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ABSTRACT
Modern High-Performance Computing (HPC) systems are adding
extra layers to the memory and storage hierarchy, named deep
memory and storage hierarchy (DMSH), to increase I/O perfor-
mance. New hardware technologies, such as NVMe and SSD, have
been introduced in burst bu�er installations to reduce the pressure
for external storage and boost the burstiness of modern I/O systems.
�e DMSH has demonstrated its strength and potential in practice.
However, each layer of DMSH is an independent heterogeneous
system and data movement among more layers is signi�cantly
more complex even without considering heterogeneity. How to
e�ciently utilize the DMSH is a subject of research facing the HPC
community. In this paper, we present the design and implementa-
tion of Hermes: a new, heterogeneous-aware, multi-tiered, dynamic,
and distributed I/O bu�ering system. Hermes enables, manages, su-
pervises, and, in some sense, extends I/O bu�ering to fully integrate
into the DMSH. We introduce three novel data placement policies
to e�ciently utilize all layers and we present three novel techniques
to perform memory, metadata, and communication management
in hierarchical bu�ering systems. Our evaluation shows that, in ad-
dition to automatic data movement through the hierarchy, Hermes
can signi�cantly accelerate I/O and outperforms by more than 2x
state-of-the-art bu�ering platforms.
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1 INTRODUCTION
Data-driven science is a reality and in fact, is now driving scien-
ti�c discovery [28]. An International Data Corp. (IDC) report [44]
predicts that by 2025, the global data volume will grow to 163
ze�abytes, ten times the 16.1ZB of data generated in 2016. �e evo-
lution of modern storage technologies is driven by the increasing
ability of powerful High-Performance Computing (HPC) systems
to run data-intensive problems at larger scale and resolution. In
addition, larger scienti�c instruments and sensor networks collect
extreme amounts of data and push for more capable storage sys-
tems [23]. Modern I/O systems have been developed and highly
optimized through the years. Popular interfaces and standards such
as POSIX I/O, MPI-IO [51], and HDF5 [22] expose data to the appli-
cations and allow users to interact with the underlying �le system
through extensive APIs. In a large scale environment, the underly-
ing �le system is usually a parallel �le system (PFS) with Lustre [41],
GPFS [47], PVFS2 [45] being some popular examples. However, as
we move towards the exascale era, most of these storage systems
face signi�cant challenges in performance, scalability, complexity,
and limited metadata services [7, 19], creating the so called I/O
bo�leneck which will lead to less scienti�c productivity [43, 48].

To reduce the I/O performance gap, modern storage subsystems
are going through extensive changes, by adding additional lev-
els of memory and storage in a hierarchy [5]. Newly emerging
hardware technologies such as High-Bandwidth Memory (HBM),
Non-Volatile RAM (NVRAM), Solid-State Drives (SSD), and ded-
icated bu�ering nodes (e.g., burst bu�ers) have been introduced
to alleviate the performance gap between main memory and the
remote disk-based PFS. Modern supercomputer designs employ
such hardware technologies in a heterogeneous layered memory
and storage hierarchy, we call Deep Memory and Storage Hierarchy
(DMSH) [12, 26]. For example, Cori system at the National Energy
Research Scienti�c Computing Center (NERSC) [38], uses CRAY’s
Datawarp technology [16]. Los Alamos National Laboratory Trin-
ity supercomputer [34] uses burst bu�ers with a 3.7 PB capacity
and 3.3 TB/s bandwidth. Summit in Oak Ridge National Lab is also
projected to employ fast local NVMe storage for bu�ering [54].

As multiple layers of storage are added into HPC systems, the
complexity of data movement among the layers increases signi�-
cantly, making it harder to take advantage of the high-speed and
low-latency storage systems [10]. Additionally, each layer of DMSH
is an independent system that requires expertise to manage, and
the lack of automated data movement between tiers is a signi�cant
burden currently le� to the users [32]. Furthermore, popular I/O
middleware, such as HDF5, PnetCDF [31], and ADIOS [33], are
con�gured to operating with the traditional memory-to-disk I/O
endpoints. �is middleware provides great value by isolating users
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from the complex e�ort to extract peak performance from the un-
derlying storage system, but it will need to be updated to handle
the transition to a multi-tiered I/O con�guration [32]. �ere is a
need to seamlessly and transparently support access to DMSH.

In this paper, we present the design and implementation of Her-
mes: a new, heterogeneous-aware, multi-tiered, dynamic, and dis-
tributed I/O bu�ering system. Hermes enables, manages, and super-
vises I/O bu�ering into DMSH and o�ers: a) vertical and horizontal
distributed bu�ering in DMSH (i.e., access data to/from di�erent
levels locally and across remote nodes), b) selective layered data
placement (i.e., bu�er data partially or entirely in various levels of
the hierarchy), c) dynamic bu�ering via system pro�ling (i.e., change
the bu�ering schema dynamically by monitoring the system sta-
tus such as capacity of bu�ers, messaging tra�c, etc.). Hermes
accelerates applications’ I/O access by transparently bu�ering data
in DMSH. Data can be moved through the hierarchy e�ortlessly
and therefore, applications have a capable, scalable, and reliable
middleware so�ware to navigate the I/O challenges towards the
exascale era. Lastly, by supporting both POSIX and HDF5 interfaces,
Hermes o�ers ease-of-use to a wide-range of scienti�c applications.

�e contributions of this work include:

• presenting the design and implementation of Hermes: a
new, heterogeneous-aware, multi-tiered, dynamic, and dis-
tributed I/O bu�ering system (Section 3.1).

• introducing three novel data placement policies to e�-
ciently utilize all layers of the new memory and storage
hierarchy (Section 3.2.2).

• presenting the design and implementation of three novel
techniques to perform memory, metadata, and commu-
nication management in hierarchical bu�ering systems
(Section 3.3.2).

• evaluating Hermes’ design and technical innovations show-
ing that our solution can grant be�er performance com-
pared to the state-of-the-art bu�ering platforms (Section 4).

2 BACKGROUND
2.1 Modern Application I/O Characteristics
Modern HPC applications are required to process large volume,
velocity and variety of data, leading to an explosion of data require-
ments and complexity [15]. Many applications spend signi�cant
time of the overall execution in performing I/O making storage a
vital component in performance [56]. Furthermore, scienti�c appli-
cations o�en demonstrate bursty I/O behavior [27, 37]. Typically,
in HPC workloads, short, intensive, phases of I/O activities, such
as checkpointing and restart, periodically occur between longer
computation phases [1, 8]. �e intense and periodic nature of I/O
operations stresses the underlying parallel �le system and thus,
stalls the application. To appreciate how important and challenging
the I/O performance of a system is, one needs to deeply under-
stand the I/O behavior of modern scienti�c applications. More and
more scienti�c applications generate very large datasets, and the
development of several disciplines greatly relies on the analysis
of massive data. We highlight some scienti�c domains that are
increasingly relying on High-Performance Data Analytics (HPDA),
the new generation of data-intensive applications, which involve
su�cient data volumes and algorithmic complexity to require HPC

resources: Computational Biology: �e National Center for Biotech-
nology Innovation maintains the GenBank database of nucleotide
sequences, which doubles in size every 10 months. �e database
contains over 250 billion nucleotide bases from more than 150,000
distinct organisms. Astronomy: Square Kilometre Array project
run by an international consortium operates the largest radio tele-
scope in the world which produces staggering data as presented
in the keynote speech during the 2017 SC conference. As high-
lighted, the incoming images are of 10 PBs and the produced 3D
image is 1 PB each. High-Energy Physics: �e Atlas experiment
for the Large Hadron Collider at the Center for European Nuclear
Research generates raw data at a rate of 2 PBs per second and stores
approximately 100 PBs per year of processed data.

