
Anthony Kougkas, Hariharan Devarajan, Xian-He Sun
akougkas@hawk.iit.edu

Department of Computer Science

Illinois Institute of Technology

IRIS: I/O Redirection via Integrated Storage

Special thanks to Dr. Shuibing He
who kindly accepted to help us

present this work.

ICS’18, Beijing, China
June 12th, 2018

mailto:akougkas@hawk.iit.edu?subject=RE: ICS2018- IRIS paper

6/10/20182

IRIS: I/O Redirection via Integrated Storage
Anthony Kougkas, akougkas@hawk.iit.edu

ICS’18

• Background

• Approach

• Design

• Evaluation

• Conclusions

• Q&A

Highlights of this work

Design of several
mapping

algorithms

Files to objects

Objects to files

Design and
implementation

of IRIS

Cross-storage
integrated
data access

Programming
convenience and
efficiency

Evaluation
results showed
IRIS can offer

Performance
boost up to 7x

Minimal
overheads

IRIS: I/O Redirection via Integrated Storage
Anthony Kougkas, akougkas@hawk.iit.edu

Towards I/O convergence between HPC and HPDA storage subsystems

Different Communities - Cultures - Tools

The tools and cultures of
HPC and BigData
analytics have diverged,
to the detriment of both;
unification is essential to
address a spectrum of
major research domains.

- D. Reed & J. Dongarra

6/10/2018 Slide 4

IRIS: I/O Redirection via Integrated Storage
Anthony Kougkas, akougkas@hawk.iit.edu

Background Approach Design Evaluation Conclusions

Storage in HPC

• Parallel File Systems (PFS):

• Peak performance: ~2000GiB/s

• Capacity: >70PiB

• Interfaces:

• POSIX, MPI-IO, HDF5, etc.,

• Limitations:

• Scalability, complexity, metadata services

• Small file access, data synchronization, etc.,

6/10/2018 Slide 5
I/O 500 List (Nov 2017)

IRIS: I/O Redirection via Integrated Storage
Anthony Kougkas, akougkas@hawk.iit.edu

Background Approach Design Evaluation Conclusions

Data Distribution

PFS KVS

Uses fixed-size stripes Key-value pair as a single object

Distributes data in a fixed manner(e.g. round robin) Distributes objects to all available nodes

Need for sub-request synchronization No need to synchronize anything

Metadata must include the directory tree, permissions,
data’s physical location on disks, etc.,

Flat namespace with a hash table that keeps the
mapping between keys and values

6/10/2018 Slide 6
Background Approach Design Evaluation Conclusions

IRIS: I/O Redirection via Integrated Storage
Anthony Kougkas, akougkas@hawk.iit.edu

Data models and Storage systems
• File-based storage systems

• POSIX-I/O
• fwrite(), fread(),

• MPI-I/O
• MPI_File_read(), MPI_File_Write()

• High-level I/O libraries
• e.g., HDF5, pNetCDF, MOAB etc

6/10/2018 Slide 7

• Object-based storage systems
• REST APIs,
• get(), put(), delete()

• Amazon S3,

• OpenStack Swift

• NoSQL DBs

IRIS: I/O Redirection via Integrated Storage
Anthony Kougkas, akougkas@hawk.iit.edu

Background Approach Design Evaluation Conclusions

• No “one-storage-for-all” solution.

• Each system performs great for
certain workloads.

• Unification is essential.

Challenges of I/O Convergence

Gap between
traditional file-
based storage

modern scalable
data frameworks

Architectural
differences

programming
models

software tools

Lack of
management

heterogeneous
data resources

diverse global
namespaces

6/10/2018 Slide 8

PhD Comprehensive Exam
Anthony Kougkas, akougkas@hawk.iit.edu

Background Approach Design Evaluation Conclusions

Our Thesis

future software design and architectures will have to
raise the abstraction level.

A radical departure from the
existing software stack for both
communities is not realistic and

bridge the semantic and architectural gaps. We aim to design and develop a
middleware system which can

that leverages each subsystem’s strengths while
complementing each other for known limitations.

We envision a storage system the
offers a data path agnostic to the

underlying data model and

6/10/2018 Slide 9

IRIS: I/O Redirection via Integrated Storage
Anthony Kougkas, akougkas@hawk.iit.edu

Background Approach Design Evaluation Conclusions

Introducing
IRIS: I/O Redirection via Integrated Storage

IRIS creates a unified “storage language” to bridge the two very
different compute-centric and data-centric storage camps.

