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Abstract 

The application of hardware-parameterized models to 
distributed systems can result in omission of key 
bottlenecks such as the full cost of inter-node 
communication in a shared memory cluster. However, 
inclusion in the model of message characteristics and 
complex memory hierarchies may result in impractical 
models. Nonetheless, the growing gap between memory 
and CPU performance combined with the trend toward 
large scale clustered shared memory platforms implies an 
increased need to consider the impact of local memory 
communication on parallel processing in distributed 
systems. We present a simple and useful model of point-
to-`point memory communication to predict and analyze 
the latency of memory copy, pack and unpack. We use the 
model to isolate contributions of hardware, middleware, 
and software to data transfers on Intel- and MIPS-based 
platforms. 

1. Introduction 

Communication promises to remain a critical 
bottleneck in the performance of distributed applications 
for many generations of architectures. A communicated 
message must be moved from the source’s local memory 
to the target’s local memory. Memory communication is 
the transmission of data to/from user space from/to the 
local network buffer (or shared memory buffer). Network 
communication is data movement between source and 
target network buffers. Communication cost consists of 
the sum of memory and network communication times. 

Memory communication overhead is the time the CPU 
is engaged in local data movement during which no other 
work can be accomplished. Figure 1a shows how models 
such as LogP[4] approximate memory communication in 
parallel systems with a fixed overhead parameter (o), the 
reciprocal of the bandwidth between application and 

network buffers1. Generally, when network 
communication (L) dominates cost, LogP cost prediction 
is accurate since ignoring the impact of message size and 
distribution on memory communication overhead is 
reasonable. 

Communication cost in shared memory architectures 
(Figure 1b) is dominated by memory communication. 
Years of research addressing the cpu-memory gap have 
resulted in very complex memory hierarchies that overlap 
latency with useful work. Using a single hardware 
bandwidth parameter to model memory communication 
performance in a hierarchy (illustrated in Figure 1b) is not 
sufficient since the effective latency overlap of a 
hardware implementation is application and system 
dependent. Models of communication that incorporate 
these characteristics are warranted when memory 
communication has significant impact, however resulting 
models must remain simple despite the complexity of 
current memory hierarchies. 

                                                 
1 We employ a common simplification of the LogP model, letting o=g 
for simplicity in our discussion. 
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Fig. 1.  P=Proc, C=Cache, M=Memory. Hardware 
parameterizations of communication costs using 
LogP are effective in parallel systems (a) when 
network communication dominates overall cost. As 
the impact of memory communication on overall 
communication increases, exemplified in shared 
memory (b), the effects of data size and distribution 
are too significant to be ignored. 
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Memory communication cost will increase in 
proportion to overall communication cost given current 
technological trends[6]: Future generations of distributed 
systems will consist of commodity, shared memory 
components with fast interconnects. Improvements in 
memory speed will continue to lag behind improvements 
in processor and network interconnect technologies. 
Further algorithm development may take advantage of 
network latency tolerance via technologies such as active 
messages. 

There are two compelling reasons to incorporate data 
characteristics into models of memory communication 
cost in distributed systems. First, the number of 
transmissions between source and target user space in 
shared memory  (see Fig. 2 1a-b) or between user 
memory space and the network buffer in distributed 
transmission (see Fig. 2 2a-b), will vary with data size, 
data distribution, and system implementation. Reasons for 
re-buffering include system design considerations such as 
finite sized network buffers and system software 
implementations such as temporary storage of data for 
packed transmission to the network or shared memory 
buffer. 

Second, by identifying costs that exhibit overlap 
potential, we encourage efficient algorithm design. In the 
LogP model, overhead (i.e. memory communication) is 
the cost that cannot be avoided. Latency (i.e. network 
communication) is the cost that has overlap potential. The 
LogP model encourages overlap of network latency in 
algorithm design. However, when data distribution is 
considered, the aforementioned two-copy problem 
notwithstanding, memory communication cost increases 
with additional misses in the memory hierarchy 
attributable to poor data locality. This additional latency 
has the potential for overlap depending on system design 
such as non-blocking memory accesses or aggressive 
prefetching and algorithm characteristics. 

Future algorithm designs on distributed systems must 
optimize memory and network communication costs 
through balanced inter- and intra-node communication to 
achieve efficiency. Existing parallel programs do not 
exhibit good performance on distributed systems[1]. A 
large class of parallel scientific applications (e.g. climate 
models) stands to benefit from development of predictive 
models of distributed computation that incorporate system 
software characteristics and encourage multiple levels of 
achievable latency overlap. 

