

Quantifying Locality Effect in Data Access Delay: Memory logP

Kirk W. Cameron
Dept. of Computer Science and Engineering

University of South Carolina
Columbia, SC 29208
kcameron@cse.sc.edu

Xian-He Sun
Department of Computer Science

Illinois Institute of Technology
Chicago, IL 60616

sun@cs.iit.edu

Abstract

The application of hardware-parameterized models to
distributed systems can result in omission of key
bottlenecks such as the full cost of inter-node
communication in a shared memory cluster. However,
inclusion in the model of message characteristics and
complex memory hierarchies may result in impractical
models. Nonetheless, the growing gap between memory
and CPU performance combined with the trend toward
large scale clustered shared memory platforms implies an
increased need to consider the impact of local memory
communication on parallel processing in distributed
systems. We present a simple and useful model of point-
to-`point memory communication to predict and analyze
the latency of memory copy, pack and unpack. We use the
model to isolate contributions of hardware, middleware,
and software to data transfers on Intel- and MIPS-based
platforms.

1. Introduction

Communication promises to remain a critical
bottleneck in the performance of distributed applications
for many generations of architectures. A communicated
message must be moved from the source’s local memory
to the target’s local memory. Memory communication is
the transmission of data to/from user space from/to the
local network buffer (or shared memory buffer). Network
communication is data movement between source and
target network buffers. Communication cost consists of
the sum of memory and network communication times.

Memory communication overhead is the time the CPU
is engaged in local data movement during which no other
work can be accomplished. Figure 1a shows how models
such as LogP[4] approximate memory communication in
parallel systems with a fixed overhead parameter (o), the
reciprocal of the bandwidth between application and

network buffers1. Generally, when network
communication (L) dominates cost, LogP cost prediction
is accurate since ignoring the impact of message size and
distribution on memory communication overhead is
reasonable.

Communication cost in shared memory architectures
(Figure 1b) is dominated by memory communication.
Years of research addressing the cpu-memory gap have
resulted in very complex memory hierarchies that overlap
latency with useful work. Using a single hardware
bandwidth parameter to model memory communication
performance in a hierarchy (illustrated in Figure 1b) is not
sufficient since the effective latency overlap of a
hardware implementation is application and system
dependent. Models of communication that incorporate
these characteristics are warranted when memory
communication has significant impact, however resulting
models must remain simple despite the complexity of
current memory hierarchies.

1 We employ a common simplification of the LogP model, letting o=g
for simplicity in our discussion.

C C C
M M M

Network

o oL

(a)

P P P

Memory
Shared Memory Buffer

o o

(b)

P P P
C C C

Fig. 1. P=Proc, C=Cache, M=Memory. Hardware
parameterizations of communication costs using
LogP are effective in parallel systems (a) when
network communication dominates overall cost. As
the impact of memory communication on overall
communication increases, exemplified in shared
memory (b), the effects of data size and distribution
are too significant to be ignored.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

Memory communication cost will increase in
proportion to overall communication cost given current
technological trends[6]: Future generations of distributed
systems will consist of commodity, shared memory
components with fast interconnects. Improvements in
memory speed will continue to lag behind improvements
in processor and network interconnect technologies.
Further algorithm development may take advantage of
network latency tolerance via technologies such as active
messages.

There are two compelling reasons to incorporate data
characteristics into models of memory communication
cost in distributed systems. First, the number of
transmissions between source and target user space in
shared memory (see Fig. 2 1a-b) or between user
memory space and the network buffer in distributed
transmission (see Fig. 2 2a-b), will vary with data size,
data distribution, and system implementation. Reasons for
re-buffering include system design considerations such as
finite sized network buffers and system software
implementations such as temporary storage of data for
packed transmission to the network or shared memory
buffer.

Second, by identifying costs that exhibit overlap
potential, we encourage efficient algorithm design. In the
LogP model, overhead (i.e. memory communication) is
the cost that cannot be avoided. Latency (i.e. network
communication) is the cost that has overlap potential. The
LogP model encourages overlap of network latency in
algorithm design. However, when data distribution is
considered, the aforementioned two-copy problem
notwithstanding, memory communication cost increases
with additional misses in the memory hierarchy
attributable to poor data locality. This additional latency
has the potential for overlap depending on system design
such as non-blocking memory accesses or aggressive
prefetching and algorithm characteristics.