6/10/2018 10IRIS: I/O Redirection via Integrated Storage
Anthony Kougkas, akougkas@hawk.iit.edu

IRIS Design

• Middle-ware library

• Wrap-around I/O calls

• Written in C++, modular design

• Non-invasive: plugin nature
• Link with applications (i.e., re-compile or

LD_PRELOAD)

• Existing datasets loaded upon
bootstrapping via crawlers

• Directory operations not supported

• Deletions via invalidation

6/10/201811

Background Enosis&Syndesis IRIS Hermes BBIOBackground Approach Design Evaluation Conclusions

IRIS: I/O Redirection via Integrated Storage
Anthony Kougkas, akougkas@hawk.iit.edu

IRIS Objectives

• Enable MPI-based applications
to access data in an Object
Store without user intervention.

• Enable HPDA-based
applications to access data in a
PFS without user intervention.

• Enable a hybrid storage access
layer agnostic to files or objects.

6/10/201812

Background Approach Design Evaluation Conclusions

IRIS: I/O Redirection via Integrated Storage
Anthony Kougkas, akougkas@hawk.iit.edu

IRIS Architecture

• Decouples the storage interface

• Abstracts the storage
subsystem

• Modular design allows addition
of more mappers and modules

• PFS and KVS equal “citizens”

• Optimized for high performance

6/10/201813

Background Approach Design Evaluation Conclusions

IRIS: I/O Redirection via Integrated Storage
Anthony Kougkas, akougkas@hawk.iit.edu

Virtual Object

Name: string

Size: size_t

OffsetInContainer:
size_t

Data: void*

LinkedObjects:
vector<VirtualObjects>

Virtual File (Container)

Name: string

FilePointer: size_t

Size: size_t

Objects:
map<VirtualObjects>

InvalidObjects:
map<VirtualObjects>

6/10/2018 Slide 14

• Ideal for write-only or write-heavy (e.g., >80% write) workloads.
• Each request creates a new object.
• A mapping of offset ranges to available keys is kept in a B+ tree for fast searching.
• Update operations create a new object and invalidate ensuring consistency.

• Ideal for mixed workloads (both fread() and fwrite()).
• File is divided into predefined, fixed-size, smaller units of data, called buckets.
• Bucket size is a tunable parameter
• Natural mapping of buckets-to-objects.

• Ideal for read-only or read-heavy (e.g., >90% read) workloads.
• Each write creates a plethora of new various-sized objects.
• Equivalent to replication: sacrifice disk space to increase availability for reads.
• All available keys in a range of offset are kept in a B+ tree.

• Exploit rich metadata info HDF5 offers to create better mappings.
• Each HDF5 file creates 2 types of objects: header object and data object.
• Variable-sized data objects are created based on each dataset’s dimensions

and datatype.

Balanced

Write-Optimized

Read-Optimized

HDF5

IRIS: I/O Redirection via Integrated Storage
Anthony Kougkas, akougkas@hawk.iit.edu

IRIS Default

Background Approach Design Evaluation Conclusions

6/10/2018 Slide 15

• Entire keyspace is mapped to one container.
• Virtual objects are written sequentially.
• Updates are appended at the end of the file while invalidating the previous object.
• Indexing is important for faster get() operations.

• Each object is mapped to a unique container.

• Ideal for accessing existing datasets.

• Good performance for relatively small number of objects.

• A collection of objects is mapped to a collection of containers.

• Threshold to create new containers (default every 128MB) bounding the total
number of containers.

• Special container-> update container for padding.

• Objects are first hashed into a key space and then mapped to container
• Containers are created according to a range of hash values and their size is flexible
• Update operations write at the end of the container, invalidating previous object.
• Periodic container defragmentation to save storage space.

