
Self-adaptive Address Mapping Mechanism for
Access Pattern Awareness on DRAM

Chundian Li∗‡, Mingzhe Zhang∗, Zhiwei Xu∗‡,Xianhe Sun†
∗SKL of Computer Architecture, Institute of Computing Technology, CAS, Beijing, China
†Department of Computer Science, Illinois Institute of Technology, Chicago, USA

‡University of Chinese Academy of Sciences, Beijing, China
{lichundian, zhangmingzhe, zxu}@ict.ac.cn, sun@iit.edu

Abstract—As DRAM is a considerably slow storage compared
to CPU, the long access latency becomes a serious issue and
affects the whole execution if fetching data is on the critical
path. It is benefical if the data layout on DRAM, which is
decided by address mapping, can serve data accesses with either
great locality or bank-level parallelism. However for some cases,
there exists a huge mismatch between access patterns and data
layout of applications, which introduces the difficulty in obtaining
locality or parallelism and current general address mapping
cannot resolve it well.

In an effort to overcome this challenge, we present an self-
adaptive address mapping mechanism in memory controller to
be aware of different access patterns on DRAM without any
prior knowledge of applications. Moreover, there is nearly no
modification on softwares, including applications, libraries and
OS. We take several versions of matrix multiplication as an early
verification, since their patterns are regular and simple to control.
Impressively, the results reveal that memory performance of naive
and tiling versions is improved up to 3.4x and 2.7x at most,
2.1x and 1.7x on average respectively. The whole execution time
is reduced by up to 24% and 8% averagely. Even for highly-
optimized implementations, execution time is decreased by 7%
and memory performance speeds up to 1.6x on average.

I. INTRODUCTION

Main memory is regarded as the last level storage in the in-
memory computation and its latency is obviously slower than
on-core caches. If on-core caches can not cover data requests
from CPU well, DRAM will finally serve the requests, where it
plays an important role in the whole execution. DRAM serves
accesses in two efficient ways, one prefers locality with high
row buffer utilization [10]–[12], and the other prefers bank-
parallelism with accesses distributed on different banks [13]–
[15], [24], [25].

However, there is a worst situation that consecutive accesses
fall onto different rows of the same bank. The memory
performance degrades and CPU may stall if the execution
strictly depends on the data on DRAM [9], [18]. The root cause
is due to the inefficient data layout for data fetching on DRAM,
which is decided by the address mapping in memory controller
(MC) [3]–[7]. However, current static address mappings on
DRAM are designed for accesses with better locality or even
distribution on banks, instead of such a long distance that
spanning one or more rows between adjacent accesses, leading
to the worst situation.

As an exploration of this mismatch, we study a classical
case with regular access behaviors, the general matrix-matrix

multiplication (GEMM), which is common in the scientific
and AI fields. The performance of GEMM tremendously
depends on the efficiency of the data reuse of vectors or
submatrices. Although on-core caches provide friendly locality
via programming optimization like tiling technique [33], when
data reuse requirements do not match the cache policy of the
last level cache (LLC) and key accesses fall onto DRAM, the
data reuse problem will be exposed, as the latency of memory
access is roughly two orders of magnitude greater than a CPU
cycle. Especially, the long distance of consecutive accesses
on DRAM, i.e. lower spatial locality, delays the data reuse
performance and degrades the whole execution. In addition,
the distance varies by the matrix scale, so that an ad-hoc
DRAM layout can not be adaptive to different scales. Even
for optimized version of GEMM, We observe that the worst
situation may be introduced because of mismatch of DRAM
data layout and accesses.

In the paper, we analyze access behaviors of common
GEMM versions and highlight the mismatch phenomenon
between data layout and access patterns, leading to low DRAM
performance. To address the problem, we propose a self-
adaptive address mapping mechanism to support data layout
reshaping on DRAM to match different access patterns.

The rest of the paper is organized as follows. Section 2 and
3 illustrates background and motivation of our study. Section
4 presents the design and implementation of the self-adaptive
address mapping mechanism. Section 5 and 6 describe the
evaluation methodology and results. Section 7 reviews related
works and section 8 concludes this work.

II. BACKGROUND

A. DRAM Organization

DRAM is organized in a hierarchy, from the channel as
the highest level to the column as the lowest level. Every
channel works in parallel independently, with an isolated bus
suite, which can connect one or more memory modules. In a
memory module, from the highest layer to lower one, there
are ranks, chips, banks, rows, and columns hierarchically.
For every single request of a cache line (64B) coming from
LLC, its physical address will be decomposed to a quintuple
(channel, rank, bank, row, column), indicating the specific
locations for each level. As there are one channel and one

32 0131415

cache line

column

17

bankrow

16 …… 6 !5

(a) Row-interleaving Address Mapping (Baseline, RI)

32 13141517

bankrow

16 …… 181920

BA0

BA1

BA2

tag set index

column

0

cache line

!56

(b) XOR Address Mapping (XOR)

32 16 67

column

17

bankrow

8…… 9 0

cache line

!5

(c) Cache-interleaving Address Mapping (CI)

Fig. 1: Typical Address Mappings on 8GB DDR3 DRAM. (1)
RI as baseline, (2) XOR, (3)CI.

rank in our testbed (table II), it is simplified to a triple: (bank,
row, column).

Each bank only processes at most one data access at the
same time. Row buffer is a sense amplifier within one bank,
and it loads the whole row which the row address selects,
before MC issues a Read/Write command [9]. In the open-
page policy [2], when one access comes into one bank, it will
check the row that the row buffer holds before, i.e. the row of
the last access within this bank. For an access whose selected
row has been in the row buffer, we call the access as a row
buffer hit, otherwise, it is a row buffer miss. Timing constraints
[18] tell us the latency of a row buffer miss access is much
more expensive than the one of hit access, so the row buffer
locality affects the DRAM performance greatly [10]–[12].

Multiple banks can serve in parallel if adjacent accesses are
mapped into different banks, so that accesses can interleave to
reduce data stalls. The bank-level parallelism (BLP) can po-
tentially improve the DRAM throughput and hide the memory
latency if accesses are distributed evenly into the banks [13]–
[15], [24], [25]. We use two terms BLP and MLP (memory-
level parallelism, in section V) with the same meaning in this
paper, if there is no explicit distinction between them.

B. Address Mappings

As the accesses’ distribution on banks and rows decides the
locality and MLP, affecting DRAM performance mentioned
above, there are several considerations about how the data
is mapped into the DRAM organization. Although address
mappings in commodity DRAM controllers are not public
[6], there are a lot of address mappings studied in [3]–[7],
involving the row-interleaving one (RI, fig. 1a) and the cache-

interleaving one (CI, fig. 1c), which are two typical ones
representing different preferences for locality or parallelism.