2.2 A New Memory and Storage Hierarchy
Accessing, storing, and processing data is of the utmost importance
for the above applications which expect a certain set of features
from the underlying storage systems: a) high I/O bandwidth, b) low
latency, c) reliability, d) consistency, e) portability, and f) ease of
use. New system designs that incorporate non-volatile bu�ers be-
tween the main memory and the disks are of particular relevance in
mitigating the periodic burstiness of I/O. �e new DMSH promises
to o�er a solution that can e�ciently support scienti�c discov-
ery in many ways: improved application reliability through faster
checkpoint-restart, accelerated I/O performance for small transfers
and analysis, fast temporary space for out-of-core computations
and in-transit visualization and analysis. Building hierarchical stor-
age systems is a cost-e�ective strategy to reduce the I/O latency of
HPC applications. However, while DMSH systems o�er higher I/O
performance, data movement between the layers of the hierarchy is
complex and signi�cantly challenging to manage. Moreover, there
is no so�ware yet that addresses the challenges of DMSH.

Middleware layers, like MPI-IO and parallel HDF5, try to hide
the complexity by performing coordinated I/O to shared �les while
encapsulating general purpose optimizations. However, the actual
optimization strategy of these middleware layers is dependent on
the underlying �le system so�ware and hardware implementation.
More importantly, these middleware libraries are designed with
memory-to-disk endpoints and are not ready to handle I/O access
through a DMSH system, which is ultimately le� to the user. Ideally,
the presence of multiple layers of storage should be transparent to
applications without having to sacri�ce performance or increase
programming di�culty. System so�ware and a new middleware so-
lution to manage these intermediate layers can help obtain superior
I/O performance. Ultimately, the goal is to ensure that developers
have a high-performance I/O solution that minimizes changes to
their existing so�ware stack, regardless of the underlying storage.

Deep memory and storage hierarchies require a scalable, reliable,
and high-performance so�ware to e�ciently and transparently
manage data movement. New data placement and �ushing policies,
memory and metadata management, and an e�cient I/O communi-
cation fabric is required to address DMSH complexity and realize
its potential. We believe that a radical departure from the existing
so�ware stack for the scienti�c communities is not realistic. �ere-
fore, we propose to raise the level of abstraction by introducing
a new middleware solution, Hermes, and make it easier for the
user to perform I/O on top of a DMSH system. In fact, Hermes
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Figure 1: So�ware stack and Hermes internal design.

supports existing widely popular I/O libraries such as MPI-IO and
HDF5 which makes our solution highly �exible and production-
ready. We envision a bu�ering platform that can be application- and
system-aware, and thus, hide lower level details allowing the user
to focus on his/her algorithms. We strive for maximizing produc-
tivity, increasing resource utilization, abstracting data movement,
maximizing performance, and supporting a wide range of scienti�c
applications and domains.

3 DESIGN AND IMPLEMENTATION
3.1 Hermes Architecture

3.1.1 Design overview. Hermes is designed as a middleware
layer - si�ing between applications and DMSH as shown in Fig-
ure 1. As a middleware library, Hermes captures I/O calls, both
POSIX and HDF5 (i.e., fopen, fread, fwrite, and H5Fcreate, H5Dread
etc.) and redirects them to di�erent layers of DMSH. Legacy ap-
plications can easily connect to Hermes by simple linking (i.e.,
LD PRELOAD) or recompiling the code with our library. �ere
are no changes to user code and there is no need to upgrade to a
di�erent work�ow. We design Hermes to easily work with existing
so�ware. Our goal is to maximize user productivity by making
I/O bu�ering transparent. Furthermore, Hermes also provides a
new bu�ering API for users who want to explicitly take control
of the data movement between layers of DMSH. �is mode also
allows Hermes to perform active bu�ering where data is shipped
to the bu�er nodes along with speci�c instructions or operations
to be performed on them. For example, a user can pass a set of
integers to Hermes instructing it to �rst store them to the bu�er
nodes, then sort them, compress the sorted list and lastly persist the
�nal result to the remote PFS. �is �ow can be easily executed by a
series of hinting mechanisms (i.e., �ags) that Hermes provides to
the user. Our hinting mechanism is a simple bit encryption which
indicates predetermined operations like sorting, compression/de-
compression, deduplication and others. For user de�ned operations,
Hermes provides a bootstrapping mechanism in which the user can
submit his/her functions. �e library will then compile and place
the executables to a registry of operations to be handled by the
bu�ering nodes. Reserved bits are used for user-de�ned operations.
�e high-level architecture of Hermes can be seen in Figure 2. In
DMSH systems, besides the main memory, every compute node
might be equipped with an NVMe device or even an SSD. Addition-
ally, shared bu�ering nodes, such as burst bu�ers, will most likely
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Figure 2: Hermes internal design.

be present and positioned close to the compute nodes. Finally, a
remote PFS supports all compute nodes with persistence and fault
tolerance as important features. Hermes is a platform that aims to
enable e�cient access to the layers of DMSH and as such we distin-
guish two data paths: a vertical and a horizontal hierarchy. Vertical
hierarchy refers to data movement within a compute node and all
the way down to the burst bu�ers and PFS. Horizontal hierarchy
refers to sending data to another compute node’s RAM or NVMe
device. �e horizontal data movement is greatly optimized if there
is an RDMA-capable network but Hermes can also support systems
with no RDMA. �erefore, a DMSH system could consist of several
layers, performance-wise, such as local RAM, remote RAM, local
NVMe, remote NVMe, burst bu�ers, and PFS (numbered in �g. 2).