1-to-1

N-to-1

N-to-M Simple

N-to-M Optimized

IRIS: I/O Redirection via Integrated Storage
Anthony Kougkas, akougkas@hawk.iit.edu

IRIS Default

Background Approach Design Evaluation Conclusions

Data Flow Example
• IRIS enables new data paths

• Abstracts the underlying storage solution

6/10/2018 Slide 16
Background Approach Design Evaluation Conclusions

IRIS: I/O Redirection via Integrated Storage
Anthony Kougkas, akougkas@hawk.iit.edu

IRIS

• Testbed: Chameleon System
• Appliance: Bare Metal
• OS: Centos 7.1
• Storage:

• OrangeFS 2.9.6
• MongoDB 3.4.3

• MPI: Mpich 3.2
• Programs:

• Synthetic benchmark
• Montage
• CM1 from NCSA
• WRF
• LAMMPS
• K-means
• LANL anonymous scientific simulation

Slide 176/10/2018
Background Approach Design Evaluation Conclusions

IRIS: I/O Redirection via Integrated Storage
Anthony Kougkas, akougkas@hawk.iit.edu

6/10/2018 Slide 18

Mapping Overheads

• Input: 65536 POSIX calls

• Output: Average time spend in mapping in ns (per operation)

• Naïve: simple 1-file-to-1-object

• ~0.0050% of the overall execution time (Mapping time over I/O time)

• Request size: 1MB, Total I/O: 32MB, Output: Execution time in ms

• 15x speedup for Balanced and mixed input

• 32x speedup for Read-opt and read-only input

• 27x speedup for Write-opt and write-only input

Mapping evaluation (files-to-objects)
• Overheads are kept to minimum: 2000-3500ns on average or 0.005%

• Our mapping algorithms outperform the naïve approach by 15-32x

IRIS: I/O Redirection via Integrated Storage
Anthony Kougkas, akougkas@hawk.iit.edu

Background Approach Design Evaluation Conclusions

Mapping performance

6/10/2018 Slide 19

Mapping Overheads

• Input: 128K objects of 64KB

• Output: Average time spend in mapping in ns (per operation)

• 1-to-1 simplest with lower cost

• N-to-M-Optimized only 2000ns

• Workload: 4GB total I/O, Object size: 64KB, Output: Overall time in seconds

• Flow for mixed: 1GB write, 1GB read, 1GB update followed by 1GB read

• 1-to-1 suffers from large number of files

• N-to-M-Optimized performed more than 2x faster

Mapping evaluation (objects-to-files)
• Overheads are kept to minimum: 1300-6000ns on average or 0.008%

• Our mapping algorithms outperform the naïve approach by 15-32x

IRIS: I/O Redirection via Integrated Storage
Anthony Kougkas, akougkas@hawk.iit.edu

Background Approach Design Evaluation Conclusions

Mapping performance

6/10/2018 Slide 20

IOR Montage

YCSB K-means clustering

• 4 client - 4 servers

• MPI-IO, Blk_size=2MB, Transfer size =
512KB, Total I/O = 512MB per
process, File-per-process, DirectIO

• Output: Execution time in seconds

• Baseline: first copy the input files from
MongoDB to OrangeFS and then run

• 4 client - 4 servers

• POSIX-I/O, Total I/O = 24GB, File-per-
process, OS cache disabled and flushed
before

• Output: Execution time in seconds

• Baseline: first copy the input files from
MongoDB to OrangeFS and then run

• Workloads:
• Balanced: 50% reads and 50% writes
• Read-mostly: 90% read and 10%

writes
• Read-only: 100% read
• Read-modify-write

• Total I/O 64GB in 64KB objects

• Data are copied into the Redis and
then run the test natively

• Offline data preloading

• Baseline flow:

• Data are copied into the Redis and
then run natively

• Minimal overhead

• 57 sec over 52 sec natively for 8GB

Mapping Performance (real workloads)
With careful mapping between the two data formats,

IRIS demonstrates more than 2x speedup

IRIS: I/O Redirection via Integrated Storage
Anthony Kougkas, akougkas@hawk.iit.edu

Background Approach Design Evaluation Conclusions

6/10/2018 Slide 21

Prefetcher MDM
(POSIX)

• Blocking -> synchronous, Non-blocking-> asynchronous

• Cache ON/OFF reflects caching previous write operations

• A combination of caching and non-blocking shows 2x performance gain

• IRIS strict complies with POSIX standard for maximum compatibility

• IRIS relaxed only maintains metadata relevant to the object mapping

• Relaxed mode offers 18% boost

IRIS Components Evaluation
• Prefetcher can speed read operations up to 2x

• POSIX compliant in-memory MDM

IRIS: I/O Redirection via Integrated Storage
Anthony Kougkas, akougkas@hawk.iit.edu

Background Approach Design Evaluation Conclusions

6/10/2018 6/10/201822

Workflow Evaluation

• F2O: copying from PFS to KVS

• O2F: copying from KVS to PFS

• IRIS[PFS]: IRIS operations on top
of PFS

• IRIS[KVS]: IRIS operations on top
of KVS

• Total time is a compound of
several phases.