The lower column bits (5 ∼ 3) are ignored in the following
paper, as DRAM is accessed in a cache unit. As RI is shown
in fig. 1a, the corresponding bits 1 for the triple (bank, row,
column) are (16 ∼ 14, 32 ∼ 17, 13 ∼ 6), from the
higher zone to the lower zone. It indicates adjacent physical
cache lines are visited in a streaming manner almost in the
same row, with a perfect spatial locality of the row buffer.
However, for CI in fig. 1c, adjacent lines will be distributed in
adjacent banks to utilize the parallelism of banks efficiently.
The corresponding bits for the triple are (8 ∼ 6, 32 ∼
17, 16 ∼ 9). Basically, these two mappings consider the
access performance in orthogonal ways, i.e. the locality and
the parallelism respectively. For both mappings, row bits are in
the highest zone, which means both mappings are designed to
satisfy accesses without too far distance between consecutive
ones. However, we will show that RI fails to provides the
access locality and CI fails to reveal the MLP on GEMM in
the next section III.

[6] shows that XOR mapping is commonly used in modern
commodity DDR3 and DDR4. Compared to RI, XOR uses ex-
tra row bits to do XOR operations with the bank bits, reducing
bank conflicts and increasing MLP, through distributing the
accesses of distinct rows within the same bank into different
banks. As shown in fig. 1b, it uses the lowest three bits of
LLC cache tag (20 ∼ 18) to do XORs with the original bank
bits (16 ∼ 14) to identify the bank, avoiding the bank conflicts
coming from cache conflicts of LLC. It performs effectively
when two consecutive accesses go into the different rows
within the same bank, such as reduction of two large vectors
[7]. In addition, XOR mapping preserves the locality of the
original accesses, compared to [5].

C. General Matrix-matrix Multiplication (GEMM)

GEMM is one of the most frequent operations among matrix
computations, and [34] shows that convolution operations
based on GEMM occupy 86% time of the whole execution.
The optimization study of traditional GEMM continued for
decades and lots of work studied how to accelerate these
workloads from various perspectives, including programming
model, data organization, compiler or microarchitecture [27]–
[30], [33], [34].

There are lots of implementations [27] on different data
layouts, loop orders, involving the naive one [31] and the tiling
approach [33]. Intel MKL [32] is one of the most efficient
implementations of the GEMM, and it is used as the basic
library in lots of frameworks and applications.

Intuitively, for the naive version of square matrices, the
layout of two matrices are in row-major order, but the right
matrix is accessed in column-major order. For example, there
is a 64KB stride between consecutive accesses for 8192x8192
matrices. Although tiling and Intel MKL versions of GEMM

1Bit represents the significant bit in the binary format and it starts from 0.

TABLE I: Cache Profiles for Different GEMM Implementa-
tions on Different Scales of Double-typed Square Matrices.
(a) Naive, (b) Tiling, (c) Intel MKL. MR: miss rate. MPKI:
missese per kilo instructions.

Version Scale L1 MR LLC MR LLC MPKI

Naive
4096 44.3% 99.9% 143
8192 43.8% 99.9% 143
16384 46.5% 90.4% 142

Tiling
4096 30.3% 70.6% 7
8192 31.8% 70.5% 7
16384 32.6% 70.9% 8

Intel MKI
4096 9.8% 61.3% 7
8192 9.8% 62.7% 8
16384 10.3% 59.9% 9

is not too DRAM-intensive shown in table I, DRAM per-
formance can affect the whole performance as well, as ex-
plained in section III-A. Also, access patterns of GEMMs
are so regular that it is easier to show the potential of our
novel self-adaptive address mapping mechanism. We conduct
a comprehensive DRAM-based analysis on the GEMM in the
next section and propose a new design in section IV. Then it
shows the benefits of our design using GEMM as a case in
section VI.

III. MOTIVATION

As the access pattern of GEMM is regular and easier to be
analyzed, we choose three versions of GEMM as a case in our
study. In this section, we did a comprehensive DRAM analysis
on three dimensions: typical address mappings, GEMM imple-
mentations, and matrix scales. RI is regarded as the baseline
in all tests in this section.

In our observations, we found the following problems that
we would target in the novel design (in section IV).

• Typical address mappings may fail to provide its advan-
tages when they happen to mismatch access pattern on
DRAM.

• Performance of XOR conquers one of CI, or the other
way around on different patterns.

• All three typical mappings may degrade DRAM perfor-
mance when consecutive accesses span a long distance
that disables both locality and MLP.

A. Mismatch with Access Pattern

Firstly, we measured the IPC, accesses per cycle (APC),
locality, MLP on DRAM introduced in section V for tiling
GEMM in fig. 2, including 4096x4096, 8192x8192 and
16384x16384 (table I). Although tiling and Intel MKL ver-
sions are cache-friendly and not too DRAM-intensive, their
performance of the whole execution can be affected by DRAM
performance as shown in fig. 2a and fig. 2b. As APC and
IPC represent the DRAM performance and whole execution
performance respectively, it shows that DRAM performance
correlates strongly with the end-to-end execution, especially
on a large scale of 16384, with IPCs varying a lot.

1) Locality or MLP: RI and XOR perform with a tremen-
dously poor locality, nearly zero row buffer hit rate, but
much better MLP than CI on 4096x4096 and 8192x8192, as
shown in fig. 2c. Instead, CI gain much more locality than
RI and XOR, but lower MLP values on the scales of 4096
and 8192, as shown in fig. 2d. It is strange that locality-
(RI and XOR) and parallelism-major (CI) mappings suffer the
locality and parallelism problems respectively. For 4096 and
8192 scales, as the distances between consecutive accesses on
DRAM are roughly 32K and 64K, RI and XOR mappings
distribute accesses across several rows with much more bank-
parallelism, and CI put them on the same row with high
row buffer locality. That is to say, current designed address
mappings may fail to exploit their advantages because practical
access patterns do not match the data layout decided by
address mappings on DRAM.

2) No Perfect Mapping: XOR always gain profits from
RI, especially on a large scale, which reveals that RI will
introduce bank conflicts for consecutive accesses and XOR
can resolve it. However, from fig. 2a and fig. 2b, they show
that CI performs better than XOR on 4096x4096 and the
other way around on 8192x8192. It reveals that row buffer
locality dominates the DRAM performance on 4096x4096 and
MLP conquers locality on 8192x8192. Neither of two address
mappings is absolutely prominently better, where it depends
on access patterns that vary as the matrix scale changes.