3.1.2 Internal components. Figure 1 demonstrates the design of
Hermes library and all the internal components that work together
to achieve an e�cient, transparent, and easy-to-use data access in
all layers of a DMSH (i.e., both vertically and horizontally). �e
main Hermes library is complemented by a set of tools and services
that help achieve broader goals such as multi-tenancy, adaptability,
etc. Brief description of each component’s responsibilities:
API: �e API is responsible to intercept all I/O calls from the ap-
plications. It also calculates the operations to be carried out by the
bu�ering nodes in case of an active bu�ering scenario.
Data Placement Engine: �is engine is responsible to map data
onto DMSH. In other words, the data placement engine calculates
the data destination, where in the hierarchy should the data be redi-
rected. It maps data according to various data placement policies.
Data Organizer: �e main responsibility of this component is to
move data between the layers of DMSH. It is triggered by other com-
ponents according to certain criteria which makes it an event-based
component. For instance, if there is no space le� in NVMe, data
organizer is triggered to move data down to the burst bu�ers and
thus freeing space in NVMe. �is component is responsible to carry
out all data movement either for prefetching reasons, evictions, lack
of space, or hotness of data etc.
Metadata Manager: �e MDM maintains two types of metadata
information: user’s and Hermes library’s internal metadata. Since
Hermes can transparently bu�er data by intercepting I/O calls,
MDM keeps track of user’s metadata operations (i.e., �les, directo-
ries, permissions etc.) while consulting the underlying PFS. Addi-
tionally, since data can be bu�ered anywhere in the hierarchy, MDM
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tracks the locations of all bu�ered data and internal temporary �les
that contain user �les.
Cache manager: �is component is responsible to handle all
bu�ers inside Hermes. It is equipped with several cache replace-
ment policies such as least recently used (LRU) and least frequently
used (LFU). It works in conjunction with the prefetcher. It can
be con�gured to hold ”hot” data for be�er I/O latency. It is also
responsible to implement application-aware caching schemas.
Prefetcher: �is component is performance-driven. It implements
several typical prefetching algorithms such as sequential data ac-
cess, strided access, and random access. Hermes also supports user
de�ned prefetching. In a way, the prefetcher becomes Hermes’
client for reading operations much like application cores are when
writing data in DMSH.
Messaging Service: �is component is used to pass small mes-
sages across the cluster of compute nodes. �is component does
not involve any data movement which is actually done by either
the application cores or other Hermes components such as the
data organizer and prefetcher. Instead, this component provides
an infrastructure to pass instructions to other nodes to perform
operations on data or facilitate its movement. For example, a typical
type of message in Hermes is to �ush bu�ered data of a certain �le
to the next layer or to PFS.
I/OClients: �ese clients refer to simple calls using the appropriate
API based on the layer of the hierarchy. For instance, if Hermes
data placement engine maps some data to the burst bu�ers, then
the respective I/O client will be called and perform the fwrite() call.
Internally, Hermes can use POSIX, MPI-IO, or HDF5 to perform the
I/O. An important feature of Hermes is that user’s data structures
are mapped to Hermes’ internal structures at each layer of DMSH.
For example, an original dataset of an HDF5 �le could be mapped
into a temporary POSIX �le in NVMe. �e I/O clients give Hermes
the �exibility to ”talk” to several data destinations and manage the
independent systems (e.g., memcpy for RAM, fwrite() for NVMe,
MPI File write() for burst bu�ers).
System Pro�ler: �is component is a service outside the main
library. It is designed to run once during the initialization. It
performs a pro�ling of the underlying system in terms of hardware
resources. It tries to detect the availability of DMSH and measure
each layer’s respective performance. It is crucial to identify the
parameters that Hermes needs to be con�gured with. Using this
information, the data placement engine can do a be�er job when
mapping data to di�erent layers. Each system will have di�erent
hierarchy. Additionally, each hierarchy will demonstrate di�erent
performance characteristics. In our prototype implementation this
component is external and results are manually injected to the
con�guration of the library. We plan to automate this process.
Schema Parser: �is component accepts a user-de�ned bu�ering
schema and embeds it into the library. �is schema is passed in a
XML format and Hermes is con�gured accordingly. For instance, if
user chooses to aggressively bu�er a certain dataset or �le, then
Hermes will prioritize this data higher up in the hierarchy and
also the cache manager will get informed not to evict this speci�c
bu�ered dataset. All this is possible because Hermes will use the
user’s instructions to o�er the best bu�ering performance. In our
prototype implementation schema parser is external and is planned
to be automated in future versions of Hermes.

Applications Coordinator: �is component is designed to o�er
support in a multiple-application environment. It manages the
access to the shared layers of the hierarchy such as the burst bu�ers.
Its goal is to minimize interference between di�erent applications
sharing this layer. Additionally, it coordinates the �ushing of the
bu�ers to achieve maximum I/O performance. More information
on this component can be found in [29].

All the above components allow Hermes to o�er a high perfor-
mance I/O bu�ering platform which is highly con�gurable, easily
pluggable to several applications, adaptable to certain system ar-
chitectures, and feature-rich yet lightweight.

3.2 Hermes Bu�ering Modes and Policies
3.2.1 Bu�ering modes. Similar to other bu�ering systems, Her-

mes o�ers several bu�ering modes (i.e., con�gurable by the user)
to cover a wide range of di�erent application needs such as I/O
latency, fault tolerance, and data sharing:
A. Persistent: in this mode, data bu�ered in Hermes is also wri�en
to the PFS for permanent storage. We have designed two con�gura-
tions for this mode. 1) Synchronous: directs write I/O onto DMSH
and also to the underlying permanent storage before con�rming
I/O completion to the client. �is con�guration is designed for uses
cases such as write-though cache or stage-in for read operations.
Since all data also exist in the PFS, synchronous-persistent mode is
highly fault-tolerant, o�ers strong data consistency, is ideal for data
sharing between processes, and supports read-a�er-write work-
loads. However, it demonstrates the highest latency and lowest
bandwidth for write operations since data directed to the bu�ers
also need to be wri�en in the PFS. 2) Asynchronous: directs write
I/O onto DMSH and completion is immediately con�rmed to the
client. �e contents of bu�ers are eventually wri�en down to the
permanent storage system. �e trigger to �ush bu�ered data is
con�gurable and can be: i) per-operation, �ushing is triggered at
the end of current fwrite(), it also �ushes all outstanding previous
operations, ii) per-�le, �ushing is triggered upon calling fclose()
of a given �le (this is similar to Data Elevator approach), iii) on-
exit, �ushing is triggered upon application exit (this is similar to
Datawarp approach), and iv) periodic, �ushing is periodically trig-
gered in the background (this is the default Hermes se�ing). �is
con�guration is designed for use cases such as write-back cache
and stage-out for read operations. It provides low-latency and high
bandwidth to the application since processes return immediately
a�er writing to the bu�ers. It also o�ers eventual consistency
since data are �ushed down eventually. It is ideal for write-heavy
workloads and out-of-core computations.
B. Non-persistent: in this mode, I/O is directed to DMSH and is
never wri�en down to the permanent storage. It is designed to
o�er a scratch space for fast temporary I/O. Upon application exit,
Hermes deletes all bu�ered data. �is mode can be used for sce-
narios such as quickly storing intermediate results, communication
between processes, in-situ analysis and visualization. In case of
bu�ering node failures, application must restart. �is mode o�ers
high bandwidth and low latency. Lastly, applications can reserve a
speci�c allocation (i.e., capacity on bu�ers) for which data preser-
vation is guaranteed by Hermes (similar to Datawarp reservations).
�ese allocations expire with the application lifetime. In case of
bu�er over�ow, Hermes will transparently swap bu�er contents
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to the PFS much like memory pages are swapped to the disk by
the OS. �e mechanism was designed to o�er some extra degree of
�exibility to Hermes. For example, let us assume that an application
writes simulation results every 5 minutes. �ese results are directly
read from the bu�ers by an analysis kernel which writes the �nal
result to the PFS for permanent storage. Simulation data can be
deleted or overwri�en a�er the analysis is done. Hermes can utilize
this periodic and bursty I/O behavior and write the next iteration
on top of the previous one instead of wasting extra bu�er space.
To achieve this conditional overwriting of data, Hermes utilizes a
�agging system to de�ne the lifetime of bu�ered data.
C. Bypass: in this mode, as the name suggests, I/O is performed
directly against the PFS e�ectively bypassing Hermes. �is mode
resembles write-around cache designs.

3.2.2 Data placement policies. In DMSH systems, I/O can be
bu�ered to one or more layers of the hierarchy. �ere are two main
challenges: i) how and where in the hierarchy data are placed, ii)
how and when do bu�ers get �ushed either in the next layer or all
the way down to PFS. In Hermes, the �rst challenge is addressed by
the data placement engine (DPE) component and the second by the
data organizer. We designed four di�erent data placement policies
to cover a wide variety of applications’ I/O access pa�erns. Each
policy is described by a dynamic programming optimization1 and
follows the �ow of Algorithm 1. �e general idea of the algorithm
is as follows. First, if the incoming data can �t in the current layer’s
remaining capacity, it places the data there (i.e., PlaceData()). In
case it does not �t, based on the constraint of each policy, it tries
one of the following: a) solve again for next layer (i.e., skip()), b)
place as much data as possible in the current layer and the rest
in next (i.e., split()), and c) �ush current layer and then place new
incoming I/O (i.e., �ush()). We implemented the DP algorithm using
memoization techniques to minimize the overhead of the solution.
We further provide a con�guration knob to tune the granularity of
triggering the optimization code for data placement.
A. Maximum Application Bandwidth (MaxBW): this policy
aims to maximize the bandwidth applications experience when
accessing Hermes. �e DPE places data in the highest possible
layer of DMSH in a top-down approach, starting from RAM, while
balancing bandwidth, latency, and the capacity of each layer. �e
approach applies to all layers making the solution recursively op-
timal in nature. �e above data placement policy is expressed as
an optimization problem where DPE minimizes the time taken to
write the I/O in the current layer and the access latency to serve the
request, e�ectively maximizing the bandwidth. �e data organizer
moves data down periodically (or when triggered) to increase the
available space in upper layers for future incoming I/O. Data move-
ment between layers is performed asynchronously. �is policy is
the default Hermes con�guration.
B. Maximum Data Locality: this policy aims to maximize bu�er
utilization by simultaneously directing I/O to the entire DMSH.�e
DPE divides and places data to all layers of the hierarchy based
on a data dispersion unit (e.g., chunks in HDF5, �les in POSIX and
independent MPI-IO, and portions of a �le in collective MPI-IO).
Furthermore, Hermes maintains a threshold based on the capacity
ratio between the layers of the hierarchy. �is ratio re�ects on the
1Full mathematical formulation of each policy can be found in the Appendix.

