
A Hybrid Shared-nothing/Shared-data Storage
Architecture for Large Scale Databases

Huaiming Song †, Xian-He Sun †, Yong Chen ‡
†Department of Computer Science, Illinois Institute of Technology, Chicago, IL 60616, USA

‡Department of Computer Science, Texas Tech University, Lubbock, TX 79409, USA
huaiming.song@iit.edu, sun@iit.edu, yong.chen@ttu.edu

Abstract—Shared-nothing and shared-disk are two widely-used
storage architectures in current parallel database systems, and
each of them has its own merits for different query patterns.
However, there is no much effort in investigating the integration
of these two architectures and exploiting their merits together. In
this study, we propose a novel hybrid shared-nothing/shared-data
storage scheme for large-scale databases, to leverage the benefits
of both shared-nothing and shared-disk architectures. We adopt
a shared-nothing architecture as the hardware layer and leverage
a parallel file system as the storage layer. The proposed hybrid
storage scheme can provide a high degree of parallelism in both
I/O and computing, like that in a shared-nothing system. In the
meantime, it can achieve convenient and high-speed data sharing
across multiple database nodes, like that in a shared-disk system.
The hybrid scheme is more appropriate for large-scale and data-
intensive applications than each of the two individual types of
systems.

I. INTRODUCTION

Shared-nothing and shared-disk are the two most com-
mon storage architectures of parallel databases in the past
two decades. In a shared-nothing system, data is partitioned
[1][2][3] into several subsets and each node keeps one in
its native disks. In a shared-disk system, data is stored
in a large centralized storage. Generally, the shared-nothing
systems provide a high degree of parallelism for both I/O
and computing, while the shared-disk systems can provide
data sharing between multiple nodes[1]. The typical shared-
nothing systems include IBM DB2 UDB and Mysql Cluster,
and shared-disk systems include Oracle 10g RAC products.

Parallel file systems (PFS), such as Lustre[4], PVFS2[5],
GPFS[6], are widely used for high I/O performance. Compared
with parallel database architectures, the hardware structure of
a PFS is similar to the shared-nothing systems, but also it
provides a single namespace. Inspired by the design of PFS,
we propose a novel hybrid storage scheme for large-scale data
processing, by integrating parallel database with parallel file
system techniques together. It adopts shared-nothing for the
upper layer database instances, but also provides data sharing
through a lower-layer PFS.

II. SYSTEM DESIGN

The proposed hybrid storage scheme can leverage the ad-
vantages of both the shared-nothing hardware structure and
the shared-data facility of parallel file systems. Figure 1
illustrates the system architecture. It adopts shared-nothing on

the hardware layer, but adds a PFS on top of scattered disks
to provide data sharing capability. Each node runs a database
instance, and serves as both a file server and an I/O client of
the PFS. In order to have the merits of both shared-nothing
and shared-disk systems, we introduce two data access modes:
global mode and local mode in our new architecture.

• Global Mode: each database node accesses data via
a global file in the PFS. Here a global file is a file
represented in the PFS.

• Local Mode: each database instance accesses data via a
local file on its native disks. Here a local file is a part of
a global file in the PFS.

DISKs

MEM

P11~1m

High Speed Interconnection Network

DISKs

MEM

Pn1~nm

DISKs

MEM

P21~2m

… ...

Parallel File System

Database
Instance 1

Database
Instance 2

Database
Instance n

Fig. 1. Architecture of the Hybrid Parallel Database Storage Scheme

Data Organization. We adopt a stripe size of the PFS
equaling to the page size of a table, to distribute the relational
table across database nodes. We also reserve a small portion
in each page for updating records with variable size.

Partitioning. All existing data partitioning methods can be
applied in the hybrid system. Moreover, data partitions can be
placed either in vertical(each partition placed on one node) or
horizontal(each partition striped across all nodes) manner.

Query processing. The hybrid system can simplify query
execution by shifting data migration details to the PFS layer.
For example, during the execution of multi-join queries, the
merge-and-redistribution processes can be simplified.

Transaction processing. A distributed transaction in a
shared-nothing system can be converted to a single transaction

1

TABLE I
DATA ORGANIZATIONS OF TPC-H TABLES

Table Name Data Size Strip Size Reserved(%)
Customer 2.43 GB 64 KB 5
Lineitem 72.42 GB 8 MB 0
Nation 2224 Bytes – –
Orders 16.36 GB 8 MB 0
Part 2.42 GB 64 KB 5
Partsupp 11.32 GB 8 MB 0
Region 389 Bytes – –
Supplier 142 MB 64 KB 10

conducted by any one database instance, simplifying the
transaction control mechanics.