3) Worst Situation: It is noticeable that row buffer hit rates
of XOR and CI are almost lower than 50%, and it becomes
much lower on a large scale (fig. 2c). When it comes to 16384
scale, hit rates are all approximately zero, which reveals that
recent accesses within a bank are mapped into different rows
because the stride 128K is too large spanning 8 times of
row buffer size, regardless of XOR or CI. MLP values of all
mappings on 16384x16384 are decreasing compared to ones
on small scales. With decreasing of both locality and MLP,
APC and IPC degrade a lot. It reproduces the worst situation
we mentioned in section I, where locality and MLP are both
harmed. Intuitively, it is beneficial if accesses are compacted
on one row or distributed onto different banks.

B. Flip on High Bits

In order to observe behaviors of regular access patterns like
GEMM, we propose an approach named Flip Sampling that
approximately illustrates the distance of consecutive accesses,
with more details in section IV. In a word, flip sampling is
frequency statistics of occurrences for value 1 on every bit
of the binary format of distances, and high frequent bit flips
reveal outstanding spatial distance of accesses. We use Flip
Sampling to analyze three versions of GEMM on the scales
of 4096, 8192 and 16384 in fig. 3. It reveals that almost
all bit flips happen on a specific bit for naive and tiling
version, as shown in fig. 3a. For example, bit 16 is the highest
frequent (near 100%) flipping bit in naive and tiling version
of 8192x8192, since the distance between adjacent accesses
is exactly 64KB (216). Except for the specific bits, there are

 0.4

 0.5

 0.6

 0.7

4096
8192

16384

IP
C

RI (Baseline)
XOR
CI

(a) IPC

 0

 0.02

 0.04

 0.06

 0.08

4096
8192

16384

A
c
c
e

s
s
e

s
 p

e
r

C
y
c
le

(b) APC on DRAM

 0

 20

 40

 60

 80

4096
8192

16384

R
o
w

 B
u

ff
e
r

H
it
 R

a
te

 (
%

)

(c) Locality on DRAM

 0.8

 1.2

 1.6

 2

 2.4

4
0
9
6

8
1
9
2

1
6
3
8
4

M
L

P

(d) MLP on DRAM

Fig. 2: DRAM Performance Profile for Tiling GEMM on 4096x4096, 8192x8192, 16384x16384. (a) Instructions per Cycle
(IPC) , (b) Row Buffer Hit Rate as Locality, (c) Memory-level-parallelism (MLP), (d) Accesses per Cycle (APC).

 0

 0.2

 0.4

 0.6

 0.8

 1

 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

F
re

q
u

e
n

c
y
 (

%
)

Flip bit

Naive 4096

Naive 8192

Naive 16384

Tiling 4096

Tiling 8192

Tiling 16384

(a) Bit Flips of Naive and Tiling

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

F
re

q
u

e
n

c
y
 (

%
)

Flip bit

MKL 4096

MKL 8192

MKL 16384

(b) Bit Flips of Intel MKL

Fig. 3: Frequency of Bit Flips of GEMM on 4096x4096,
8192x8192, 16384x16384. (1) Naive and Tiling, (2) Intel
MKL.

almost 0% flips on the other bits, which means access patterns
for naive and tiling are perfectly regular.

For the high-optimized Intel MKL GEMM in fig. 3b, only
25%-30% flips on bit 6 and specific bits (15, 16 and 17),
indicating that locality is improved a lot compared to naive
and tiling GEMM. In addition, it reveals that adjacent accesses
have a large possibility of falling into the same row. However,
lots of bit flips still happen on bit 17 for 16384x16384
like tiling one, and adjacent accesses may fall into different
rows within the same bank, which is the worst case like
16384x16384 in fig. 2.

For scales of 4096, 8192 and 16384, bit flips on the high
zone that is near the row bits of address mappings, which
may trigger the row conflicts and degrade DRAM performance
tremendously. Both locality- and MLP-major address map-

pings lose efficiency, as adjacent accesses with long distance
may hinder their advantages exactly.

C. Opportunities

That is to say, locality and parallelism are affected by the
combination of access patterns and data layout on DRAM,
which is decided by address mappings. It concludes that there
is a big gap between access patterns and data layout, and
this gap introduces long access latency on DRAM, possibly
degrading the end-to-end performance. We demonstrate that
the state-of-the-art mapping mechanism cannot adaptively
resolve the mismatch between the data access and the data
layout on DRAM. It gives us potential and opportunities to
propose an adaptive address mapping mechanism for access
pattern awareness, to cover these problems.

IV. DESIGN

Based on those observations above, we propose an adap-
tive and pattern-aware memory address mapping mechanism.
Firstly, section IV-A gives an overview workflow of the design
and highlights the core modules that enforce our mechanism.
Then, section IV-B and IV-C present details about the design
and its considerations. Afterward, aggressiveness control is
shown in section IV-D. Finally, the implementation and the
overhead is given in section IV-E and IV-F.

A. Overview

To enforce our adaptive mechanism, we only add two simple
tags (@init and @proc) into the source code taken GEMM
as a case, as shown in fig. 4 to distinguish the initial and
the computational procedures in compiling and runtime. These
two tags will be preprocessed into the calls for cooperating
with a loader called Ctrl Loader in runtime. Ctrl Loader helps
to control the progress of execution through exec subprocess
and communicating with it. The cost of initialization, indicated
by the interval between @init and @proc, can be recorded by
Ctrl Loader.

To make the design more flexible and avoid interference
from other processes, we use an exclusive DIMM in fig. 4
to support the execution. In the first execution round, when

8 Banks in One Chip

MC

Ctrl Loader

@init

Run

@proc

Sample
@proc

RunNo

Matrix Init

Multiply

@init

@proc

GEMM

Predict

No

Round = 1?

Yes

Yes

Round = 2

Reshape Round

@init

Run

@proc

Run

C
h

a
n

g
e

M
a
p

p
in

g

Normal Round

Row 1

Row 2

!