Future algorithm designs on distributed systems must
optimize memory and network communication costs
through balanced inter- and intra-node communication to
achieve efficiency. Existing parallel programs do not
exhibit good performance on distributed systems[1]. A
large class of parallel scientific applications (e.g. climate
models) stands to benefit from development of predictive
models of distributed computation that incorporate system
software characteristics and encourage multiple levels of
achievable latency overlap.

In the remainder of this paper, we present our approach
to estimating the cost of memory communication
performance by augmenting the LogP model of parallel
computation to estimate cost in a hierarchical memory
subsystem. The resulting memory logP model provides a

simple and useful cost estimate of memory
communication performance in terms similar in meaning
to the LogP model of parallel computation. While such
an approach is currently disjoint from the LogP model of
parallel computation, it motivates another bridging model
of distributed computation that couples both models to
incorporate the memory hierarchy in estimates of point-
to-point communication.

2. Motivating example

Array boundary exchange2 common in scientific
applications classically requires array data transmission of
rows and columns between processing elements. The
mapping of a 2-D domain to the linear virtual address
space in a given memory implementation typically
involves grouping elements contiguously3 by column
(Fortran) or row (C). Thus transmitting rows in Fortran or
columns in C involves accessing non-contiguous data
elements. Figure 2 illustrates the varied cost of
transmission. The critical data path is dependent upon
source and destination, data size and distribution, and
system implementation. We perform simple experiments
to quantify this cost.

On a distributed memory machine as depicted in
Figure 1a, the impact of non-contiguous accesses will
severely impact the memory communication overhead. To
quantify the cost of such strided accesses on memory
communication, we performed a simple experiment on a
Pentium III based Beowulf described in detail later. The

2 The astute reader will note we are oversimplifying boundary exchange
problems by ignoring concepts such as ghost cells and alternating
communications in favor of a simplified discussion.
3 We assume contiguous or physically adjacent to mean successive
virtual addresses mapped to successive physical addresses.

Network

Memory

P P P
C C C

Shared Memory Buffer

Application Buffer

Network Buffer

3b3a

Memory

P P P
C C C

Shared Memory Buffer

1a

1b

2b
2a

Application Buffer

Network Buffer

Fig. 2. Memory communications within shared
memory (1a-b) and to/from the network buffer in
distributed communication (2a-b/3a-b) follow critical
paths dependent upon data size, data distribution,
and system implementation.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

code in Figure 3 illustrates a simple unpacking algorithm
for copying a contiguous array of data in sbuffer[] into a
non-contiguous array of data in rbuffer[] at stride s. We
ignore loop overhead in our discussion and assume a 2-D
array of 1024 x 1024 elements of type double (8 bytes on
Pentium III) stored in row-major order. Measuring
unpacking time for a single row at a stride of 1 element
gives .0083 seconds - the ideal throughput achieved by
this algorithm on this machine using an optimizing
compiler since spatial locality is optimal. Unpacking time
for a stride of 4 (32 bytes for fp elements on Intel Pentium
III) is .062 seconds – a six-fold increase in the execution
time due solely to the decreases in the spatial locality that
the compiler and architectural implementation were
unable to compensate for.

On shared memory machines, the impact of non-
contiguous accesses will severely impact the overall
communication overhead (since network communication
is not present). We perform a simple measurement of the
time to send contiguous and non-contiguous data within
and across nodes on an SGI Origin 2000 machine using a
blocking send and measuring delay on the sender side.
This blocking send of a 1KB message of contiguous data
without packing (stride of 8 bytes for fp on MIPS)
measured .176us while the same amount of data requiring
packing with a 16 byte stride took .551us. This three-fold
increase in overall communication within a single SMP
was due to the cost of memory communication of the
non-contiguous data. The delay becomes four times the
memory communication cost when data needs to be
moved to the network buffer for transport across SMPs.