𝑻𝒐𝒕𝒂𝒍 𝑻𝒊𝒎𝒆 =
𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑊𝑟𝑖𝑡𝑒 + Copy Data PFS2KVS + Analysis Read +
Analysis Write + Copy Data KVS2PFS + Simulation Read

IRIS: I/O Redirection via Integrated Storage
Anthony Kougkas, akougkas@hawk.iit.edu

Background Approach Design Evaluation Conclusions

6/10/2018 6/10/201823

Real Applications

• File-per-process

• Each rank 100MB (150GB total)

• 5x improvement over baseline

• 7x improvement overlap mode

• Analysis is 1.7x slower when run
on top of PFS

• Copying dominates total time

CM1

IRIS: I/O Redirection via Integrated Storage
Anthony Kougkas, akougkas@hawk.iit.edu

Background Approach Design Evaluation Conclusions

6/10/2018 6/10/201824

Real Applications

• File-per-process

• Each rank 100MB (150GB total)

• 4x improvement over baseline

• 6x improvement overlap mode

• Analysis is 2.2x slower when run
on top of PFS

Montage

IRIS: I/O Redirection via Integrated Storage
Anthony Kougkas, akougkas@hawk.iit.edu

Background Approach Design Evaluation Conclusions

6/10/2018 6/10/201825

Real Applications

• File-per-process

• Each rank 100MB (150GB total)

• 5x improvement over baseline

• 7x improvement overlap mode

• Copying dominates total time

• Analysis is 50% slower when run
on top of PFS

WRF

IRIS: I/O Redirection via Integrated Storage
Anthony Kougkas, akougkas@hawk.iit.edu

Background Approach Design Evaluation Conclusions

6/10/2018 6/10/201826

IRIS in hybrid mode

• Large requests placed in PFS

• Small access directed to KVS

• Each process 32MB total 48GB

• LAMMPS:
• Threshold: 64KB

• Ratio small/large requests: 2-to-1

• Favoring KVS

• LANLApp1:
• Threshold: 128KB

• Ratio small/large requests: 1-to-4

• Favoring PFS

LAAMPS (write-only) LANL_App1 (read-only)

65% improvement over PFS
21% improvement over KVS

28% improvement over PFS
59% improvement over KVS

IRIS: I/O Redirection via Integrated Storage
Anthony Kougkas, akougkas@hawk.iit.edu

Background Approach Design Evaluation Conclusions

Related Work

• From the File system side:
• CephFS
• PanasasFS
• OBFS: A File System for Object-based Storage Devices OSD

• From the Object store side:
• AWS Storage Gateway
• Azure Files and Azure Disks
• Google Cloud Storage FUSE

IRIS is a general solution that can bridge any File System with any
Object Store and does NOT require change in user code or underlying

system deployments.

IRIS: I/O Redirection via Integrated Storage
Anthony Kougkas, akougkas@hawk.iit.edu

6/10/2018 Slide 27
Background Approach Design Evaluation Conclusions

6/10/201828

In summary

• HPC and HPDA infrastructures are converging.

• File-based and Object-based storage solutions:
• We need to raise the level of abstraction.

• IRIS implements several new algorithms to map
files to objects and vice versa.

• IRIS offers:
• Programming convenience

• Legacy application support

• Transparent cross-storage integrated data access

• Performance improvements up to 7x

IRIS: I/O Redirection via Integrated Storage
Anthony Kougkas, akougkas@hawk.iit.edu

Background Approach Design Evaluation Conclusions

Thank you.
This work was supported by the

National Science Foundation
under grants no.
CCF-1744317,
CNS-1526887,

and CNS-0751200.

Anthony Kougkas
akougkas@hawk.iit.edu

https://sites.google.com/iit.edu/akougkas

IRIS: I/O Redirection via Integrated Storage

mailto:akougkas@hawk.iit.edu
https://sites.google.com/iit.edu/akougkas