Row 1

Row 2

…

Row 1

Row 2

…

Row 1

Row 2

Row Buffer

…

8GB DDR3 DIMM

Fig. 4: Design Overview

encountering @proc, right after initialization, Ctrl Loader in-
forms MC of the computation start, which means the sampling
can begin after a short period of warming up. In the sampling
stage in fig. 4, accesses are collected and analyzed until
a condition is converged, which means the access pattern
has been estimated. After that, MC may predict a more
efficient mapping based on the policy we prefer and change
the address mapping of the specific DIMM to this new one.
Simultaneously, MC will throw a hardware fault to CPU to
notify Ctrl Loader should kill the current subprocess and then
restart a new one again. If there is no better mapping at all,
the execution progresses in a normal way and finally return to
the Ctrl Loader.

When Ctrl Loader receives the fault signal, it will exec
the subprocess (here is GEMM) in another round and bind it
with the same DIMM, so that the whole execution, including
initialization and computation, accesses the specific DIMM
with much more efficient changing address mapping. After
normal returning from the subprocess, the execution is finished
and Ctrl Loader then recovers the specific DIMM to the default
address mapping.

B. Flip Sampling

As the access pattern is regular in GEMM, a period of
accesses can represent the whole computation. When the
initialization of matrices finishes, i.e. meeting with @proc
tag, the Ctrl Loader emits a Sample signal to notify MC that
computation begins. After skip 4096 accesses for warming up,
the sampling starts in a window unit of 4096 accesses. The
sampling does not stop until the statistics converge a condition
that the access pattern we collect keeps stable.

As shown in fig. 5a, the sampling module is composed of
two main components: difference calculation, bit-flip statistics.
Once the sampling begins, every single access is collected and
their physical addresses are processed in sequential order. MC
stores the previous access and the current one, and calculate

@proc

Sample

@init

Run

Predict

DRAM acceses

last_addr

curr_addr diff

+ / -
Bit-flip

Statistics

(a) Sampling Module Design
DRAM accesses (8120x8120 GEMM)

Bit-flip Counters

0 0 1 0 0

0 1 0 0 1

0 0…0…

0 0

18 17 16 7 69 815-1063 - 19 5 - 0

…0…

…0…

bits

0 0 1 0 10 0 …0…

…0…

…1…

…1…

…0… …0…-

prev

curr

C18 C17 C16 C7 C6C9 C8 C5…C0C63…C19 C15…C10

+1 +1

0xfffffffffff90000

0xfffffffffffa0040

0x10040

curr — prev

+

CAccess

(b) Implementation of Sampling and Example

Fig. 5: Flip Sampling

the difference of their addresses for every new access, i.e.
the distance of two accesses. An extra sign register indicates
whether the difference is positive or negative to avoid involv-
ing the access thrashing [7]. Subsequently, the bit-flip statistics
updates the number of sampling accesses in total and fliping
among the 64 bits from the beginning of sampling, shown
in an example (8200x8200 in fig. 5b). One counter of a bit
may be updated by +1 or −1, which is decided by the signed
register is + or −.

At the end of every sampling window, it calculates the
percentage of the number of flips on bit i based on the
total sampling accesses from the very beginning of sampling,
notated as ρi, 0 ≤ i < 64. Then the sampling convergence
condition is as follows,

Convergence Condition : ∀i(ρi > λ)→ |ρi − ρ′i| < σ.

ρi and ρ′i indicates the percentage of bit i at the end of
current sampling window and previous one. λ and σ are
thresholds for frequency of bit flip and interval of convergence,
respectively. λ is used to leave the prominent bit flips and
filter out neglectable ones. The two parameters are discussed
in VI-B, and the default values are 0.15 and 0.01.

Sampling stops until it satisfies the convergence condition,
which means the regular access pattern has been extracted in a
representation of bit flips. The access pattern can be depcited
by the following ordered set,

Pattern : {Pi |Pi = 1 if ρi > λ otherwise 0}.

C. Pattern-aware Prediction

As presented in section III-A, there is no perfect address
mapping that fits all regular access patterns. Like RI, XOR,
and CI, one performs better than another, or the other way
around in different scales. More importantly, for the high bit-
flip shown in section III-B, RI, XOR and CI gain more row

Predict

Classify
@proc

Sample

1 0 1 11 …0……0… 0

Ro Ro Ro BaBa Ba…Ro… …Ro…CoCo

00

Co…Ro…

Co Co Co CoCo Co…Ro… …Ro…CoCoBa…Ro…

Co

Ba

Co

Ro

H(igh)

MLP-based

Locaility-based

Pattern

L(ow)

0…0…

bank + column bits
row bits

01CI …0…

16 15 14 8 7 - 613 - 1163 - 18bits 9

…0…

0 0

17 10

Fig. 6: Prediction Design

conflicts and reduce bank parallelism, since the distance is so
far away that two accesses span one or more rows.

The basic idea is to swap the lower bits of banks or columns
to row bits of frequent flips, covering inefficiency of locality
and MLP due to long distance of two adjacent accesses.
However, when bits of frequent flips are distributed randomly,
or the number of them is near the number of bank and column
bits, the idea can not easily resolve the problem. To address
the problem, we propose a strategy-based approach to give a
more efficient address mapping for different scales in some
conditions.

As shown in section III-B, frequent flips on high bits is
a remarkable indicator that the parallelism and locality may
be both violated, i.e. the worst situation. Firstly, we classify
access patterns with frequent flips into two categories: H(ign)
and L(ow). The former owns frequent flips on high bits,
otherwise belongs to L. We use an empirical value bit 15
(starts from bit 0) in our testbed, as the boundary between H
(exclusive) and L (inclusive). As presented in fig. 3, for three
versions of 8192x8192 GEMM, their patterns belong to H.
However, the pattern of naive 4096x4096 GEMM belongs to
L.

As prominent flipping bits are in the lower zone for L, the
locality and MLP are not degraded simultaneously. In addition,
DRAM performance plays relatively less dominant role in the
whole execution when the scale is small. We only choose
which one is better between XOR and CI, which is simply
decided by the distribution of prominent bit flips in the pattern.
If the prominent flips gather together at more significant bits,
CI is better than XOR as locality can be better and locality
is much important than bank-parallelism in this situation, as
shown in fig. 2.

As H is much more complex, we give two strategies con-
sidering how to arrange bank or column bits to achieve better
locality or MLP. Locality-based strategy is straightforward and
illustrated in an example fig. 6. Columns bits (Cos) are just
placed on the prominent flip bits and bank bits (Bas) can be
placed higher near the Cos if Cos are not enough to cover the
flip bits, which means at least we can leverage bank parallelism
when two consecutive accesses visit different rows.