In the remainder of this paper, we present our approach 
to estimating the cost of memory communication 
performance by augmenting the LogP model of parallel 
computation to estimate cost in a hierarchical memory 
subsystem. The resulting memory logP model provides a 

simple and useful cost estimate of memory 
communication performance in terms similar in meaning 
to the LogP model of parallel computation.  While such 
an approach is currently disjoint from the LogP model of 
parallel computation, it motivates another bridging model 
of distributed computation that couples both models to 
incorporate the memory hierarchy in estimates of point-
to-point communication. 

2. Motivating example 

Array boundary exchange2 common in scientific 
applications classically requires array data transmission of 
rows and columns between processing elements. The 
mapping of a 2-D domain to the linear virtual address 
space in a given memory implementation typically 
involves grouping elements contiguously3 by column 
(Fortran) or row (C). Thus transmitting rows in Fortran or 
columns in C involves accessing non-contiguous data 
elements. Figure 2 illustrates the varied cost of 
transmission. The critical data path is dependent upon 
source and destination, data size and distribution, and 
system implementation. We perform simple experiments 
to quantify this cost. 

On a distributed memory machine as depicted in 
Figure 1a, the impact of non-contiguous accesses will 
severely impact the memory communication overhead. To 
quantify the cost of such strided accesses on memory 
communication, we performed a simple experiment on a 
Pentium III based Beowulf described in detail later.  The 

                                                 
2 The astute reader will note we are oversimplifying boundary exchange 
problems by ignoring concepts such as ghost cells and alternating 
communications in favor of a simplified discussion. 
3 We assume contiguous or physically adjacent to mean successive 
virtual addresses mapped to successive physical addresses. 
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Fig. 2.  Memory communications within shared 
memory (1a-b) and to/from the network buffer in 
distributed communication (2a-b/3a-b) follow critical 
paths dependent upon data size, data distribution, 
and system implementation. 
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code in Figure 3 illustrates a simple unpacking algorithm 
for copying a contiguous array of data in sbuffer[] into a 
non-contiguous array of data in rbuffer[] at stride s.  We 
ignore loop overhead in our discussion and assume a 2-D 
array of 1024 x 1024 elements of type double (8 bytes on 
Pentium III) stored in row-major order. Measuring 
unpacking time for a single row at a stride of 1 element 
gives .0083 seconds - the ideal throughput achieved by 
this algorithm on this machine using an optimizing 
compiler since spatial locality is optimal. Unpacking time 
for a stride of 4 (32 bytes for fp elements on Intel Pentium 
III) is .062 seconds – a six-fold increase in the execution 
time due solely to the decreases in the spatial locality that 
the compiler and architectural implementation were 
unable to compensate for. 

On shared memory machines, the impact of non-
contiguous accesses will severely impact the overall 
communication overhead (since network communication 
is not present). We perform a simple measurement of the 
time to send contiguous and non-contiguous data within 
and across nodes on an SGI Origin 2000 machine using a 
blocking send and measuring delay on the sender side. 
This blocking send of a 1KB message of contiguous data 
without packing (stride of 8 bytes for fp on MIPS) 
measured .176us while the same amount of data requiring 
packing with a 16 byte stride took .551us. This three-fold 
increase in overall communication within a single SMP 
was due to the cost of memory communication of the 
non-contiguous data.  The delay becomes four times the 
memory communication cost when data needs to be 
moved to the network buffer for transport across SMPs. 

For large-scale scientific applications with scalable 
workloads designed to fully utilize a processor’s allocated 
memory, the additional memory communication time may 
outweigh the network communication latency.  This is 
especially true as disk accesses (another level in the 
memory hierarchy) are required.  In this paper, we will 
focus only on problem sets that fit in DRAM, leaving 
incorporation of the disk access portion of the memory 
hierarchy to future work. 

3. Related work 

Our model attempts to predict algorithm performance 
based on measurable system parameters. Analytical 
techniques to predict cache performance can be used to 
estimate model parameters as desired. But, accurate 
models of memory hierarchy performance are necessarily 
complicated [5]. 

Many computational models of parallel performance 
provide simple quantification of communication 
performance [8]. The Hierarchical Memory Model 
(HMM) applies the characteristics of memory hierarchies 
to network communication. Cost estimates are accurate 
for very large sets of streaming data, but ignore the 
network attributes common to parallel and distributed 
systems. Our work focuses on combining hierarchical 
memory performance with estimates of network 
communication cost, distinguishing the two approaches to 
models of point-to-point communication. 