In the proposed hybrid system, since each database instance
can access tables in both global and local modes during query
processing, it is much more appropriate for applications with
varieties of query patterns. If the query executors work in local
data access mode, it can get high degree of parallelism in
both I/O and computing, which is like that in a shared-nothing
system. While working in global data access mode, it can
easily share data among different nodes, and this manner is
exactly like that in a shared-disk system. Which data access
mode to use in a query execution plan is determined by system
query optimizer, based on the costs analysis of the two data
access modes. With high-speed interconnection techniques, the
proposed storage scheme can obtain the advantages of both
shared-nothing and shared-disk systems.

III. PRELIMINARY EXPERIMENTS

We designed experiments to verify benchmark TPC-H[7]
tables striped by record pages. We employed PVFS2 as the
underlying PFS. Our experiment platform was a 16-node
SUN cluster, and each node equipped with 4X InfiniBand
interconnection. The data scale of TPC-H was 100GB. Table I
shows the data stripe sizes and reserved percentages. For each
table, the record page size was equal to the stripe size. Table
nation and region were not striped because the data size was
too small. The results demonstrate that it is feasible to stripe
tables in the proposed hybrid system.

Figure 2 shows the execution time before ‘JOIN’ of Query
Q(shown below).

select l orderkey, l partkey, l suppkey,
l extendedprice * (1 - l discount) -
ps supplycost * l quantity profit

from lineitem, partsupp
where l partkey = ps partkey

and l suppkey = ps suppkey
and l commitdate between(t1,t2);

We scaled the total data size according to the number of
database nodes, so each node had the same data size on
average (table lineitem had 12 million rows of records and
table partsupp had 1.6 million rows for each node). From the
results, we can observe that the proposed hybrid scheme can
achieve much higher performance in all system scales, about
82% higher on average.

0

5

10

15

20

25

30

35

2 node 4 node 8 node 16 node

shared nothing hybrid

E
xc

ut
io

n
T

im
e

(s
)

Fig. 2. Execution Time before ‘JOIN’ of Query Q

IV. CONCLUSION AND FUTURE WORK

We propose a novel hybrid shared-nothing/shared-data stor-
age architecture for large-scale and data-intensive applications
in this study. We first present an overview of the system
architecture, and then describe the methodology of data or-
ganization, data partitioning, query and transaction processing
in the proposed system. We compare the proposed system with
existing parallel database architectures and conduct experi-
ments to verify our design. The proposed scheme can have
the merits of two major parallel database architectures, and it
is much more appropriate for applications with complex query
patterns. The analytical and experimental results have shown
the feasibility of the hybrid architecture.

In the future, we plan to work on detailed design and im-
plementation of the hybrid system, including data partitioning
and query processing methods.

ACKNOWLEDGMENT

The authors are thankful to Dr. Rajeev Thakur and Samuel
Lang of Argonne National Laboratory for their help and
suggestions. This research was supported in part by National
Science Foundation under NSF grant CCF-0621435 and CCF-
0937877.

REFERENCES

[1] D. DeWitt and J. Gray, “Parallel Database Systems: the Future of High
Performance Database Systems,” Commun. ACM, vol. 35, no. 6, pp.
85–98, 1992.

[2] M. Mehta and D. J. DeWitt, “Data Placement in Shared-nothing Parallel
Database Systems,” The VLDB Journal, vol. 6, no. 1, pp. 53–72, 1997.

[3] D. D. Chamberlin and F. B. Schmuck, “Dynamic Data Distribution
(D3) in a Shared-nothing Multiprocessor Data Store,” in VLDB ’92:
Proceedings of the 18th International Conference on Very Large Data
Bases. 1992, pp. 163–174.

[4] “High-performance Storage Architecture and Scalable Cluster File Sys-
tem,” Lustre File System White Paper, December 2007.

[5] I. F. Haddad, “PVFS: A Parallel Virtual File System for Linux Clusters,”
Linux Journal, p. 5, 2000.

[6] F. Schmuck and R. Haskin, “GPFS: A Shared-disk File System for Large
Computing Clusters,” in FAST ’02: Proceedings of the 1st USENIX
Conference on File and Storage Technologies. Berkeley, CA, USA:
USENIX Association, 2002, p. 19.

[7] Transaction Processing Performance Council (TPC) Website. [Online].
Available: http://www.tpc.org/tpch/default.asp

2

