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Abstract—Key-Value Stores (KVStore) are being widely used
as the storage system for large-scale Internet services and cloud
storage systems. However, they are rarely used in HPC systems,
where parallel file systems (PFS) are the dominant storage
systems. In this study, we carefully examine the architecture
difference and performance characteristics of PFS and KVStore.
We propose that it is valuable to utilize KVStore to optimize
the overall I/O performance, especially for the workloads that
PFS cannot handle well, such as the cases with hurtful data
synchronization or heavy metadata operations. To verify this
proposal, we conducted comprehensive experiments with several
synthetic benchmarks, an I/O benchmark, and a real application.
The results show that our proposal is promising.

I. INTRODUCTION

Parallel file systems (PFS) are the dominant storage system
used in HPC systems. A PFS usually manages a large number
of storage nodes or devices and forms a global file system
that is POSIX compatible. It aims to ease the I/O bottleneck of
HPC applications by serving them with parallel data read/write
operations over multiple nodes.

To achieve this parallel access, for a given file, a PFS
partitions the file’s data into data stripes using a fixed stripe
size, and distributes those stripes over multiple data nodes,
according to predefined data layout policies. A PFS’s perfor-
mance can be largely affected by file system’s data layout
policy (i.e., how data stripes are distributed physically) and
application’s data access patterns (i.e., how an application
reads or writes the data). On top of that, the performance
benefit achieved by parallel access, brings some inevitable
data synchronization. Because different nodes may and will
act differently, sub-requests may finish at different speed. The
fast sub-requests must wait for the slow ones and the entire
request finishes after all sub-requests are done.

Most PFSs are designed to meet the POSIX standard,
which requires large amount of metadata such as directory
structure, file permission, etc. The latency caused by metadata
operation cannot be neglected. For a given application running
over a PFS, its frequency and amount of metadata operations
can largely affect the overall I/O time. One example of the

metadata-heavy workload is to read or write many small files
[1].

Most of the times, a PFS is able to provide satisfying
bandwidth in terms of its design goal. But because of the
above mentioned factors, such as data synchronization for
unaligned requests and heavy metadata operations, a PFS
might demonstrate significant performance degradation with
specific workloads. The experimental results presented in this
paper have verified this phenomenon.

In large-scale cloud storage and Internet service systems,
instead of file systems, Key-Value Stores (KVStore) are being
widely used. KVStore provides an object based programming
interface. Each object is usually a key-value pair. The data
read and write operations are presented as “get” and “put.”
Hash tables are used to manage the metadata, i.e., the mapping
between the key and the physical location of the object.

Compared with PFS’s fixed-size stripes, KVStore’s object
size is more flexible. Since an object is not partitioned, there is
no sub-requests for an I/O operation. KVStore is designed for
high scalability and usually keeps a simple flat namespace (not
tree-structured). The metadata operation of KVStore is light-
weighted, with low latency. Also, the frequency of metadata
operation does not vary, because each “put” or “get” always
comes with a fixed amount of metadata operation, including
looking up the hash table and updating it when necessary.

It can be seen that KVStore might not be sensitive to
the performance factors that may severely degrade PFS’s
performance. Based on this understanding, we claim that, for
workloads that PFS cannot handle well, KVStore may have
a chance to grant a better performance. We need to rethink
KVStore and utilize it to optimize the parallel I/O performance
for HPC systems.

This paper presents our study on this proposal of using
KVStore for parallel I/O optimization and makes the following
contributions:

• We use experiments to demonstrate that PFS’s perfor-
mance can be largely degraded by unaligned data access,
heavy metadata operation, and slower disks. The results



(presented in Section II) are consistent with our expecta-
tions.

• We then conducted experiments to show that KVStore’s
performance stayed stable with different data access
patterns and different types of storage devices. Again, the
results (presented in Section III) verified our expectations
on KVStore’s potential on I/O optimization.