Other models attempt to bridge different system 
characteristics to fully model the communication path.  
Bridging models such as LogP and the bulk synchronous 
parallel (BSP) model [10] incorporate multiple aspects of 
parallel systems.  Both models quantify communication 
latency and bandwidth.  LogP is widely used since it 
additionally incorporates asynchronous behavior and 
communication overhead – thus it has been the subject of 
previous extensions [9] and is the subject of our modeling 
efforts. These models ignore the effects of the possibly 
significant impact of middleware implementation and 
application data distribution on memory communication 
in distributed systems. 

The memory logP model presented in this paper 
addresses the apparent convergence of distributed 
architectures to clusters of shared memory machines. 
Application of previous parallel communication models 
to such distributed systems may result in less than optimal 
algorithm design. While maintaining simplicity, our 
model attempts to incorporate memory hierarchy 
performance in models of communication. It provides two 
notable contributions: 1) Incorporates system and 
application characteristics in memory communication 
cost. 2) Separates memory communication into inherent, 
unavoidable system overhead and additional latency that 
has overlap potential encouraging efficient algorithm 
design. 

4. The memory logP model 

Full derivation of the model can be found in the 
associated technical report [2]. Under the memory logP 
model, processors communicate via explicit loads and 

for (k=0,j=0;
k<(s*numarrayelements);
k=k+s,j++)
rbuffer[k] = sbuffer[j];

Fig. 3.  Simple unpacking algorithm. 
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stores that drive implicit replication across the hierarchy. 
Although the cost of memory communication could be 
estimated as the average hardware transfer rate across the 
hierarchy, such cost estimates would ignore the system 
and application dependent latency overlap. Figure 4 
provides an illustrative view of the succeeding discussion. 

To incorporate system characteristics in the model, the 
o parameter is the cost of ideally distributed data 
transfers. Since most systems exploit spatial locality, the 
system-dependent o cost is average, unavoidable 
overhead and represents the best case for data transfer on 
a target system. The pipeline cpi (cycles per instruction 
under perfect cache conditions) of the data transfer 
algorithm is the lower bound for o – where only changes 
to the micro-architecture will improve upon the overhead. 
Costs greater than the pipeline cpi are due to hardware 
and middleware implementation characteristics such as 
imperfect cache implementations and less than optimal 
data transfer implementation. 

Additional delays in memory communication are 
functions of the system implementation and the 
application characteristics of data size (s) and data 
distribution (d). The effective latency after overlap (l) is a 
function of these parameters. The lower-case l (“ell”) 
symbolizes the realized reduction in transfer cost due to 
latency overlap in contrast to the upper bound on network 
latency (L) of the original LogP model. This parameter is 
bounded above by the cost of data transfers without 
overlap and bounded below by the o parameter of 
memory logP. 

The implicit small message size wn of the LogP model 
is replaced with wm, the word size of the instruction set 
architecture for the machine under study.  We formally 
characterize memory communication cost under four 

parameters: 
l: the effective latency, defined as the length of time 

the processor is engaged in the transmission or reception 
of a message due to the influence of data size (s) and 
distribution (d) for a given implementation of data 
transfer on a given system, l=f(s,d). Improvements in 
system application, middleware, and hardware that 
increase latency overlap may reduce this parameter. 

o: the overhead, defined as the length of time that a 
processor is engaged in the transmission or reception of 
an ideally distributed message for a given implementation 
of data transfer on a given system. During this time the 
processor cannot perform other operations. For scalable 
implementations, o remains constant with size. 
Improvements in system middleware and hardware that 
increase data throughput may reduce this parameter. 

g: the gap, defined as the minimum time interval 
between consecutive message receptions at a processor.  
The reciprocal of g corresponds to the available per-
processor bandwidth for a given implementation of data 
transfer on a given system. We follow common 
simplification of o=g in our model since o captures the 
entire cost of data movement (e.g. no assist overhead is 
present). We do not eliminate g since we believe future 
systems may not follow this simplifying assumption (e.g. 
multi-threaded architectures). 

P: the number of processor/memory modules. We 
currently consider only point-to-point communication in 
the memory hierarchy, so P=1. We have results that show 
this is equivalent to point-to-point communication in 
small SMPs. Gather/scatter in this context means 
collective packing and unpacking operations on data. 
With P>1 it refers to collective communication. We avoid 
this confusion with our assumption. 