Algorithm 1: Hermes algorithm to calculate data placement
in DMSH (pseudo code)
1 Hermes-DPE(data request, DMSH layer);
2 if data can �t in current layer then
3 PlaceData() ; // buffer data in this layer

4 else
5 MaxConstraint( // based on selected policy

6 - skip() ; // buffer in next layer

7 - split() ; // buffer in both current and next layers

8 - �ush() ; // buffer in current layer after flushing

9 );
10 end

relationship between each layer (e.g., system equipped with 32GB
RAM, 512GB NVMe, and 2TB burst bu�ers creates a capacity ratio
of 1-16-64). �e data placement in this policy accounts for both
layer’s capacity and data’s spatial locality. �e above process is
recursive and can be expressed as an optimization problem. DPE
minimizes the time taken to write the I/O in the current layer and
the degree of data dispersion (i.e., how many layers data are placed
to) e�ectively maximizing the bu�er utilization. Data movement
between layers is performed asynchronously. �is policy is ideal
for work�ows that encapsulate partitioned I/O. For instance, one
could prioritize a certain group of MPI ranks over another (e.g.,
aggregator ranks) or one type of �le over another (e.g., metadata
�les over data �les).
C. Hot-data: this policy aims to o�er applications a fast cache
for frequently accessed data (i.e., hot-data). �e DPE places data
in the hierarchy based on a hotness score that Hermes maintains
for each �le. �is score encapsulates the access frequency of a
�le. Highest scored �les will be placed higher up in DMSH since
they are expected to be accessed more o�en. �is ensures that
layers with lower latency and higher bandwidth will serve critical
data such as metadata, index �les, etc. �e DPE also considers the
overall �le size to e�ciently map data to each layer (i.e., smaller
�les bu�ered in RAM whereas larger �les in burst bu�ers). �e
data placement policy can be expressed as an optimization problem
where DPE minimizes the time taken to write the I/O in the current
layer considering both hotness and capacity of layers. �e data
organizer demotes or promotes data based on the hotness score and
the data movement is performed asynchronously. �is policy is
ideal for work�ows that demonstrate a spectrum of hot-cold data.
D. User-de�ned: this policy aims to support user-de�ned bu�er-
ing schemas. Users are expected to submit an XML �le with their
preferred bu�ering requirements. �is �le is parsed during ini-
tialization by the schema parser component and used by the DPE
to make data placement decisions. For instance, user can de�ne
certain �les to always be in RAM (i.e., never get evicted), or which
HDF5 chunks to get bu�ered in NVMe etc.

3.3 Implementation Details
3.3.1 Node design. �e new DMSH system architecture sug-

gests that compute nodes may be equipped with one or more non-
volatile storage device and share access to a burst bu�er deployment.
Hermes is designed to support all the new trends in system design.
Figure 3 demonstrates Hermes node design. Each application core
uses an I/O API (i.e., POSIX, MPI-IO, HDF5 etc.) which in turn
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Figure 3: Compute node design in Hermes.

is captured by Hermes. A dedicated core per node, called Node
Manager, is exclusively used by Hermes services. Speci�cally, this
multi-threaded core is responsible for metadata management, data
organization and movement between layers, messaging services
between compute nodes (horizontal hierarchy), local memory man-
agement such as placement of data in buckets, eviction policies,
and �nally prefetching. �e ratio between application cores and the
Hermes node manager is con�gurable and is suggested to be around
64-to-1 (i.e., similar to I/O forwarding layer present in several su-
percomputing sites). If an I/O forwarding layer exists, Hermes can
utilize the I/O cores there. However, our design is not limited only
to such systems and can be widely deployed.

3.3.2 Critical components. During I/O bu�ering into DMSH,
there are three critical operations: memory, metadata, and com-
munication management. To achieve high-performance in each of
these critical operations, Hermes incorporates several novel tech-
nical innovations. As it can be seen in Figure 3, RAM is split into
application memory and Hermes memory, which is further divided
in bucket pool, MDM, and message queue.
A. RAM management. We have designed a new memory man-
agement system to o�er fast and e�cient use of main memory,
a very crucial resource in any bu�ering platform. Hermes stores
data in buckets, an abstract notion of a data holder. Buckets have a
con�gurable �xed size and consist of a collection of memory pages.
All buckets are allocated during the bootstrapping of the system,
creating a bucket pool. �is allows Hermes to avoid the cost of
per-request memory allocation (i.e., only pay the cost in the begin-
ning before application starts), to be�er control memory usage by
avoiding expensive garbage collection, and to de�ne the lifetime of
memory allocations per application (i.e., re-use the same buckets
a�er data have been �ushed down). Bucket pools are organized
in four regions: available buckets, RAM cache, NVMe cache, burst
bu�ers cache. �e bucket pool is managed by the bucket manager
who is responsible to keep track of the status of each bucket (e.g.,
full - available). �e bucket, as a unit of bu�ering, is extremely
critical to achieve high performance, low latency, and increases
design �exibility (e.g., be�er eviction policies, hot data cache etc.).
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We implemented Hermes’ memory management using MPI one-
sided operations. Speci�cally, buckets are placed in a shared dy-
namic Remote Memory Access (RMA) window. �is allows easier
access to the buckets from any compute node and a be�er global
memory management. MPI-RMA implementations support RDMA-
capable networks which further diminishes the CPU overhead.
Access to buckets occurs using MPI Put() and MPI Get(). Update
operations are atomic with exclusive locking only on the bucket
being updated. To support fast querying (e.g., location of a bucket,
list of available buckets, etc.) the bucket manager indexes the RMA
window and bucket relationships much like how inode tables work.
�e structure of a bucket includes an identi�er (uint32), a data
pointer (void*), and a pointer (uint32) to the next bucket. Hermes’
buckets are perfectly aligned with RAM’s memory pages which
optimizes performance especially for applications with unaligned
accesses. Finally, to ensure data consistency and fault tolerance,
Hermes maps (via mmap()) the entire MPI-RMA window and the
index structure to a �le stored in a non-volatile layer of the hierar-
chy (con�gured by user). We suggest placing this special �le to the
burst bu�ers since if a compute node fails, the local NVMe device
will become unavailable till the node is �xed.