The essence of MLP-based strategy is to put all Bas together
on the most prominent bits, and then arrange Cos onto a zone

which is 3 bits higher than the other uncovered prominent bit
flips. For example in fig. 6, the three Bas are put on bits 8, 9
and 10, implying that the sequential 8 accesses are distributed
on all banks evenly, so there does not exist any bank conflicts
at all. Meantime, the Cos are placed in two zones starting from
bits 11 and 17 respectively, so that the row buffer locality for
every 8 accesses (in the same bank) is not zero. Obviously,
the more extra Cos are used in the aforementioned two zones,
the better row buffer locality is. It is fantastic that the MLP-
based strategy saves the precious resource of Bas and Cos and
utilize them to improve MLP and locality as well.

The MLP-based strategy is not better than locality-based
one all the time, because it assumes that accesses into the same
bank have great locality, and sometimes the probability can not
satisfy the strict requirement. We will show the comparison in
section VI-B.

Here there is a limitation of our approach, if the number of
prominent flip bits is near or more than the number of sum of
bank and column bits, it is hard to rearrange data on DRAM.
In such a condition, we just continue the execution with the
default mapping, i.e. XOR.

D. Aggressiveness Control

As the pattern decided by sampling is used in the pred-
ication, the convergence condition of the pattern affects the
speed of convergence and precision of the pattern. λ presents
how much frequency of bit flips is worthwhile devoting much
effort to the access pattern. In the pattern study of GEMM,
we found ρi shows tremendous difference between each other
(in fig. 3), so the boundary of bit flip frequency is clear for
every single pattern. We choose 0.15 as the default value of
λ, as it can filter out bits of lower frequent flips. The window
unit of sampling is fixed in 4096 accesses, and how many
window units it needs to get to convergence is also decided
by σ, whose default value is set to 0.01, incurring a much high
precision of the pattern.

MLP-based strategy reveals better than locality-based one
from the mentioned design considerations, but it shows worse
performance in a lot of cases. The sensitivity experiments
of two parameters and predication strategies are discussed in
section VI-B.

E. Implementation

The proposed design is implemented from two layers, i.e.
the programming level and the hardware level. We don’t
change a lot on software including OS and library, except
adding two lines of tags and registering the interrupt handler
in OS. The two tags, @init and @proc, are introduced for iden-
tifying the program parts semantically, which will be replaced
by two functions in preprocessing before being compiled to the
binary file. Ctrl Loader uses process communication with the
GEMM subprocess to control process spawn and its progress.

As shown in fig. 5, 67 registers including one for the
previous address, one for difference sign, one counter for
sampling accesses, and 64 counters for bit flips on 64 bits.
Address mapping in the logic layer of MC needs a little change

to support the arbitrary mapping. Three registers of masks for
bank, row, and column can be used to map a physical address
to corresponding positions. When a predication is done, they
are written with new masks. Meantime, the MC will trigger
an interrupt onto a specific pin for notifying CPU that the
mapping is changing, and the OS kernel will record it for
loop checking of Ctrl Loader.

F. Cost Model
We use Init, Init’ and Proc, Proc’ notations to distinguish

steps in the first round or the second one (reshaping round).
The cost of normal execution using static address mapping is

Tstatic = T (Init) + T (Proc).

For the adaptive address mapping, as the execution may enter
the reshaping round after sampling, the whole cost is

Tdynamic = T (Init) + T (Sample) + T (Init′) + T (Proc′).

As our mechanism may find a potential and well-suited address
mapping to achieve better performance on @proc part in the
reshaping round, so we struggle to make it that T (proc′)
is much less than T (proc). However, we introduce extra
overhead, i.e. the sum of T (Sample) and T (Init′). As is
shown in section VI-B, it is fast to converge a stable pattern
in a small sampling window with a neglectable cost, so the
overhead can be inferred to,

Overhead = T (Sample) + T (Init′) ≈ T (Init′).
As is shown above, the whole overhead comes from two

sides, sampling cost and the second initialization cost, so if
T (proc)− T (Proc′) > Overhead, we can speed up the exe-
cution. The profit from our design is defined as the reduction
percentage of execution time based on static mapping, taking
the overhead into consideration, i.e.

Profit = 1− Tdynamic/TStatic

. It can be transformed to the following formula, in which α
is the fraction of initilization time based on the end-to-end
excution time using static mapping, i.e. α = T (init)/Tstatic.

Profit ≈ T (Proc)− T (Proc′)
Tstaic

− α ∗ IPC(Init)
IPC(Init′)

.

Theoretically, α is inversely proportiona the matrix scale for
GEMM [27]. We test scales in group A in table III, and find
that α is nearly zero for naive and tiling versions of GEMM,
and is 0.02 or less when matrix size is over 8192 using Intel
MKL. As matrix initialization accesses the data in a stream
and there is no data reuse, the mappings we consider in the
paper perform similarily, so that IPC(Init)/IPC(Init′) is
approximate to 1.

Profit(GEMM) ≈ 1− T (Proc′)

Tstaic
≈ 1− IPC(Proc)

IPCProc′
.

As mentioned before, T (Sample) is neglectable, so the over-
head for one more initilization in reshaping round can be
ignored compared to the whole execution, we conclude a
simple cost model for GEMM above.

TABLE II: Testbed Configuration

Processor One core, x86-64, 4-wide issue and 3-wide
retire, 1.8 GHz, out-of-order

L1 cache 32 KB D-cache, 32 KB I-cache, 8 MSHRs,
LRU policy, 4 cycles

L2 cache 128 KB, 16 MSHRs, LRU policy, 4 cycles
LLC cache 4 MB, 48 MSHRs, LRU policy, 15 cycles

MC FR-FCFS, 16 KB row size, 400MHz,
32-entry queue, open-page policy

DRAM
DDR3-2133, 1-channel, 1-rank, 8 banks
216 rows, 211 columns, 8B bus

TABLE III: Benchmark Groups.

Groups Matrix size Scales
A 2N . E.g., 8192. 8192, 16384, 32768

B Tailing zeros. E.g., 24576 (1100...0) 24576, 28672, 30720,
31744, 32256

C 1000x and random zeros. E.g.,
10000 ; 17160 (100001100001)

10000, 16000;
17160, 18472

V. METHODOLOGY

Testbed and Method. All the experiments in the paper
are evaluated on our testbed, which is based on Champsim
[38] and Ramulator [39] as the out-of-order CPU and the
cycle-accurate DRAM simulator respectively (table II). For
simplicity, we choose DDR3 instead of DDR4, as DDR4 has
one more layer bank-group, which is a higher parallel layer
and provides more parallelism possibility than banks [1] and
it does not affect the insight and the idea in this paper. We
use pintool [40] to collect the full instruction traces for every
benchmark to verify the design workflow and performance
improvement. As we tag the full trace into two parts, i.e.
initialization and matrix multiplication, we can evaluate the
IPC(Init) and IPC(Proc). Besides, the testbed digests an
adequate and representative period of traces, since a part of
execution is enough to depict the access pattern and benefits
after reshaping. Although the whole accesses of large matrices,
like 32768, cannot be served by only one DIMM, the access
data in a representative piece evaluated in our experiment can
be contained in one DIMM. Therefore, the access pattern and
benefits we present can be extended as the same if multiple
DIMMs are used.