For large-scale scientific applications with scalable
workloads designed to fully utilize a processor’s allocated
memory, the additional memory communication time may
outweigh the network communication latency. This is
especially true as disk accesses (another level in the
memory hierarchy) are required. In this paper, we will
focus only on problem sets that fit in DRAM, leaving
incorporation of the disk access portion of the memory
hierarchy to future work.

3. Related work

Our model attempts to predict algorithm performance
based on measurable system parameters. Analytical
techniques to predict cache performance can be used to
estimate model parameters as desired. But, accurate
models of memory hierarchy performance are necessarily
complicated [5].

Many computational models of parallel performance
provide simple quantification of communication
performance [8]. The Hierarchical Memory Model
(HMM) applies the characteristics of memory hierarchies
to network communication. Cost estimates are accurate
for very large sets of streaming data, but ignore the
network attributes common to parallel and distributed
systems. Our work focuses on combining hierarchical
memory performance with estimates of network
communication cost, distinguishing the two approaches to
models of point-to-point communication.

Other models attempt to bridge different system
characteristics to fully model the communication path.
Bridging models such as LogP and the bulk synchronous
parallel (BSP) model [10] incorporate multiple aspects of
parallel systems. Both models quantify communication
latency and bandwidth. LogP is widely used since it
additionally incorporates asynchronous behavior and
communication overhead – thus it has been the subject of
previous extensions [9] and is the subject of our modeling
efforts. These models ignore the effects of the possibly
significant impact of middleware implementation and
application data distribution on memory communication
in distributed systems.

The memory logP model presented in this paper
addresses the apparent convergence of distributed
architectures to clusters of shared memory machines.
Application of previous parallel communication models
to such distributed systems may result in less than optimal
algorithm design. While maintaining simplicity, our
model attempts to incorporate memory hierarchy
performance in models of communication. It provides two
notable contributions: 1) Incorporates system and
application characteristics in memory communication
cost. 2) Separates memory communication into inherent,
unavoidable system overhead and additional latency that
has overlap potential encouraging efficient algorithm
design.

4. The memory logP model

Full derivation of the model can be found in the
associated technical report [2]. Under the memory logP
model, processors communicate via explicit loads and

for (k=0,j=0;
k<(s*numarrayelements);
k=k+s,j++)
rbuffer[k] = sbuffer[j];

Fig. 3. Simple unpacking algorithm.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

stores that drive implicit replication across the hierarchy.
Although the cost of memory communication could be
estimated as the average hardware transfer rate across the
hierarchy, such cost estimates would ignore the system
and application dependent latency overlap. Figure 4
provides an illustrative view of the succeeding discussion.

To incorporate system characteristics in the model, the
o parameter is the cost of ideally distributed data
transfers. Since most systems exploit spatial locality, the
system-dependent o cost is average, unavoidable
overhead and represents the best case for data transfer on
a target system. The pipeline cpi (cycles per instruction
under perfect cache conditions) of the data transfer
algorithm is the lower bound for o – where only changes
to the micro-architecture will improve upon the overhead.
Costs greater than the pipeline cpi are due to hardware
and middleware implementation characteristics such as
imperfect cache implementations and less than optimal
data transfer implementation.

Additional delays in memory communication are
functions of the system implementation and the
application characteristics of data size (s) and data
distribution (d). The effective latency after overlap (l) is a
function of these parameters. The lower-case l (“ell”)
symbolizes the realized reduction in transfer cost due to
latency overlap in contrast to the upper bound on network
latency (L) of the original LogP model. This parameter is
bounded above by the cost of data transfers without
overlap and bounded below by the o parameter of
memory logP.