Figure 4 motivates our design for Hermes’ memory management.
In this test, we issued a million fwrites of various sizes (from 64KB
to 2MB) and measured the achieved memory operations per second.
�e test was conducted on our development machine that runs
CentOS 7.1. In the test’s baseline, we intercept each fwrite(), allocate
a memory bu�er (i.e., malloc()), copy data from user’s bu�er to the
newly allocated space (i.e., memcpy()), and �nally �ush the bu�er
(i.e., free()) once the data are wri�en to the disk. As a slightly
optimized baseline case we used Google’s TC Malloc. In contrast,
Hermes intercepts each fwrite(), calculates how many buckets are
required to store the data and asks the bucket manager for them, and
copies data from user’s bu�er to the acquired buckets. Once data
are wri�en to the disk, buckets are marked by the data organizer
as available and no freeing is performed. As it can be seen in
�gure 4, Hermes outperforms Linux’s Malloc by 3x and TCMalloc
by 2x. Hermes managed to sustain more than 3 million memory
ops/sec, whereas the baselines, 1 and 2 million ops/sec respectively.
Interestingly, as the allocation size grows, Linux’s Malloc struggles
in performance compared to TCMalloc. �e pre-allocation and
e�cient management of the buckets and the lack of freeing of
bu�ers helped Hermes to maintain stable high performance.
B. Metadata management. Any metadata service in distributed
systems is subject to scalability and performance issues. Metadata
in a bu�ering platform like Hermes consist of data distribution
information (e.g., which node, which layer in DMSH, which bucket,
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Figure 5: Metadata Manager throughput.

etc.) and maintenance of both user’s and internal �le namespaces.
Hermes’ metadata manager is distributed and aims to o�er highly
concurrent and asynchronous operations. To achieve this, Hermes
employs a novel distributed hashmap design, implemented using
RMA windows and MPI one-sided operations. A hashmap consists
of keys that correspond to speci�c values. Our design uses two
RMA windows: i) key window, which is indexed to support e�cient
querying and ii) value window, for data values. �is practically
allows any process to simply MPI Get() a speci�c key and then
fetch its respective value. We use a 2-way hashing: �rst, the key
is hashed to a speci�c node and then into a value that resides on
that node. �e MPI one-sided operations allow Hermes to perform
metadata operations without interrupting the destination node.
RDMA-capable machines will be able to perform even faster by
using the RDMA controller for any data movement. Additionally,
the RMA windows are dynamic e�ectively allowing the metadata
to grow in size as required, similarly with rehashing in traditional
hashmap containers. Lastly, our hashmap design liberates us to use
complex structures, such as objects and nested custom datatypes,
to describe a certain �le and its metadata information. In contrast,
popular in-memory key-value such as Redis or MemCached use
simple datatypes for keys and values (e.g., strings or integers) which
can be a limiting factor to metadata services. Additionally, these
key-value stores o�er features that are not useful in our use case
such as replication, timestamps, and other features that only add
overhead if one does not need or intend to use them.

Hermes’ MDMuses several maps: i) �le handler to �le: maintains
�le handlers of opened �les, {fh,�lename}, ii) �le to metadata prop-
erties: maintains all typical �le properties (e.g., permissions, own-
ership, timestamps etc.,), {�lename,{�lestat}}, iii) �les to location in
DMSH: maintains data distribution information, {�lename,{(o�set,
size),(node,layer,type,identi�er,freq)}}, and iv) node to current status:
maintains information for each node’s current status such as remain-
ing capacity, hot data access frequencies, etc., {node,(layer,size,…)}.
�ese maps allow fast queries and O(1) read/write MDM opera-
tions without the need to execute separate services (e.g., a mem-
cached server). Creation and update of metadata information is
performed by usingMPI EXCLUSIVE lockswhich ensures FIFO con-
sistency. Read operations use a shared lock which o�ers higher per-
formance and concurrency. Finally, Hermes’ MDM exposes a simple
and clean API to access its structures (e.g., mdm update on open(),
mdm get file stat(), mdm sync meta(), etc.,).

In Figure 5 we compare Hermes’ MDM performance with a
custom MPI-based solution, Memcached, and Redis. In this test,
we issue a million metadata operations and we measure the MDM
throughput in operations per second. First, we implemented a

customMPI-based solution where one process per node is the MDM
and answers queries from other processes. Upon receiving one, it
queues the operation, it spawns a thread to serve the operation, and
it goes back to listening. �e spawned thread removes the operation
from the queue and performs the operation. While this approach
is feasible, it uses a dedicated core per node. Another approach is
to use an in-memory key-value store. We implemented the MDM
using Memcached and Redis, two of the most popular solutions. In
this approach, one memcached or Redis server per node is always
running and awaits for anymetadata operations. �ere is no explicit
queuing but its implementation uses multi-threaded servers with
locks and internal queues to support concurrent operations. Again,
a dedicated core is required to run the server. Lastly, Hermes is
using our own hashmap to perform metadata operations. Each
processes accesses the shared RMA window to get or put metadata.
�ere is no dedicated core used. As it can be seen in Figure 5,
our solution outperforms by more than 7x the MPI-based custom
solution and by more than 2x the Memcached and Redis versions.
Update operations are more expensive since clients �rst need to
retrieve the metadata, update them, and then push them back.
C. Messaging service. Many operations in Hermes involve com-
munication between di�erent compute nodes, bu�ering nodes, and
several other components. �e messaging service does not involve
in data movement but instead provides the infrastructure to pass
instructions between nodes. For instance, horizontal access to the
deepmemory hierarchy involves sending data across the network to
a remote RAM or NVMe. Another example is when the prefetcher
gets triggered by one process it will fetch data to a layer of the
hierarchy for subsequent read operations. Finally, when the bu�ers
are �ushed to the remote parallel �le system for persistence, a
system-wide coordination is required. All the above cases, require
a high-performance and low latency messaging service to be in
place. Hermes implements such messaging service by utilizing our
own distributed queue via MPI one-sided operations. We designed
a scalable messaging service by leveraging the asynchronicity of
MPI RMA operations. When a process needs to communicate with
another process across the compute nodes, it simply puts a message
into the distributed queue that is hosted by all compute nodes. An
shared dynamic RMA window is used to hold the queue messages.
Each message has a type (i.e., an instruction to be carried out),
its associated a�ributes, and a priority. As with the distributed
hashmap above, if there is an RDMA controller it will be used to
avoid interrupting the destination core. �ere is no need to employ
listeners or other always-on services such as Apache ActiveMQ [49]
or Ka�a [30] leading to be�er resource utilization. Additionally, we
de�ne our own bit encoding to keep the messages small and avoid
costly serializations/transformations and therefore lead to lower
latencies and higher throughput. Hermes messaging service aims
to o�er higher overall performance avoiding network bo�lenecks
and communication storms.

In Figure 6 we compare Hermes’ performance with a custom
MPI-based solution, Memcached, and NATS. In this test, we is-
sue a million queue operations (e.g., publish - subscribe) and we
measure the messaging rate in messages per second. As described
above, we implemented a custom MPI-based solution where one
process per node accepts messages from other processes. We also
implemented a distributed queue using Memcached where each
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Figure 6: Messaging Service throughput.

message becomes a key-value pair (i.e., ID-message). Furthermore,
we explored NATS, a popular, in-memory, high-performance, and
open source messaging system. In both la�er options, a dedicated
core needs to run server code. Lastly, Hermes is using our own
distributed priority queue to execute the messaging service. Each
processes puts or gets messages from the shared RMA window
while no dedicated core is used. As it can be seen in �gure 6, Her-
mes outperforms the custom MPI-based messaging implementation
by more than 12x. �is is expected since the server process gets
saturated from the overwhelming rate of incoming messages. As
a result, client processes needs to wait blocked for the server to
accept their message. �e handler thread cannot match the rate
of new messages. A similar picture is evident in the memcached
solution where Hermes performs more than 8x faster. However, in
memcached, up to 4 handler threads are spawned which possibly
leads to be�er performance compared to the custom MPI-based
one. Finally, NATS performance is really good with more than
300000 published messages per second. However, Hermes outper-
forms NATS by more than 2x for publishing and more than 3x for
subscribe operations.