• We evaluated our proposal using synthetic benchmarks, a
popular I/O benchmark, and a real application. The results
(presented in Section IV) show that, KVStore is able to
provide higher I/O performance than PFS does, for certain
workloads.

Besides the above mentioned major sections, the other part
of this paper is organized as follows: Section V presents the
related work; Section VI discusses the uncertain issues in this
study; and Section VII concludes the paper.

II. MOTIVATION

Parallel file systems utilize massive parallelism to provide
high data access bandwidth for HPC applications. However,
in some scenarios, obvious performance degradation can be
observed. This section presents two major causes of per-
formance degradation: 1) data synchronization, presented in
Section II-A, and 2) frequent metadata operation, presented in
Section II-B. In addition to the above major factors, the type
of storage device can also largely affect the I/O performance,
we show some comparison on this in Section II-C.

A. I/O Performance Degradation Caused by Data Synchro-
nization

To achieve parallel access, a parallel file system partitions
data into small-size data stripes and then distributes these
stripes into multiple storage nodes. While an application
requesting some data, multiple storage nodes collaboratively
serve this request in parallel, and hence the performance
speedup. This collaborative mechanism introduces the in-
evitable data synchronization. For example, assuming the
stripe size is 64KB, if a 64KB request is aligned with a stripe,
then the storage node storing that stripe will serve the request
by itself. If this request is not aligned with a stripe, or its size
is larger than 64KB, then its data are distributed over more
than one storage nodes. After the request being issued, all
involved nodes work together to fulfill the request; each node
takes care of part of the demanded data of the corresponding
sub-request. Because each node may act differently, the sub-
requests may finish at varied speed. The fast sub-requests must
wait for the slow ones and the entire request finishes when all
sub-requests are done. This kind of waiting may cause severe
overall performance degradation [2].

We demonstrate the degradation caused by data synchro-
nization with some motivational experiments. All experiments
are performed on SSDs with data read operations unless
otherwise mentioned. We use OrangeFS [3] [4] as the PFS and
HyperDex [5] as the KVStore. For more details on experiment
methodology and platform, please check Section IV.
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Fig. 1. PFS with Shifting offset / Varying request size access patterns.

In Figure 1(a), we repeatedly read a file with a 64KB
request size but with various offset. The parallel file system
is configured with a 64KB stripe size, while offset is 0 (or
64KB in this case), each request is perfectly aligned with a
data stripe. Therefore, it only involves one storage node and no
data synchronization among sub-requests is introduced. While
the offset is 1KB, each request involves 2 storage nodes: 1KB
from one storage node, 63KB from another; the same thing
happens with 2KB, 8KB, and 32KB offset shifting. We can
clearly observe the performance degradation from Figure 1(a):
0 and 64KB achieve the best performance but that of all the
other offsets is around 20% lower.

In Figure 1(b), we do not modify the offset but we use
different request sizes. Still, we use 64KB stripe size. While
the request size is 64KB, each request is perfectly aligned
with a data stripe. With any request size that is larger than
64KB, each request inevitably involves more than one storage
node. We can observe the obvious performance degradation
from Figure 1(b): request sizes 64KB and 128KB yield the
best performance and that of all the other cases is 10% to
20% lower.

B. Metadata Operation Affects the I/O Performance

Increased metadata operations, can also significantly affect
a parallel file system’s overall I/O performance, as we can see
in Figure 2. In this test, we generate the workload according to
the I/O traces of applications, HPIO [6] and LANLApp1 [7].
With the “normal metadata” test, we open a large file and then
read the file according to the trace files, and then close that
file after performing all I/O. Each process opens and closes the
file only once during each test. With the “increased metadata”
test case, each I/O event in the trace file uses a separate file.
In this case, each process performs one open and one close
for each request. From Figure 2, we can see that, for both
HPIO and LANLApp1 workloads, the degradation caused by
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Fig. 2. PFS performance without and with increased metadata operations.

increased metadata operations is significant.