Application + middleware + hardware performance of ideal distribution

o parameter of memory logP model

Application + middleware + hardware performance of non-ideal distribution (d)

l parameter of memory logP model for given d

data size (s)
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Fig. 4.  A graphical view of performance bounds using the memory logP model of communication. The o 
and l parameters characterize additional delay due to middleware and application implementation. 

0-7695-1926-1/03/$17.00 (C) 2003 IEEE



  

Similar to LogP and its extensions, all parameters are 
measured as multiples of the processor clock cycle.  As in 
the LogGP model, it is most natural to express o and l in 
terms of the overhead per byte instead of per word since 
word definitions may intuitively have different meanings 
to different audiences.  For this reason we will express 
results in terms of cycles per byte. In all our experiments, 
word size is 4 bytes for integer and 8 bytes for floating 
point, so multiplying by 4 or 8 respectively will provide 
measurements in terms of cycles per word or double 
word. 

In our discussion, we assume typical load/store 
architectures with hierarchical memory implementations 
that utilize state-of-the-art latency hiding techniques to 
achieve high rates of instruction-level parallelism.  Our 
analyses target memory communication performance so 
we will ignore effects of branching and icache, assuming 
copying algorithms exhibit perfect branch prediction and 
perfect icache hit rates.  For memory communications 
involving data transfers across the memory hierarchy, 
these assumptions are reasonable. Our predictions are at 
the application level, so non-deterministic characteristics 
of memory access delay at the micro-architecture level 
are not considered. We assume deterministic access delay 
and use minimum average values as inputs to our model. 
As is customary, we assume the receiving processor may 
access a message only after the entire message has 
arrived.  At any given time a processor can either be 
sending or receiving a single message. 

5. Usage of the model 

As mentioned, LogP estimates point-to-point 
communication cost as o + L + o for transfers of wn bytes, 
where o is a lower bound on memory communication and 
L is an upper bound on memory latency.  Sending a 
longer message of B bytes requires nwB /  messages. The 
associated cost is o + max{g,o} * nwB /   + L + o.  
Estimating the cost of point to point communication in the 
memory logP model is similar while the parameters have 
different contextual meaning.  Cost of a single word 
transfer of wm bytes is wm*(o + l).  We approximate the 
overhead as the cost of data movement for contiguous 
data (the case with l=0).  Data placement causes 
additional cache misses. Thus l is a function of data size 
and access pattern. 

LogP and memory logP are disjoint; we assume all 
memory communication occurs prior to network 
communication with no overlap (e.g. the network buffer 
is infinite in size).  Coupling the two models into a single 
model is currently being studied. Despite this, the models 
can be applied separately to estimate cost by normalizing 

with respect to the network packet size. The projected 
cost per byte is (om+l) + (Ln/wn) + (om+l) using n to 
denote network parameters and m to denote memory 
parameters. This assumes no additional buffer copying 
other than data movement from user space to the network 
or shared memory buffer. Additional buffer copies would 
incur a cost of om per byte. We also assume om+l is the 
average cost between packing on the source processor and 
unpacking on the target processor. The combination of the 
memory logP model with the LogP model of parallel 
computation effectively replaces the on of the LogP model 
with wn*(om+l). 

6. Experimental details 

We utilized a 32-node Beowulf at the University of 
South Carolina.  Each node consists of a 933 MHz 
Pentium III Processor with 1GB available main memory 
running Redhat Linux version 2.4.7-10.  Separate non-
blocking 16KB data and instruction L1 caches are 
available on chip. Each processor is additionally equipped 
with a 256KB Advanced Transfer L2 Cache on-die 
running at core speed.  Cache and page block sizes are 32 
bytes and 4096 bytes respectively.  Load misses at L1 and 
L2 were measured as 7 and 70 cycles respectively. The 
interconnection network consists of two separate standard 
10/100 Mbit/s switched Ethernet channels connected by a 
router. 

We also modeled parameters on the SGI Origin 2000 
at NCSA that utilizes a cc-NUMA architecture running 
the IRIX version 6.5.14 operating system. Each node 
contains two MIPS R10000 processors; each running at 
195MHz, and 32kB two-way set associative, two-way 
interleaved primary (L1) cache. An off-chip 4MB 
secondary unified cache is present as well. Cache and 
page block sizes are 32 and 4096 bytes respectively.  
Load misses at L1 and L2 were measured as 12 and 90 
cycles respectively. The achievable remote memory 
bandwidth on Craylink interconnect is 624MB/sec in each 
direction, which adds a 165ns off-node penalty and 110ns 
per hop. 