3.4 Design Considerations
In this subsection, we brie�y discuss concerns regarding the design
and features of any bu�ering platform, especially one that supports
a DMSH system such as Hermes. �e goal is to present some of
our ideas and to generate discussion for future directions.
A. High-performance:
Concern 1: How to support and manage heterogeneous hardware?
Hermes is aware of the heterogeneity of the underlying resources
via the system pro�ler component which identi�es and bench-
marks all layers present in the system. Hermes aims to utilize each
hardware resource to its best of its capabilities by avoiding hurtful
workloads. Instead, Hermes’ I/O clients generate access pa�erns
favorable to the each medium.
Concern 2: How to avoid excessive network tra�c?
Hermes’ messaging service is carefully designed to operate with
small-sized messages with bit encoding. Furthermore, by using
asynchronicity and RDMA capable hardware our solution ensures
the low network overhead.
Concern 3: How to support low-latency applications?
�e several data placement policies of Hermes’ DPE provide tun-
able performance guarantees for a variety of workloads. For low
latency applications, Hermes can leverage the performance charac-
teristics of each layer by placing data to the fastest possible layer.
Additionally, our novel memory management ensures that data can
be e�ciently cached in RAM before ending up to their bu�er.
Concern 4: How to avoid possible bu�er over�ow?

Hermes’ Data Organizer component manages the capacities of the
layers and moves data up and down the hierarchy (i.e., between
the layers). In corner cases of over�ow, Hermes provides explicit
triggers to the data organizer to re-balance the layers and move
data based on the bu�er capacity on each layer.
Concern 5: How to scale the bu�er capacity?
Hermes’ DPE can place data in remote RAM and NVMe devices,
and thus, scaling is horizontal by adding more compute nodes.
Additionally, Hermes can support RAM Area Network (RAN) de-
ployments [57] to further extend the bu�er capacity.
B. Fault tolerance:
Fault tolerance guarantees are based on the bu�ering mode selected
(i.e., sync, async). In case of asynchronous bu�ering mode, bu�ered
data are wri�en to a fault tolerant layer such as a PFS eventually
which means for a small window of time bu�er contents are sus-
ceptible to failures. In our prototype implementation, bu�ers are
�ushed based on an event-driven architecture and also periodically
to decrease the possibilities of losing critical data. As a future step,
we want to investigate the following options: i) Checkpointing with
con�gurable frequency. ii) Random replication per write operation.
iii) DPE skips the failing component for incoming I/O.
C. Data consistency:
Concern 1: Data consistency model?
Hermes supports strong consistency for the application since our
design avoids having the same bu�ered data in multiple locations
and copies. Once a write is complete, any other process can read
the data via either a local or a remote call. Excessive locking is
avoided by using MPI RMA operations and memory windows. �e
model supported is single-writer, multiple-readers.
Concern 2: Support of highly concurrent metadata operations?
Upon opening a �le, metadata are loaded from the PFS to the local
RAM of the process that opened it. �en, Hermes randomly selects
two other nodes and replicates metadata there. We do this to in-
crease the availability of the metadata info and avoid saturation of
one node’s RAM. When another process wants to access the meta-
data, it randomly selects one of the replica copies and performs
the get. If it needs to update the metadata, Hermes propagates the
update to all replicas. �is is synchronous to ensure consistency.
D. Hermes limitations: Hermes’ DPE component implements
our data placement policies based on the assumption that the user
knows exactly what his/her workload involve, and thus, selecting
the appropriate policy is not trivial. As a suggestion, the user
can �rst pro�le his/her application using typical monitoring and
pro�ling tools, such as Darshan [9], extract knowledge regarding
the I/O behavior, and make the right policy choice.

4 EVALUATION
4.1 Methodology
Overview: To evaluate Hermes, we have conducted two set of ex-
periments. We �rst explored how Hermes’ data placement policies
handle di�erent workloads and application characteristics using
synthetic benchmarks. We then compare Hermes with state-of-the-
art bu�ering platforms, namely Data Elevator and Cray’s DataWarp,
using real applications. As performance metric, we use the overall
execution time in seconds which we further divide to: i) time to
write/read to/from bu�ers, and ii) time to �ush bu�ers to PFS. Com-
putation time is excluded since it is the same among all systems.
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Device RAM NVMe SSD HDD

Model M386A4G40DM0 Intel DC P3700 Intel DC S3610 ST9250610NS

Connection DDR4 2133Mhz PCIe Gen3 x8 SATA 6Gb/s SATA 7200rpm

Capacity 128 GB(8GBx16) 1.2 TB 1.6 TB 2.4 TB

Latency 13.5 ns 4.16 ms

Max Read BW 13000 MB/s 2800 MB/s 550 MB/s 115 MB/s

Max Write BW 10000 MB/s 1900 MB/s 500 MB/s 95 MB/s

Test Config 32x client nodes RamFS emulated 8x burst buffers 16x PFS servers

ReadBW tested 92647 MB/s 38674 MB/s 3326 MB/s 883 MB/s

WriteBW tested 86496 MB/s 33103 MB/s 2762 MB/s 735 MB/s

20 µs 55-66 µs

Figure 7: Testbed speci�cations.

As reference, we include a baseline of no bu�ering in which data
are wri�en/read directly to/from the PFS. We run all tests ten times
and we report the average time.
Hardware: All experiments were conducted on Chameleon [13].
More speci�cally, we used the bare metal con�guration with 32
client nodes (i.e., up to 1024 MPI ranks), 8 burst bu�er nodes, and
16 PFS storage nodes. Each node has a dual Intel(R) Xeon(R) CPU
E5-2670 v3 running at 2.30GHz with a total of 48 cores, and 128 GB
RAM. Each burst bu�er node is equipped with an SSD drive and
each PFS node with an HDD. We emulated one NVMe device per
client node by deploying a DRAM-based �le system (i.e., RAMDISK)
and imposing latency and bandwidth penalties to match the actual
NVMe performance [20, 52, 55]. In order to correctly calculate
the added latency and lowered bandwidth, we captured the perfor-
mance characteristics of real NVMe devices present in the hierarchy
appliances of Chameleon. Figure 7 lists all the hardware speci�-
cations and performance measurements. Lastly, to be�er capture
the architecture of a modern supercomputer, we setup our cluster
topology as follows: all 32 client nodes and 8 burst bu�ers are in-
terconnected with 56Gbps In�niband network and the 16 storage
nodes are connected to the rest via a 10Gbps Ethernet network.
So�ware: �e operating system of the cluster is CentOS 7.1, the
MPI version is Mpich 3.2, the PFS we used is OrangeFS 2.9.6, the
in-memory key-value stores are Memcached 1.4.36 and Redis 4.0.6,
and lastly the distributed queue we used is NATS Server 1.0.4.
Applications: We evaluate Hermes using our own synthetic bench-
mark that emulates common scienti�c application workloads such
as alternation between computation - I/O phases, read -a�er-write,
read-once, read-many etc. It uses POSIX-IO to issue requests to
the �le system and operates in a typical �le-per-process pa�ern.
We also use two real science applications: Vector Particle-In-Cell
(VPIC), a general purpose simulation code for modeling kinetic
plasmas in spatial multi-dimensions, and Hardware Accelerated
Cosmology Code (HACC), a cosmological simulation that studies
the formation of structure in collisionless �uids under the in�uence
of gravity in an expanding universe. Both of these simulations per-
form computations and produce output �les periodically that need
to be persisted in PFS. Also, both demonstrate a periodic behavior
with time steps (i.e., iterations) that include the checkpoint and
restart as well as the analysis outputs produced by the simulations.
At the end of each step, VPIC writes a single HDF5 �le containing
properties of 8 million particles. VPIC tends to be extremely I/O
intensive (i.e., write-only, write-heavy), since the portion of com-
putation is small. In contrast, HACC has read-a�er-write workload
where, at every step, simulation writes out a single shared �le (i.e.,
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Figure 8: Benchmark: Alternating Compute-I/O phases.