The implicit small message size wn of the LogP model
is replaced with wm, the word size of the instruction set
architecture for the machine under study. We formally
characterize memory communication cost under four

parameters:
l: the effective latency, defined as the length of time

the processor is engaged in the transmission or reception
of a message due to the influence of data size (s) and
distribution (d) for a given implementation of data
transfer on a given system, l=f(s,d). Improvements in
system application, middleware, and hardware that
increase latency overlap may reduce this parameter.

o: the overhead, defined as the length of time that a
processor is engaged in the transmission or reception of
an ideally distributed message for a given implementation
of data transfer on a given system. During this time the
processor cannot perform other operations. For scalable
implementations, o remains constant with size.
Improvements in system middleware and hardware that
increase data throughput may reduce this parameter.

g: the gap, defined as the minimum time interval
between consecutive message receptions at a processor.
The reciprocal of g corresponds to the available per-
processor bandwidth for a given implementation of data
transfer on a given system. We follow common
simplification of o=g in our model since o captures the
entire cost of data movement (e.g. no assist overhead is
present). We do not eliminate g since we believe future
systems may not follow this simplifying assumption (e.g.
multi-threaded architectures).

P: the number of processor/memory modules. We
currently consider only point-to-point communication in
the memory hierarchy, so P=1. We have results that show
this is equivalent to point-to-point communication in
small SMPs. Gather/scatter in this context means
collective packing and unpacking operations on data.
With P>1 it refers to collective communication. We avoid
this confusion with our assumption.

Application + middleware + hardware performance of ideal distribution

o parameter of memory logP model

Application + middleware + hardware performance of non-ideal distribution (d)

l parameter of memory logP model for given d

data size (s)

m
em

or
y

co
m

m
un

ic
at

io
n

co
st

Inherent hardware overhead (1/bandwidth)

Inherent middleware + hardware overhead

pipeline cpi for data transfer

Fig. 4. A graphical view of performance bounds using the memory logP model of communication. The o
and l parameters characterize additional delay due to middleware and application implementation.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

Similar to LogP and its extensions, all parameters are
measured as multiples of the processor clock cycle. As in
the LogGP model, it is most natural to express o and l in
terms of the overhead per byte instead of per word since
word definitions may intuitively have different meanings
to different audiences. For this reason we will express
results in terms of cycles per byte. In all our experiments,
word size is 4 bytes for integer and 8 bytes for floating
point, so multiplying by 4 or 8 respectively will provide
measurements in terms of cycles per word or double
word.

In our discussion, we assume typical load/store
architectures with hierarchical memory implementations
that utilize state-of-the-art latency hiding techniques to
achieve high rates of instruction-level parallelism. Our
analyses target memory communication performance so
we will ignore effects of branching and icache, assuming
copying algorithms exhibit perfect branch prediction and
perfect icache hit rates. For memory communications
involving data transfers across the memory hierarchy,
these assumptions are reasonable. Our predictions are at
the application level, so non-deterministic characteristics
of memory access delay at the micro-architecture level
are not considered. We assume deterministic access delay
and use minimum average values as inputs to our model.
As is customary, we assume the receiving processor may
access a message only after the entire message has
arrived. At any given time a processor can either be
sending or receiving a single message.

5. Usage of the model

As mentioned, LogP estimates point-to-point
communication cost as o + L + o for transfers of wn bytes,
where o is a lower bound on memory communication and
L is an upper bound on memory latency. Sending a
longer message of B bytes requires nwB / messages. The
associated cost is o + max{g,o} * nwB / + L + o.
Estimating the cost of point to point communication in the
memory logP model is similar while the parameters have
different contextual meaning. Cost of a single word
transfer of wm bytes is wm*(o + l). We approximate the
overhead as the cost of data movement for contiguous
data (the case with l=0). Data placement causes
additional cache misses. Thus l is a function of data size
and access pattern.

LogP and memory logP are disjoint; we assume all
memory communication occurs prior to network
communication with no overlap (e.g. the network buffer
is infinite in size). Coupling the two models into a single
model is currently being studied. Despite this, the models
can be applied separately to estimate cost by normalizing

with respect to the network packet size. The projected
cost per byte is (om+l) + (Ln/wn) + (om+l) using n to
denote network parameters and m to denote memory
parameters. This assumes no additional buffer copying
other than data movement from user space to the network
or shared memory buffer. Additional buffer copies would
incur a cost of om per byte. We also assume om+l is the
average cost between packing on the source processor and
unpacking on the target processor. The combination of the
memory logP model with the LogP model of parallel
computation effectively replaces the on of the LogP model
with wn*(om+l).