C. Comparison: PFS using HDD versus using SSD

It is widely known that SSDs offer better performance over
HDDs. PFS’s performance can be seriously affected from this
fact especially in noncontiguous data accesses. It is important
to utilize hardware resources to the best of their capabilities
and avoid this degradation factor where is possible. Figure 3
presents the comparison of the PFS’s performance running
HPIO benchmark over different storage devices, HDDs and
SSDs. The performance of using HDDs is much lower than
that of using SSDs, for several reasons. First, the physical raw
performance of HDDs is lower. Second, HPIO’s data access
is noncontiguous. Because of the disk head seeking, HDDs
are naturally good for streaming/contiguous data accesses
and performs badly for noncontiguous ones. SSDs are flash
memory based and don’t involve mechanical movement thus
they are much less sensitive to whether the data accesses are
contiguous or not.

In summary, this section shows some performance char-
acteristics of PFS, including being sensitive to data access
patterns, frequency and amount of metadata operations, and
the type of storage devices. This section can serve as the
motivation of this study, because Key-Value Store are much
less sensitive to all these three factors (as presented in Sec-
tion III). This gives us an opportunity to use Key-Value Store
to optimize the performance for some specific workloads.

III. KVSTORE’S POTENTIAL ON I/O OPTIMIZATION

Parallel file systems provide promising data access band-
width for HPC applications most of the times. However, PFS’s
performance may degrade largely in some special cases, as
shown in last section. We found that, in these special cases,
the performance of Key-Value Stores is mush less affected.
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Fig. 3. PFS with HPIO workloads on HDD and SSD.

4 requests

(a) Data saved in a file in PFS

(b) Data saved in objects

Fig. 4. Stripe VS Object on Data Synchronization

This motivates us to explore the opportunities of utilizing
KVStore to optimize the I/O performance of these cases. This
section presents the difference between PFS and KVStore and
also demonstrates KVStore’s performance characteristics with
experimental results.

A. Architecture differences between PFS and KVStore

Both of PFS and KVStore are distributed storage systems
and partition their data into small pieces that will be distributed
over multiple nodes. However, the data partition and layout are
different.

PFS usually uses fixed-size stripes for a file, and the stripes
are distributed in a fixed manner. For example, the most widely
used manner is the round robin. Figure 4 shows 4 requests
and assumes they are contiguous data in a file. PFS uses fixed
stripes for the file and disregards the logical information of the
requests. We can see the second, third, and fourth requests’
data are placed in two storage nodes.

KVStore treats each logical key-value pair as a single object
and distributes all the objects to all available nodes. Each
object will not be further partitioned, as shown in part (b) of
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Fig. 5. KVStore with different access patterns.

Figure 4. The distribution is usually managed by a distributed
hash table.

Different data layouts result in different data synchroniza-
tion. In Figure 4, for each of the second, third, and fourth
requests in PFS, there is data synchronization among the two
sub-requests. For KVStore, there is none. The results in Sec-
tion III-B1 verified that KVStore’s performance is stable with
different data access parameter “request size” and different
data layout parameter “stripe size.”

The difference on metadata management is that compar-
ing with PFS, KVStore’s metadata operation is more light-
weighted. The file layer metadata must include the directory
tree, permissions for different users, and data’s physical loca-
tion on disks. A KVStore usually maintains a flat namespace
with a hash table that keeps the mapping between keys and
values. The experiments in Section III-B2 present KVStore’s
characteristics in this aspect.

PFS’s performance can also be largely affected by the
contiguousness of the data access. This is because a file
system usually take advantages of the spatial data locality
with data prefetching. This is especially important for HDD.
So, even with spinning disks, the contiguous data access
demonstrates high performance. With noncontiguous data ac-
cess, the prefetching does not work well and the disk head
seeking will increase the data access latency. A KVStore
manages a set of discrete data objects and its performance
usually does not benefit from any data locality. As a result,
KVStore’s performance does not vary largely with different
access patterns or different storage devices. The results in
Section III-B3 demonstrated this.

