montry, G., and Benner, R. 1988. “Develop-
ment of parallel methods for a 1024-processor hyper-
cube,” SIAM J. of Sci. and Stat. Computing 9: 609-638.

“High Performance FORTRAN Language Specification.”
Technical Report, Version 2.0.5, Rice University, Hous-
ton, TX, October 1996.

Hwang, K. and Xu, Z. 1998. Scalable Parallel Computing.
McGraw-Hill WCB.

Kumar, V., Grama, A., Gupta, A., and Karypis, G. 1994. Intro-
duction to Parallel Computing, Design and Analysis of
Algorithms. The Benjamin/Cummings Publishing Com-
pany, Inc.

Miller, B.P., Callaghan, M.D., Cargille, J.M., Hollingsworth,
J.K., Irvin, R.B., Karavanic, K.L., Kunchithapadam, K.,
and Newhall, T. 1995. “The paradyn parallel performance
measurement tools,” IEEE Computer 28(11).

Mohr, B., Malony, A., and Cuny, J.E. 1996. “TAU,” in Parallel
Programming Using C++ (G. Wilson, ed.), MIT Press.

Noelle, M., Pantano, M., and Sun, X-H. 1998. “Communication
overhead: Prediction and its influence on scalability,” in
Proc. the International Conference on Parallel and Dis-
tributed Processing Techniques and Applications, July.

Sahni, S., and Thanvantri, V. 1996. “Performance metrics:
Keeping the focus on runtime,” IEEE Parallel & Dis-
tributed Technology Spring: 43-56.

Stommel, H.M. 1948. “The western intensification of wind-
driven ocean currents,” Transactions American Geophysi-
cal Union 29: 202-206.

SUN Microsystems Inc. 1997. “JDBC: a java SQL API, version
1.20,” http://www.javasoft.com/products/jdbc/index.html.

Sun, X-H. 2002. “Scalability versus execution time in scal-
able systems,” Journal of Parallel and Distributed Com-
puting 62: 173-192.

Sun, X-H., Pantano, M., and Fahringer, T. 1999. “Integrated
range comparison for data-parallel compilation systems,”
IEEE Transactions on Parallel and Distributed Systems
10: 448-458.

Sun, X-H., and Rover, D. 1994. “Scalability of parallel algo-
rithm-machine combinations,” /EEE Transactions on Par-
allel and Distributed Systems June: 599-613.

Sun, X-H., and Wu, X. 2000. “PDRS: A performance data rep-
resentation system,” in Proc. of 5th IEEE International
Workshop on High-Level Parallel Programming Models
and Supportive Environments (HIPS2000), April.

Taylor, V., Wu, X., et al. 2000. “Prophesy: An infrastructure
for analyzing and modeling the performance of parallel
and distributed applications,” in Proc. of the Ninth IEEE
International Symposium on High Performance Distrib-
uted Computing (HPDC's 2000), August.

Tu, P. 1995. Automatic Array Privatization and Demand-Driven
Symbolic Analysis. PhD thesis, University of Illinois at
Urbana-Champaign.

Tu, P. and Padua, D. 1995. “Gated SSA-Based Demand-Driven
Symbolic Analysis for Parallelizing Compilers,” in 9th
ACM International Conference on Supercomputing, (Bar-
celona, Spain), pp. 414-423, July.

Veridian Systems, “PBS: The Portable Batch System,” http://
www.openpbs.org.

Whaley, R.C., and Dongarra, J. 1998. “Automatically tuned
linear algebra software,” in Proc. of Supercomputing,
November.