6. Experimental details

We utilized a 32-node Beowulf at the University of
South Carolina. Each node consists of a 933 MHz
Pentium III Processor with 1GB available main memory
running Redhat Linux version 2.4.7-10. Separate non-
blocking 16KB data and instruction L1 caches are
available on chip. Each processor is additionally equipped
with a 256KB Advanced Transfer L2 Cache on-die
running at core speed. Cache and page block sizes are 32
bytes and 4096 bytes respectively. Load misses at L1 and
L2 were measured as 7 and 70 cycles respectively. The
interconnection network consists of two separate standard
10/100 Mbit/s switched Ethernet channels connected by a
router.

We also modeled parameters on the SGI Origin 2000
at NCSA that utilizes a cc-NUMA architecture running
the IRIX version 6.5.14 operating system. Each node
contains two MIPS R10000 processors; each running at
195MHz, and 32kB two-way set associative, two-way
interleaved primary (L1) cache. An off-chip 4MB
secondary unified cache is present as well. Cache and
page block sizes are 32 and 4096 bytes respectively.
Load misses at L1 and L2 were measured as 12 and 90
cycles respectively. The achievable remote memory
bandwidth on Craylink interconnect is 624MB/sec in each
direction, which adds a 165ns off-node penalty and 110ns
per hop.

We gathered all of our measurements by augmenting
an existing tool that is part of the MPICH distribution.
mpptest [7] provides platform independent, reproducible
measurement of message passing experiments such as
ping pong and memory copy. It can be used to benchmark
systems for determining MPICH platform dependent
parameters. We modified mpptest to allow variations in
stride access and array data structures for data movement
operations such as direct copy, packing and unpacking.
All experimental results were run a minimum of 20 times
by the tool to ensure dependable results. Furthermore we

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

ran all tests twice to ensure no system wide perturbations
affected results.

Our general experimental method was to direct copy
one array into another allocating only the necessary space.
We varied which arrays were contiguous and
noncontiguous to simulate direct copy, packing, and
unpacking in memory systems while varying stride and
data size. We also varied the data type (integer and
double) and the system (Beowulf IA32 , and SGI Origin
2000). We measured strides between word size and 128K
for data sizes varying from word size to 128K. For ease
of discussion, results are presented for strides up to 2048
bytes. Measurements beyond this stride are similar and
discussed in context.

7. Model verification

Verification of our approach entails illustrating our
ability to measure the l and o parameters and utilizing
these values to explain memory communication cost.
Figure 5 provides measurements for memory
communication for direct copy of non-contiguous integer
data using a simple array copy optimized by the native
compiler. These measurements depict the direct copy of
an integer array of varying sizes (x axis) and strides
(separate curves) on a Beowulf machine. The curves for
strides > 4 bytes represent the l function. The influence of
the memory hierarchy on l is obvious and significant in
the series of plateaus observed. Also the o parameter (the
bottom most line with stride = 4 = word size) is constant
with increasing stride indicating a scalable method of data
transfer. The o term is the cost associated with movement
of contiguous data utilizing the data transmission
algorithm.

Estimation of the o parameter requires measurement of
contiguous data transmission, a relatively simple task. We
expect the o parameter will be constant as problem size
and strides increase; that a scalable transmission method
is chosen. Recent work [11] indicates that the overhead
for packing and unpacking of MPI derived data types in
implementations such as MPICH does not scale well.

Measuring the l parameter directly requires running
experiments varying message size and contiguity. After
subtracting the ideal overhead, the l function remains.
Predicting the l parameter in general is not an easy task.
Given the regular nature of memory communication
performance and the fact that most scientific computing
only exhibits few non-contiguous data access patterns, we
can predict memory communication latency (l) for regular
communication schemes and optimize the performance of
scientific computing with pre-measured l and o values.
Using pre-measured values to choose the best possible
implementation, while practically important, is
straightforward technically. For the sake of brevity, we
only discuss general prediction mechanisms in the next
section.