Benchmarks. The self-adaptive mechanism can support
general applications with regular patterns. For fast verifica-
tion, we choose the GEMM as it has a clear boundary of
initialization and computation, and its initialization complexity
can be ignored compared to computation. Besides, the cost
model for GEMM can be simplified to the IPC improvement
of computation shown in section IV-F. Our design supports
arbitrary matrices, and we choose the square matrix with scales
more than 8192 for benefits exposing. We classify different
scales of benchmarks into three groups based on the number
for elements of a square matrix, i.e. matrix size. All sizes of
matrices in group A are the power of two, from 210 to 214,
which is perfectly regular. A matrix in group B is weakly
skewed, the binary format of size has more than half tailing

zeros, so intermediate cache conflicts will have much pressure
on DRAM and data reshaping will get benefits. The binary
format of matrix size in group C is trivial, i.e. zeros are
randomly distributed. Particularly, group C includes 1000x,
whose decimal format is thousands, such as 10000 and 16000.

Metrics. The DRAM performance is evaluated by accesses
per cycle (APC) [36]. In addition, MLP [35] and locality on
DRAM are defined as follows.

APC(DRMA) =
#Accesses∑

latency

MLP (DRAM) =

∑
latency

Cycleactive

Locality =
#Hits

#Accesses

Cycleactive is the working cycles while processing ac-
cesses, excluding the idle cycles on DRAM.

VI. RESULTS

A. Performance Improvement

As XOR improves MLP in some situations without any
harm to locality compared to RI [7], and it has been adopted by
the commodity memory controller [6], we choose XOR as the
baseline in the following experiments. We evaluate naive and
tiling versions of all benchmarks, and Intel MKL version of
the group A (table III). Besides, two strategies for the pattern-
aware predication are analyzed over all cases.

As shown in fig. 7, two strategies improve DRAM perfor-
mance on almost all the cases, whose normalized APCs are
almost above 1 except MLP-based strategy on Intel MKL.
APCs are upgraded by 2.1x and 1.4x averagely for naive and
tiling versions on MLP-based strategy (fig. 7a and fig. 7b), but
it reduce APCs on Intel MKL version of group A benchmarks
(fig. 7c). For locality-based strategy, APCs are promoted by
1.9x, 1.7x and 1.6x averagely for three versions. Overall,
memory performance of three versions is improved up to 2.1x,
1,7x and 1.6x, by utilizing locality or MLP, or both of them.

As DRAM performance is improved, the whole execution
is also accelerated and profits (reduction percent of execu-
tion time) of benchmarks are shown in fig. 8. For group
A benchmarks, the locality-based strategy reveals 22%, 8%,
and 7% profits averagely over three versions, but the MLP-
based one shows 20% performance degradation on Intel MKL
version (in fig. 8c). Two strategies show similar profits for
group B benchmarks, i.e. 24% and 6% profits on average
over native and tiling versions. In particular, the execution
time of 30720x30720 among group B benchmarks is decreased
by 44% and 16% on native and tiling versions. Besides, for
group C benchmarks, MLP-based strategy presents 11% and
5% profits and locality-based one presents 8% and 6% profits
over native and tiling versions. To sum up, the execution time
is decreased by 24%, 8%, and 7% averagely on three versions
respectively.

B. Sensitivity Study

In order to enforce a precise predication, a representative
access pattern as an input plays an important role for reshap-
ing. To effectively converge on a specific pattern for different
scales and versions of GEMM, two parameters in sampling
can be controlled. Also, MLP and Latency-based strategies
perform well in a different situation, so there is no perfect
one defeating another. Next, we show some empirical results
and give a piece of guidance on how to decide choices.

1) Sampling and Pattern: The convergence condition men-
tioned in seciton IV-B affects speed of convergence and
precision of the pattern. λ presents how much frequency of
bit flips is prominent to the access pattern and σ affects
the speed of reaction. As is shown in fig. 9 over the tiling
version of 30720x30720, patterns based on flip sampling are
approximate to the ideal pattern that extracted from whole
accesses. Although it is less precise if σ is 0.01 instead of
0.001, it is fast to converge with lower cost and the prominent
bit flips are revealed as almost the same as the ideal pattern.
The different effects for λ between 0.15 and 0.03 present
significance of bit flips, such as the lower frequency of bit flips
on bits 19 and 20 as shown in fig. 9. The frequency below 0.1
is so low compared to the prominent bit flips so that we can
neglect it. As shown in fig. 7 and fig. 8, DRAM performance
and the whole execution are accelerated a lot, with the default
value of λ and σ as 0.15 and 0.01 respectively.

2) MLP or Latency-based strategies: Theoretically, MLP-
based strategy is better than locality-based one, as the former
can utilize MLP, and save the column bits for the better locality
as well. Practically, it may be worse than locality-based one,
as sometimes the frequency of bit flips can not satisfy the
strict requirement mentioned before. As shown in fig. 7c and
fig. 8c, MLP-based strategy behaves worse than locality-based
one, even worse than XOR mapping, as the frequency of bit
flips are under 30% (in fig. 3b) so that accesses within one
bank may drop into different row buffers with high probability,
i.e. low row buffer locality.

Aggressively, MLP-based strategy is preferred when the
frequency of prominent bit flips is very high, especially above
80%. However, we prefer locality-based one as a conservative
mapping predication empirically.

VII. RELATED WORK

To our knowledge, this is the first work using adaptive
address mapping without any prior knowledge about access
patterns, to exploit both locality and parallelism on DRAM.
In this section, we compare our work to prior ones on DRAM
performance, address mappings and co-design with access
patterns.