MPI Collective I/O) that various analysis modules read back. We
used 16 time steps for both simulations resulting to total I/O of 1TB.

4.2 Experimental Results
4.2.1 Synthetic Benchmarks. Our synthetic benchmark is highly

tunable to generate workloads that can stress the bu�ering system
under various use-cases. We designed two test-cases to evaluate
Hermes’ data placement policies.
Alternating Compute-I/O phases: In this test, each process �rst
performs some computations (emulated by sleep () calls) and then
writes 64MB in a �le-per-process fashion. We repeat this pa�ern
16 times with 1024 processes resulting in 1TB total I/O size. We
vary the ratio of computation over I/O time to emulate three dis-
tinct types of applications: data-intensive, compute-intensive, and
balanced. We assume that all data wri�en to the bu�ers need to
be also wri�en to the disk-based remote PFS. �erefore, Hermes
is con�gured in persistent asynchronous mode. We measure the
overall time spent in I/O, in seconds, which consists of write-time
and �ush-time. Figure 8 shows the results. As it can be seen, the
baseline writes directly to PFS (i.e., no �ush-time) and maintains
stable write performance regardless of the computation-I/O ratio.
In Data Elevator and DataWarp, data are wri�en to the burst bu�ers
resulting to similar write-time between them. �e di�erence in per-
formance comes from data �ushing. Data Elevator overlaps �ushing
with computation phases, and thus, as the computation-I/O ratio
increases, �ush-time decreases (i.e., �ushing is hidden behind com-
putation). On the other hand, DataWarp �ushes data only once the
application �nishes and demonstrates stable �ush-time regardless
of the computation-I/O ratio. In Hermes, data are wri�en in all lay-
ers of the DMSH (i.e., RAM, NVMe, and burst bu�ers in our system).
We evaluate bothMaxBW andMaxLocality data placement policies
since they bu�er data di�erently. MaxBW places data in a top-down
fashion. It starts with RAM for the �rst iterations of the test, and
once this layer is full, it �rst moves data down to NVMe to create
space in RAM and then places the incoming iteration in RAM. On
the other hand, MaxLocality uses layers concurrently. It writes the
�rst iterations in RAM and once this layer is full it goes on to the
next without any data movement between layers. It is clear that for
data-intensive applications where the rate of incoming I/O is high,
MaxBW’s data movement between layers imposes some perfor-
mance losses, and thus, MaxLocality’s write performance is slightly
higher. As the computation-I/O ratio increases however, MaxBW
can overlap data movement between layers with computations.
�erefore, for compute-intensive workloads, MaxBW outperforms
MaxLocality by 4x in write-time since it ensures that incoming I/O
can be wri�en in RAM. For �ushing, both policies leverage any
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Figure 9: Benchmark: Repetitive Read operations.

computation time available to asynchronously �ush bu�er contents
to PFS, similarly with Data Elevator. However, Hermes �ushes
all layers of the DMSH concurrently which decreases �ush-time
signi�cantly. In summary, in this test Hermes o�ers 8x and 2x
higher write performance when compared to No Bu�ering baseline
and state-of-the-art bu�ering platforms respectively.
Repetitive Read operations: In this test, the benchmark is con-
�gured to create a write-once, read-many workload. Each process
�rst writes 32MB in a �le-per-process approach and then reads
back 32MB of data (not necessarily the same data). We have 16
phases of this pa�ern with 1024 processes aggregating the I/O
to 1TB. We vary the repetition of read operations as follows: i)
Read-once, where 32MB of data is read only once, ii) Read-many
x4, where 8MB of data is read 4 times (i.e., still 32MB in total), and
iii) Read-many x16, where 2MB of data is read 16 times. �is pat-
tern resembles workloads where portions of data such as metadata
information, indices of �les, etc., are frequently accessed creating
a data hotness spectrum. In this test, we assume that bu�ers are
used as scratch space (i.e., temporary I/O), and thus, Hermes is
con�gured in non-persistent mode. �e total time, in seconds, is
divided into write-time and read-time. As it can be seen in Figure 9,
the baseline writes and reads directly from the PFS and maintains
a stable performance irrespective of the workload type. In Data
Elevator and DataWarp, data are wri�en/read to/from the burst
bu�ers respectively. �is results to a considerable performance
improvement over the baseline. Since repetitive read operations are
treated as new, it shows stable performance across di�erent work-
loads. In contrast, Hermes implements a HotData data placement
policy to o�er higher performance for this type of workloads. Since
HotData will promote frequently accessed data in upper layers,
repetitive read operations access data always from RAM resulting
in signi�cant performance boost for Read-many x4 and x16. On
the other hand, MaxBW, while o�ering a competitive performance
across the tested workloads, does not cache frequent accessed data
in RAM and demonstrates a stable performance across the tested
workloads. In summary, in this test Hermes o�ers 38x and 11x
higher read performance when compared to No Bu�ering baseline
and state-of-the-art bu�ering platforms respectively.

4.2.2 Real Applications. To test our system under real applica-
tions workload, we con�gured Hermes in persistent asynchronous
mode since data need to be stored in the PFS for future access and
selected the default data placement policy, MaxBW.
VPIC:�is application demonstrates a write-only I/O access pat-
tern where at the end of each time step, each process writes data to
an HDF5 �le. During this evaluation we executed the application
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Figure 10: I/O Bu�ering performance with VPIC-IO.
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Figure 11: I/O Bu�ering performance with HACC-IO.

for 16 time steps. We strong scaled the application from 256 to
1024 total ranks and we measured the total time. In Figure 10 we
report only the I/O time which consists of write-time (i.e., what
the application experiences) and �ush-time (i.e., persisting the data
asynchronously). As it can be seen, all tested solutions scale linearly
with the number of MPI ranks. In the largest tested scale of 1024
ranks, the baseline completed the test in 1192 seconds. Both Data
Elevator and DataWarp wrote the entire dataset in 438 seconds.
�is is approximately a 2.5x improvement over the baseline. How-
ever, due to the higher bandwidth of the DMSH, Hermes’ write
performance is 5x and 2x higher than the baseline and the two
bu�ering platforms we tested, respectively. When considering data
�ushing, Data Elevator overlaps small computations between each
time step and �ushes the contents of burst bu�ers in 1115 seconds
whereas DataWarp �ushes everything at the end in 1274 seconds.
In contrast, Hermes leverages the computations but also the concur-
rency of the DMSH to �ush all bu�ered data to PFS in 637 seconds.
In summary, in this test, Hermes outperformed the baseline and
state-of-the-art bu�ering platforms by 40% and 85% respectively.
HACC:�is application demonstrates a read-a�er-write I/O access
pa�ern where during each time step, each process reads back data
previously wri�en using MPI-Collective IO. During this evaluation
we executed the application for 16 time steps. We strong scaled
the application from 256 to 1024 total ranks and we measured the
total time. In Figure 11 we report only the I/O time which con-
sists of write-time, read-time, and �ush-time. As it can be seen, all
tested solutions scale linearly with the number of MPI ranks. In the
largest tested scale of 1024 ranks, the baseline completed the test
in 1313 seconds. Both Data Elevator and DataWarp performed I/O
in 348 seconds. �is is approximately a 3.7x improvement over the
baseline. However, when considering data �ushing, Data Elevator
completed the test in 773 and DataWarp in 985 seconds e�ectively
reducing the total improvement to 1.6x and 1.3x respectively. In
contrast, Hermes completed the entire test in 494 seconds showcas-
ing the potential of a DMSH system. �e performance improvement
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is substantial when compared to No Bu�ering baseline with 7.5x
faster I/O operations. Hermes outperformed Data Elevator and
DataWarp by 2x due to higher bandwidth of the DMSH.