8. Parameter prediction

The regular patterns identified in our initial analysis of
direct copy encouraged us to explore cost prediction of
the l function. This technique is specific to memory
communication and cannot be generally applied.
Measurement of the o term is relatively simple and so
prediction is not truly warranted since o can often be
approximated with a single constant as suggested in our
model. For relatively simple copying schemes algorithm
dependent predictive cost estimates of the l term can be

Fig. 5. The taxonomy of the memory logP model for the cost of memcpy of non-contiguous data illustrates
the magnitude of delay relative to the contiguous overhead (o) and the LogP overhead (on where on<o).

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

developed. For less regular packing structures, it will be
necessary to directly measure the l function for a target
system. Whether using predictive measurements of l or
direct measurements, applied cost estimation is identical
once o and l are identified.

Our approach to prediction is based on two key
observations. First, efficient data copying involves regular
data access patterns. Second, latency hiding is
accomplished primarily through blocked communication
between hierarchy levels making additional delays
dependent upon the data access pattern and data size.
Techniques such as out-of-order execution or loads-
under-miss will not significantly impact the performance
beyond that observable in the measured value o, the
contiguous overhead.

We attempt to use stack distance curves [3] to
approximate the resulting cache hit rates at each level of
the memory hierarchy. The average memory access time
can be expressed as

∞∞

=

∞

−

++++=−=
12

3

1

21)(...)()()1(
2 M

Mjj

SS

M

j S

dxxpTdxxpTdxxpTTTPl

where Pj and Tj are the access probability and the
average access time to the memory hierarchy at level j
where j = 2, …, M. Pj depends on the characteristics of
the memory hierarchy and the data access pattern. Both
are known for memory communication. We can create an
estimate of the cost for l based on approximation of these
stack distance curves, or the hit rates at each level in the
cache. At present we perform a manual curve fitting to
illustrate the l function can be approximated as a fitted
function of the cache and block size, and the data size and
stride distance. We currently ignore the effects of TLB
although inaccuracy at large data size and strides would
indicate TLB effect can be significant and should be
included.

Our simple estimation trades accuracy for simplicity.
In practice however, we believe algorithm designers are
interested in bounding costs such as L in the LogP model.
The original on parameter (o of the LogP model) is a
lower bound on hardware overhead. The predictive
model of (om + l) is intended to provide an upper bound
on overhead incorporating software and middleware.
Despite many assumptions regarding the cache hierarchy
(such as full associativity, no computational overlap, no
TLB effect) our predictive model can be accurate within
+80% and –60%. Figure 6 provides selected predictions
for integer memcpy on the Pentium III Beowulf.

9. Other measurements

We can use the memory logP taxonomy to confirm
some generally understood characteristics of memory

hierarchies. Direct experimental measurement confirms
the unpacking portion of the data transfer dominates the
cost of the native memory copy for non-contiguous data.
This indicates that for these systems it is sufficient to
model pack as the o parameter (l=0) except for very small
transfers where prefetch overhead dominates average cost
per byte. Modeling unpack or memory copy requires
measurement or prediction of the additional latency due
to mismatches between the contiguity of the application
and the middleware and architectural implementation.

We performed experiments separating the pack and
unpack (i.e. memory communication gather and scatter)
costs of data transfer. For packing, writes are to
contiguous addresses resulting in deviations from
contiguous overhead cost only when TLB misses
dominate for very large data and stride sizes. Most
additional latency (l) is due to the cost of writing data to a
non-contiguous address space. These data access patterns
confound the write-back buffering abilities of the memory
subsystem implementation.

Figure 5 provides measured data for varied access
patterns on the native memory copy implementations of
the Linux-based Beowulf machine. Plateaus are present as
the size of each level of cache is exhausted. This figure
depicts saturation of the L2 cache as the stride and data
sizes increase. By removing the contiguous contribution
from the measured latency, we provide taxonomy of the
contributions to stalls for memory copy and unpacking
algorithms.

Figure 6 shows select results from our simple
prediction curve fitting approach. Most approximations
are quite close (within +80% and –60%). The predictions
are more accurate for larger data sizes since small
deviations from the absolute values for small data sizes
lead to large differences in the relative error. Inaccuracy
becomes worse as problem sizes grow very large since we
currently ignore the effects of TLB.