We gathered all of our measurements by augmenting 
an existing tool that is part of the MPICH distribution. 
mpptest [7] provides platform independent, reproducible 
measurement of message passing experiments such as 
ping pong and memory copy. It can be used to benchmark 
systems for determining MPICH platform dependent 
parameters. We modified mpptest to allow variations in 
stride access and array data structures for data movement 
operations such as direct copy, packing and unpacking. 
All experimental results were run a minimum of 20 times 
by the tool to ensure dependable results.  Furthermore we 
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ran all tests twice to ensure no system wide perturbations 
affected results. 

Our general experimental method was to direct copy 
one array into another allocating only the necessary space.  
We varied which arrays were contiguous and 
noncontiguous to simulate direct copy, packing, and 
unpacking in memory systems while varying stride and 
data size. We also varied the data type (integer and 
double) and the system (Beowulf IA32 , and SGI Origin 
2000). We measured strides between word size and 128K 
for data sizes varying from word size to 128K.  For ease 
of discussion, results are presented for strides up to 2048 
bytes. Measurements beyond this stride are similar and 
discussed in context. 

7. Model verification 

Verification of our approach entails illustrating our 
ability to measure the l and o parameters and utilizing 
these values to explain memory communication cost. 
Figure 5 provides measurements for memory 
communication for direct copy of non-contiguous integer 
data using a simple array copy optimized by the native 
compiler. These measurements depict the direct copy of 
an integer array of varying sizes (x axis) and strides 
(separate curves) on a Beowulf machine. The curves for 
strides > 4 bytes represent the l function. The influence of 
the memory hierarchy on l is obvious and significant in 
the series of plateaus observed. Also the o parameter (the 
bottom most line with stride = 4 = word size) is constant 
with increasing stride indicating a scalable method of data 
transfer. The o term is the cost associated with movement 
of contiguous data utilizing the data transmission 
algorithm. 

Estimation of the o parameter requires measurement of 
contiguous data transmission, a relatively simple task. We 
expect the o parameter will be constant as problem size 
and strides increase; that a scalable transmission method 
is chosen. Recent work [11] indicates that the overhead 
for packing and unpacking of MPI derived data types in 
implementations such as MPICH does not scale well.  

Measuring the l parameter directly requires running 
experiments varying message size and contiguity. After 
subtracting the ideal overhead, the l function remains. 
Predicting the l parameter in general is not an easy task.  
Given the regular nature of memory communication 
performance and the fact that most scientific computing 
only exhibits few non-contiguous data access patterns, we 
can predict memory communication latency (l) for regular 
communication schemes and optimize the performance of 
scientific computing with pre-measured l and o values. 
Using pre-measured values to choose the best possible 
implementation, while practically important, is 
straightforward technically. For the sake of brevity, we 
only discuss general prediction mechanisms in the next 
section. 

8. Parameter prediction 

The regular patterns identified in our initial analysis of 
direct copy encouraged us to explore cost prediction of 
the l function. This technique is specific to memory 
communication and cannot be generally applied. 
Measurement of the o term is relatively simple and so 
prediction is not truly warranted since o can often be 
approximated with a single constant as suggested in our 
model. For relatively simple copying schemes algorithm 
dependent predictive cost estimates of the l term can be 

 
Fig. 5.  The taxonomy of the memory logP model for the cost of memcpy of non-contiguous data illustrates 
the magnitude of delay relative to the contiguous overhead (o) and the LogP overhead (on where on<o). 
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developed. For less regular packing structures, it will be 
necessary to directly measure the l function for a target 
system. Whether using predictive measurements of l or 
direct measurements, applied cost estimation is identical 
once o and l are identified. 

Our approach to prediction is based on two key 
observations. First, efficient data copying involves regular 
data access patterns. Second, latency hiding is 
accomplished primarily through blocked communication 
between hierarchy levels making additional delays 
dependent upon the data access pattern and data size. 
Techniques such as out-of-order execution or loads-
under-miss will not significantly impact the performance 
beyond that observable in the measured value o, the 
contiguous overhead. 

We attempt to use stack distance curves [3] to 
approximate the resulting cache hit rates at each level of 
the memory hierarchy. The average memory access time 
can be expressed as 
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where Pj and Tj are the access probability and the 
average access time to the memory hierarchy at level j 
where j = 2, …, M.  Pj depends on the characteristics of 
the memory hierarchy and the data access pattern. Both 
are known for memory communication.  We can create an 
estimate of the cost for l based on approximation of these 
stack distance curves, or the hit rates at each level in the 
cache.  At present we perform a manual curve fitting to 
illustrate the l function can be approximated as a fitted 
function of the cache and block size, and the data size and 
stride distance. We currently ignore the effects of TLB 
although inaccuracy at large data size and strides would 
indicate TLB effect can be significant and should be 
included. 