5 RELATEDWORK
New hardware technologies have been developed and can be used to
build new memory and storage hierarchies using non-volatile mem-
ory (NVRAM) such as phase-change memory (PCM) [42], mem-
ristors [50], and Flash memory [12]. Flash-based SSD technology
has been widely studied [24], characterized [21], and evaluated for
di�erent application types [3, 14]. Researchers also advocate the
use of shared bu�er technologies, such as burst bu�ers [6], to accel-
erate I/O. Existing work has considered NVMe devices as a viable
solution for I/O staging [25, 26]. Caul�eld proposed Moneta [11],
an architecture with NVRAM as an I/O device for HPC applica-
tions. Ekel extended Moneta with a real PCM device to understand
the performance implications of using NVRAM [2]. Dong studied
NVRAM for HPC application checkpointing [18]. Kannan studied
NVRAM for I/O intensive benchmarks in Cloud environments [26].
Wang proposed BurstMem [53], a technology for optimizing I/O
using burst bu�ers. Sato et al., show how the burst bu�ers can
boost performance of checkpointing tasks by 20x [46].

Active Bu�ers [35, 36] exploits one-sided communication for
I/O processors to fetch data from compute processors’ bu�ers and
performs actual writing in the background while computation con-
tinues. IOLite [40], proposes a single shared memory per-node
for leveraging inter-process communication and bu�ering of I/O.
Such an approach led to 40% boost in performance. Nitzberg [39]
proposes collective bu�ering algorithms for improving I/O per-
formance by 100x on IBM SP2 at NASA Ames Research Center.
PLFS [4] remaps an application�s preferred data layout into one
which is optimized for the underlying �le system.

While all the above work emphasizes the bene�ts of using each
technology individually, none introduced a complete I/O bu�ering
platform that leverages the DMSH. �e closest work to Hermes is
Data Elevator [17], a new system that transparently moves data in
a hierarchical system. �e authors focused on systems equipped
with burst bu�ers and demonstrated a 4x improvement over other
state-of-the-art burst bu�er management systems such as Cray’s
Datawarp [16]. However, they did not address local memory and
local non-volatile devices such as NVMe. Hermes considers both
local resources and shared resources like burst bu�ers. Furthermore,
Hermes extends bu�ering into remote resources and tackles data
movement to a more complicated landscape of I/O-capable devices.

6 CONCLUSIONS
To increase I/O performance, modern storage systems are presented
in a new memory and storage hierarchy, called Deep Memory and
Storage Hierarchy. However, data movement among the layers is
signi�cantly complex, making it harder to take advantage of the
high-speed and low-latency storage systems. Additionally, each
layer of the DMSH is an independent system that requires expertise
to manage, and the lack of automated data movement between tiers
is a signi�cant burden currently le� to the users.

In this paper, we present the design and implementation of
Hermes: a new, heterogeneous-aware, multi-tiered, dynamic, and
distributed I/O bu�ering system. Hermes enables, manages, and

supervises I/O bu�ering into the DMSH and o�ers a bu�ering plat-
form that can be application- and system-aware, and thus, hide
lower level details allowing the user to focus on his/her algorithms.
Hermes aims to maximizing productivity, increasing resource uti-
lization, abstracting data movement, maximizing performance, and
supporting a wide range of scienti�c applications and domains. We
have presented three novel data placement policies to e�ciently
utilize all layers of the new memory and storage hierarchy as well
as three novel techniques to perform memory, metadata, and com-
munication management in hierarchical bu�ering systems. Our
evaluation results prove Hermes’ sound design and show a 8x im-
provement compared to systems without I/O bu�ering support.
Additionally, Hermes outperforms by more than 2x state-of-the-art
bu�ering platforms such as Data Elevator and Cray’s Datawarp.
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APPENDIX
A. Maximum Application Bandwidth (MaxBW):

DP EMax BW (s, Ci ) =




(s/BWi ) ∗ Ai , s ≤ Ci

min *.
,

DPE (s, Ci+1 )
DPE (Ci , Ci ) + DPE (s −Ci , Ci+1 )
Move (s −Ci , i + 1) + DPE (s, Ci ))

+/
-
, s > Ci



(1)

where s is the request size,C is a layer’s remaining capacity in MBs,
i is the current layer, BW is the bandwidth in MB/s, A is the access
latency in ms, andMove (min size,dest ) triggers data organizer to
recursively move at leastmin size data to dest layer.
B. Maximum Data Locality:
DP EMax Local it y (s, d , Li , Ri ) =




(s/BWi ) ∗ d , Li & s ≤ Ri

min
(

(s/BWi ) ∗ (d + 1)
DPE (s, d, Li+1, Ri+1 )

)
, !Li & s ≤ Ri

min *.
,

DPE (s, d, Li+1, Ri+1 )
DPE (Ri , d, Li , Ri ) + DPE (s − Ri , d, Li+1, Ri+1 )

ReOrдanize (s − Ri ) + DPE (s, d, Li , Ri ))

+/
-

, s > Ri



(2)

where s is the request size, d is the degree of data dispersion into
DMSH, L is the locality of a dispersion unit in layer (i.e., if it exists
in this layer or not), R is a layer’s capacity threshold, i is the current
layer, BW is the bandwidth in MB/s, and ReOrдanize (min size ) is
a function that triggers data organizer to recursively move at least
min size data to maintain the locality of a dispersion unit.
C. Hot-data:

DP EH ot Dat a (s, h, Hi , Ci ) =




(s/Ci )/BW , h ≥ Hi & s ≤ Ci

min *.
,

DPE (s, h − 1, Hi+1, Ci+1 )
DPE (Ci , h, Hi , Ci ) + DPE (s −Ci , h − 1, Hi+1, Ci+1 )

Evict (s −Ci , h, i + 1) + DPE (s, h, Hi , Ci ))

+/
-
, h ≥ Hi & s > Ci

min
(
DPE (s, h + 1, Hi , Ci )
DPE (s, h, Hi+1, Ci+1 )

)
, h < Hi & s ≤ Ci

min
(
DPE (Ci , h + 1, Hi , Ci ) + DPE (s −Ci , h, Hi+1, Ci+1 )

DPE (s, h, Hi+1, Ci+1 )

)
, h < Hi & s > Ci



(3)

where s is the request size, h is the �le’s hotness score, H is the
minimum hotness score present in a layer, C is a layer’s remaining
capacity in MBs, i is the current layer, BW is the bandwidth in
MB/s, and Evict (min size, score,dest ) is a function that triggers
data organizer to recursively move at leastmin size data to the dest
layer with score hotness.

http://www.lanl.gov/projects/trinity/specifications.php
http://www.lanl.gov/projects/trinity/specifications.php
https://www.nersc.gov/users/computational-systems/cori/burst-buffer/
https://www.nersc.gov/users/computational-systems/cori/burst-buffer/
https://indico.cern.ch/event/618513/contributions/2527318/attachments/1437236/2210560/SummitProjectOverview{_}jlw.pdf
https://indico.cern.ch/event/618513/contributions/2527318/attachments/1437236/2210560/SummitProjectOverview{_}jlw.pdf
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