DRAM Performance. Scheduling policy is a popular ap-
proach to resolve DRAM performance [21]–[24]. A smart
scheduler based on previous scheduling decisions and results
are proposed in [22]. The machine learning approach is uti-
lized to overcome the static scheduling policy [23]. However,
scheduling only can dispatch accesses in a small window,
like 32-64 accesses, which can not avoid the inefficiency

 1

 1.5

 2

 2.5

 3

 3.5

8192
16384

32768

24576

28672

30720

31744

32256

10000

16000

17160

18472

N
o
rm

a
liz

e
d
 A

P
C

MPL-based
Locality-based

(a) Naive

 1

 1.5

 2

 2.5

 3

8
1
9
2

1
6
3
8
4

3
2
7
6
8

2
4
5
7
6

2
8
6
7
2

3
0
7
2
0

3
1
7
4
4

3
2
2
5
6

1
0
0
0
0

1
6
0
0
0

1
7
1
6
0

1
8
4
7
2

N
o
rm

a
li
z
e
d
 A

P
C

(b) Tiling

 0.5

 1

 1.5

 2

8
1
9
2

1
6
3
8
4

3
2
7
6
8

N
o

rm
a

li
z
e

d
 A

P
C

(c) Intel MKL

Fig. 7: DRAM Performance Improvement: Normalized APC Based on XOR. (a) Naive (b) Tiling (c)Intel MKL.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

8192
16384

32768

24576

28672

30720

31744

32256

10000

16000

17160

18472

P
ro

fi
t

MPL-based
Locality-based

(a) Naive

 0

 0.05

 0.1

 0.15

 0.2

8
1
9
2

1
6
3
8
4

3
2
7
6
8

2
4
5
7
6

2
8
6
7
2

3
0
7
2
0

3
1
7
4
4

3
2
2
5
6

1
0
0
0
0

1
6
0
0
0

1
7
1
6
0

1
8
4
7
2

P
ro

fi
t

(b) Tiling

-0.3

-0.2

-0.1

 0

 0.1

8
1
9
2

1
6
3
8
4

3
2
7
6
8

P
ro

fi
t

(c) Intel MKL

Fig. 8: Profit: reduction percent of execution time (based on XOR). (a) Naive (b) Tiling (c)Intel MKL.

 0

 0.2

 0.4

 0.6

 0.8

 1

 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

F
re

q
u

e
n

c
y
 (

%
)

Bit Flips: Access Pattern

Ideal

[1]:0.15, [2]:0.001

[1]:0.15, [2]:0.01

[1]:0.03, [2]:0.001

[1]:0.03, [2]:0.01

Fig. 9: Sensitivity on Access Pattern Recognition Based on
Flip Sampling (30720x30720 as an example). [1]-λ. [2]-σ.

introduced by terrible data layout. Prefetch is adopted to
improve MLP [25]. Another promising approach is to modify
the DRAM organization [12], [15]–[20]. Parallelism potentials
of the subarray, bank and rank are exploited through little
changes on DIMMs [15]–[17]. To reduce the data movement
cost over the bus between CPU and DRAM, [19], [20] support
fast data transfer directly on DRAM. However, these studies do
not extract access patterns and address directly the mismatch
of data layout and access patterns. Such approaches can be
absorbed into our mechanism as an alternative for reshaping
instead of restarting the process, as future work.

Address Mapping. Although the address mappings in
commodity CPUs are not public [6], there are a lot of address
mappings studied in [3]–[7], involving the row-interleaving
one (RI, fig. 1a) and the cache-interleaving one (CI, fig. 1c),
which are two typical ones representing different parallelism
granularities of access patterns. [7] proposes a general address

mapping mechanism with simple XOR operations, addressing
row buffer thrashing introduced by LLC conflicts. It preserves
spatial locality compared to row-interleaving mapping and
upgrades MLP in some cases, for example, reduction of two
large vectors. Prior work considers swap bits to cover the
conflicts from LLC [5], but it does not consider any knowledge
of access patterns. Besides, the above work is all static so
that they can not fit the different access patterns, which give
us opportunities to present a self-adaptive mechanism to suit
patterns. [8] presents a mathematical framework to reshape
data in 3D-stack DRAM through data movement, as 3D-
stack memory provides high-bandwidth data transfer. It works
as a PIM and provides fast data transformation compared
to moving data through CPU and DRAM. But the mapping
mechanism is not self-adaptive and pattern-aware without prior
knowledge of applications, as upper software should notify
how to transform data layout. We can deploy our mechanism
on the mathematical framework and enable 3D-stack memory
aware of access patterns.

Access Pattern Awareness. Hot pages are compacted into
a row buffer for better spatial locality [10], which changes
OS page management and does not support access patterns
without critical data regions, like GEMM. DRAM Chips are
utilized to address the non-unit stridden accesses in a gather-
scatter way [12], which is limited to small stride less than a
cache line. [14] proposes a MLP-based scheduling targeting
low-level parallelism of irregular access patterns. Some studies
are customized for specific applications [21], [26] without
accessing recognition in our work.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we present an adaptive address mapping
mechanism to be aware of access patterns, bridging the huge
mismatch between access patterns and data layout on DRAM.
This mechanism is adjustable to different access patterns by
adopting suitable mappings to gain either locality or bank
parallelism, compared to current general address mappings.

We make the key observation that the inefficiency is coming
from the mismatch of access patterns and data layout. The
adaptive address mapping can avoid the worst case that both
locality and parallelism are harmed. The evaluation results
based on GEMM show that our mechanism can improve the
DRAM performance several times and reduces execution time
even for high high-optimized GEMM.

We have shown early benefits of the adaptive mechanism
on different scales of matrix multiplication. It is a pioneering
work to fill the gap between access patterns and data layouts.
We plan to extend our work in two aspects: one is to dig more
profit from other applications with regular patterns; the other
is to exploit efficient data movement in 3D-stack DRAM to
support fast reshaping on runtime after predicting a suitable
mapping.

IX. ACKNOWLEDGEMENT

We thank Dr. Xuechen Ding for assistance with writing and
ploting that greatly improved the manuscript. We would also
like to show our gratitude to the anonymous reviewers for their
sincere comments.

REFERENCES

[1] JEDEC Solid State Technology Association. JEDEC Standard: DDR4
SDRAM. JESD79-4, Sep, 2012.

[2] M. Blackmore. A quantitative analysis of memory controller page
policies. 2013.

[3] https://safari.ethz.ch/architecture/fall2018/doku.php.
[4] R. E. Kessler, M. B. Steinman, P. J. Bannon, M. C. Braganza, and G.

A. Bouchard. U.S. Patent No. 6,546,453. Washington, DC: U.S. Patent
and Trademark Office, 2003.

[5] J. H. Zurawski, J. E. Murray, and P. J. Lemmon. The design and veri-
fication of the AlphaStation 600 5-series workstation. Digital Technical
Journal, 7(1), 0, 1995.