Our simple estimation trades accuracy for simplicity. 
In practice however, we believe algorithm designers are 
interested in bounding costs such as L in the LogP model.  
The original on parameter (o of the LogP model) is a 
lower bound on hardware overhead.  The predictive 
model of (om + l) is intended to provide an upper bound 
on overhead incorporating software and middleware. 
Despite many assumptions regarding the cache hierarchy 
(such as full associativity, no computational overlap, no 
TLB effect) our predictive model can be accurate within 
+80% and –60%. Figure 6 provides selected predictions 
for integer memcpy on the Pentium III Beowulf. 

9. Other measurements 

We can use the memory logP taxonomy to confirm 
some generally understood characteristics of memory 

hierarchies. Direct experimental measurement confirms 
the unpacking portion of the data transfer dominates the 
cost of the native memory copy for non-contiguous data. 
This indicates that for these systems it is sufficient to 
model pack as the o parameter (l=0) except for very small 
transfers where prefetch overhead dominates average cost 
per byte. Modeling unpack or memory copy requires 
measurement or prediction of the additional latency due 
to mismatches between the contiguity of the application 
and the middleware and architectural implementation. 

We performed experiments separating the pack and 
unpack (i.e. memory communication gather and scatter) 
costs of data transfer. For packing, writes are to 
contiguous addresses resulting in deviations from 
contiguous overhead cost only when TLB misses 
dominate for very large data and stride sizes. Most 
additional latency (l) is due to the cost of writing data to a 
non-contiguous address space. These data access patterns 
confound the write-back buffering abilities of the memory 
subsystem implementation. 

Figure 5 provides measured data for varied access 
patterns on the native memory copy implementations of 
the Linux-based Beowulf machine. Plateaus are present as 
the size of each level of cache is exhausted. This figure 
depicts saturation of the L2 cache as the stride and data 
sizes increase. By removing the contiguous contribution 
from the measured latency, we provide taxonomy of the 
contributions to stalls for memory copy and unpacking 
algorithms. 

Figure 6 shows select results from our simple 
prediction curve fitting approach. Most approximations 
are quite close (within +80% and –60%). The predictions 
are more accurate for larger data sizes since small 
deviations from the absolute values for small data sizes 
lead to large differences in the relative error. Inaccuracy 
becomes worse as problem sizes grow very large since we 
currently ignore the effects of TLB.  

To illustrate the portability of our approach, we 
repeated the experiments for the direct copy algorithm on 
the MIPS R10000 architecture of the SGI Origin 2000. 
Our data and predictions are system dependent, but our 
findings are similar. The associated error rates for 
prediction, are slightly better than the error rates for the 
IA32 architecture.  This could be for any number of 
reasons including the compiler and architecture.  The key 
observation here is that our analysis technique and the 
predictive method can be useful and accurate on 
distinctive memory subsystems despite the simplicity of 
our approach. 
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10. Conclusions 

We have illustrated the need for inclusion of memory 
communication performance in models of point-to-point 
communication.  To that end we derived the memory logP 
model of memory communication through application 
and augmentation of the LogP model of parallel 
computation to the memory hierarchy.  The parameters of 
the memory logP model can be simply measured and 
analyzed. The model is generally applicable to any 
memory communication, but prediction is likely only for 
very regular memory access patterns. 

We used the model to characterize, bound, and predict 
memory performance. The result of these techniques is a 
more accurate estimate of overall communication 
performance. We practically applied our techniques to 
two architecturally distinct systems, an IA32 Beowulf and 
the MIPS-based SGI Origin 2000. The resulting 
measurements for the o parameter quantified the 
scalability of the copying algorithm. Additionally, simple 
stack distance curve prediction was shown to be 
practically accurate (within +80% and –60%). 

Use of stack distance curves at present ignores TLB 
misses, a source of inaccuracy when page thrashing 
occurs. Another limitation of the present model concerns 
coupling with network delay since buffering makes 
concatenation with LogP less than straightforward. We 
will address this limitation in future work. 
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Fig.6. Predicting the miss rates with a simple curve fitting constrained to the size characteristics of the memory 
hierarchy and the data characteristics of size (s) and distribution (d) can be fairly accurate when TLB misses 
are not present and accesses are regular. 
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