To illustrate the portability of our approach, we
repeated the experiments for the direct copy algorithm on
the MIPS R10000 architecture of the SGI Origin 2000.
Our data and predictions are system dependent, but our
findings are similar. The associated error rates for
prediction, are slightly better than the error rates for the
IA32 architecture. This could be for any number of
reasons including the compiler and architecture. The key
observation here is that our analysis technique and the
predictive method can be useful and accurate on
distinctive memory subsystems despite the simplicity of
our approach.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

10. Conclusions

We have illustrated the need for inclusion of memory
communication performance in models of point-to-point
communication. To that end we derived the memory logP
model of memory communication through application
and augmentation of the LogP model of parallel
computation to the memory hierarchy. The parameters of
the memory logP model can be simply measured and
analyzed. The model is generally applicable to any
memory communication, but prediction is likely only for
very regular memory access patterns.

We used the model to characterize, bound, and predict
memory performance. The result of these techniques is a
more accurate estimate of overall communication
performance. We practically applied our techniques to
two architecturally distinct systems, an IA32 Beowulf and
the MIPS-based SGI Origin 2000. The resulting
measurements for the o parameter quantified the
scalability of the copying algorithm. Additionally, simple
stack distance curve prediction was shown to be
practically accurate (within +80% and –60%).

Use of stack distance curves at present ignores TLB
misses, a source of inaccuracy when page thrashing
occurs. Another limitation of the present model concerns
coupling with network delay since buffering makes
concatenation with LogP less than straightforward. We
will address this limitation in future work.

[1] G. Allen, T. Dramlitsch, I. Foster, T. Goodale, N. Karonis,

M. Ripeanu, E. Seidel, and B. Toonen, "Supporting Efficient
Execution in Heterogeneous Distributed Computing
Environments with Cactus and Globus," in proceedings of SC
2001, Denver, CO, 2001.

[2] K. W. Cameron, "Memory logP and its implications," USC
CSCE Technical Report # 2002-001, available at
http://www.cse.sc.edu/~kcameron/prof.html, 2002.

[3] E. G. Coffman and P. J. Denning, Operating Systems
Theory. Englewood Cliffs, N.J.: Prentice-Hall, 1973.

[4] D. E. Culler, R. Karp, D. A. Patterson, A. Sahay, E. Santos,
K. Schauser, R. Subramonian, and T. von Eicken, "LogP: A
Practical Model of Parallel Computation," Communications of
the ACM, vol. 39, pp. 78-85, 1996.

[5] X. Du and X. Zhang, "Memory hierarchy considerations for
cost-effective cluster computing," IEEE Transactions on
Computers, vol. 49, pp. 915-933, 2000.

[6] I. Foster, "The Grid: A New Infrastructure for 21st Century
Science," Physics Today, vol. 55, pp. 42-49, 2002.

[7] W. Gropp and E. Lusk, "Reproducible Measurements of MPI
Performance," in proceedings of PVM/MPI '99 User's Group
Meeting, 1999.

[8] B. M. Maggs, L. R. Matheson, and R. E. Tarjan, "Models of
Parallel Computation: A Survey ad Synthesis," in proceedings
of 28th Hawaii International Conference on System Sciences
(HICSS), Honolulu, HI, 1995.

[9] C. A. Moritz and M. I. Frank, "LoGPC: Modeling Network
Contention in Message-Passing Programs," in proceedings of
SIGMETRICS '98, Madison, WI, 1998.

[10] L. G. Valiant, "A Bridging Model for Parallel
Computation," Communications of the ACM, vol. 33, pp. 103-
111, 1990.

[11] J. Worringen, A. Gaer, and F. Reker, "Exploiting
transparent remote memory access for non-contiguous and
one-sided communication," in proceedings of Workshop for
communication architectures in clusters (CAC 02) at IPDPS
'02, Fort Lauderdale, FL, 2002.

Fig.6. Predicting the miss rates with a simple curve fitting constrained to the size characteristics of the memory
hierarchy and the data characteristics of size (s) and distribution (d) can be fairly accurate when TLB misses
are not present and accesses are regular.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

	IPDPS 2003
	Return to Main Menu