[6] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard. DRAMA:
Exploiting DRAM Addressing for Cross-CPU Attacks. USENIX Secu-
rity, 2016, pp. 565-581.

[7] Z. Zhang, Z. Zhu, and X. Zhang. A permutation-based page interleaving
scheme to reduce row-buffer conflicts and exploit data locality. MICRO,
2000, pp. 32-41.

[8] B. Akin, F. Franchetti, J. C. Hoe. Data reorganization in memory using
3D-stacked DRAM. ISCA, 2016, 43(3), 131-143.

[9] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens.
Memory access scheduling. ISCA, Vol. 28, No. 2, pp. 128-138, 2000.

[10] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R. Balasubramonian,
and A. Davis. Micro-pages: increasing DRAM efficiency with locality-
aware data placement. ISCA, 2010, 45(3), pp.219-230.

[11] H. Hassan, G. Pekhimenko, N. Vijaykumar, V. Seshadri, D. Lee,
O. Ergin, and O. Mutlu. ChargeCache: Reducing DRAM latency by
exploiting row access locality. HPCA, 2016, pp. 581-593.

[12] V. Seshadri, T. Mullins, A. Boroumand, O. Mutlu, P. B. Gibbons, M. A.
Kozuch, et al. Gather-scatter DRAM: in-DRAM address translation to
improve the spatial locality of non-unit strided accesses. MICRO, 2015,
pp. 267-280.

[13] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu. A software
memory partition approach for eliminating bank-level interference in
multicore systems. PACT, 2012, pp. 367-376.

[14] X. Tang, M. Kandemir, P. Yedlapalli, and J. Kotra. Improving bank-level
parallelism for irregular applications. MICRO, 2016, pp. 57.

[15] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu. A case for exploiting
subarray-level parallelism (SALP) in DRAM. ISCA, 2012, 40(3), pp.
368-379.

[16] Y. H. Son, O. Seongil, Y. Ro, J. W. Lee, Ahn, J. H. Reducing memory
access latency with asymmetric DRAM bank organizations. ISCA, 2013,
pp. 380-391.

[17] W. Shin, J. Jang, J. Choi, J. Suh, Y. Kwon, Y. Moon, and L. S. Kim.
Rank-level parallelism in dram. TC, 66(7), pp.1274-1280, 2017.

[18] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu.
Tiered-latency DRAM: A low latency and low cost DRAM architecture.
HPCA, pp. 615-626, 2013.

[19] K. Chang, P. Nair, D. Lee, S. Ghose, M. Qureshi, and O. Mutlu. Low-
cost inter-linked subarrays (LISA): Enabling fast inter-subarray data
movement in DRAM. HPCA, 2016, pp. 568-580.

[20] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhi-
menko, et al. RowClone: fast and energy-efficient in-DRAM bulk data
copy and initialization. ISCA, 2013, pp. 185-197.

[21] S. Rixner. Memory controller optimizations for web servers. MICRO,
pp. 355-366, 2004.

[22] I. Hur, C. Lin. Adaptive history-based memory schedulers. MICRO,
2004, pp. 343-354.

[23] E. Ipek, O. Mutlu, J. F. Martnez, R. Caruana. Self-optimizing memory
controllers: A reinforcement learning approach. ISCA, 2008.

[24] E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao, O.
Mutlu, et al. Parallel application memory scheduling. MICRO, 2011,
pp. 362-373.

[25] C. J. Lee, V. Narasiman, O. Mutlu, and Y. N. Patt. Improving memory
bank-level parallelism in the presence of prefetching. MICRO 2009, pp.
327-336.

[26] M. Berezecki, E. Frachtenberg, M. Paleczny, K. Steele. Many-core key-
value store. IGCC, 2011, pp. 1-8.

[27] K. Goto, and R. A. Geijn. Anatomy of high-performance matrix multi-
plication. TOMS, 34(3), 12, 2008.

[28] J. Kepner, and J. Gilbert (Eds.). Graph algorithms in the language of
linear algebra. Society for Industrial and Applied Mathematics. 2011.

[29] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, et al.
Going deeper with convolutions. CVPR, 2015, pp. 1-9.

[30] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick.
The potential of the cell processor for scientific computing. CF, 2006,
pp. 9-20.

[31] Benchmarking matrix multiplication implementations.
https://github.com/attractivechaos/matmul.

[32] E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, and Y. Wang.
High-performance computing on the Intel Xeon Phi. Springer, 5, 2. 2014.

[33] J. Zhao, H. Cui, Y. Zhang, J. Xue, and X. Feng. Revisiting Loop Tiling
for Datacenters: Live and Let Live. ICS, 2018, pp. 328-340.

[34] Y. Jia. Learning semantic image representations at a large scale (Doctoral
dissertation, UC Berkeley). 2014.

[35] Y. Chou, B. Fahs, and S. Abraham. Microarchitecture optimizations for
exploiting memory-level parallelism. ISCA, 2004, pp. 76-87.

[36] D. Wang, and X. H. Sun. APC: A novel memory metric and mea-
surement methodology for modern memory systems. TC, 2013, 63(7),
pp.1626-1639.

[37] Y. H. Liu, and X. H. Sun. LPM: A Systematic Methodology for Con-
current Data Access Pattern Optimization from a Matching Perspective.
TPDS, 2019.

[38] ChampSim. https://github.com/ChampSim/ChampSim.
[39] Y. Kim, W. Yang, and O. Mutlu. Ramulator: A fast and extensible

DRAM simulator. IEEE Computer architecture letters, 2015, 15(1),
pp.45-49.

[40] C. K., Luk, R., Cohn, R., Muth, H., Patil, A., Klauser, G., Lowney,
et al. Pin: building customized program analysis tools with dynamic
instrumentation. Acm sigplan notices, Vol. 40, No. 6, pp. 190-200, 2005.

	Introduction
	Background
	DRAM Organization
	Address Mappings
	General Matrix-matrix Multiplication (GEMM)

	Motivation
	Mismatch with Access Pattern
	Locality or MLP
	No Perfect Mapping
	Worst Situation

	Flip on High Bits
	Opportunities

	Design
	Overview
	Flip Sampling
	Pattern-aware Prediction
	Aggressiveness Control
	Implementation
	Cost Model

	Methodology
	Results
	Performance Improvement
	Sensitivity Study
	Sampling and Pattern
	MLP or Latency-based strategies

	Related Work
	Conclusion and Future Work
	Acknowledgement
	References