B. KVStore’s Performance Characteristics

This section illustrates how KVStore’s performance varies
while facing different workloads and different devices.
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Fig. 6. Metadata Frequency Stableness

1) Stable performance with different access patterns: Fig-
ure 5 shows KVStore’s performance with different workloads.
The workloads are the same as that in Section II-A. We vary
the data offset, request size, and the number of concurrent
processes. This figure can be compared with Figure 1. We can
see that, comparing with PFS, KVStore’s performance is very
stable no matter how these parameters change. However, the
overall performance of KVStore is 300-350 MB/s, which is not
as high as PFS’s nondegradation cases, 400-480 MB/s. This
is because of that PFS takes advantages of the data locality of
contiguous access, while KVStore does not.

2) Stable performance with different metadata operation
frequency: For PFS, the frequency of metadata operation can
vary largely, depending on how frequently the application
creates directories, opens files, etc. For, KVStore, each put
or get operation has to involve one or more times of metadata
operation, updating or looking up the hash table that manages
the mapping between keys and values. In both Figure 5 and
Figure 6, the frequency of metadata operation is one per I/O
operation. We can see that, with the same workload, KVStore’s
performance (300-350 MB/s) is better than that of PFS with
increased metadata operations (20-60 MB/s).

3) Less degradation with slower disks: It can be observed
that different storage devices can result in different perfor-
mance. With KVStore, the performance with HDDs is 5%-
35% less than that with SSDs, as shown in Figure 7. The
performance difference for PFS is 60%-85%.

In summary, we have the following observations by com-
paring the results in Section II and Section III.

• With regular data access patterns with low data synchro-
nization and light metadata operation, PFS generates high
performance that KVStore cannot compete.

• For workloads with heavy metadata operations, KVStore
is expected to be a better choice than PFS.

• KVStore performance has less variation with different
storage devices comparing with PFS.

Based on these observations, we are confident to propose
that it is valuable to utilize KVStore to optimize the I/O
performance of some HPC applications, especially for the
workloads that do not favor PFS.
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Fig. 7. KVStore’s performance with different storage devices.

IV. EVALUATION

To evaluate and further explore the potential use of KVStore
systems in HPC environments, we conducted an extensive
series of experiments. Our testbed system is a 65-node SUN
Fire Linux cluster. Each computing node has two AMD
Opteron(tm) processors, 8GB memory and a 250GB HDD and
all the nodes used, are equipped with an additional PCI-E X4
100GB SSD. The operating system is Ubuntu 9.04, the parallel
file system installed is OrangeFS v2.8.8 and the KVStore
storage system is Hyperdex v1.3. All nodes are equipped with
Gigabit Ethernet interconnection.

We should point out that our choice of those specific storage
systems as representatives from each category e.g file-based
and KVstore-based was made due to various reasons. First of
all, OrangeFS is a widely known and used PFS in the HPC
community and it is mature enough in terms of development
and research as to be the representative for the file-based
storage system. As fas as Hyperdex, this is a relatively new
implementation by Cornell University, it is open source and
it has somehow easy APIs. It is well documented and it
has active support by its developers. We believe that this
implementation is as good as any other KVStore solution and
as its designers claim it is 12-13x faster than Cassandra and
MongoDB which are considered quite established up to date.

For each set of testing cases, in OrangeFS we used 4
nodes both as storage nodes and as metadata nodes. For
HyperDex, we also used 4 nodes as storage nodes and a
separate node as the coordinator node (i.e. the node that
controls all the metadata operations). The fact that HyperDex
uses only one node as the metadata coordinator may seem
like a lopsided situation but since KVStore involves lighter
metadata operations and has a totally different architecture
on metadata management, after careful consideration we have

concluded that this setup is fair and would not be any kind of
a bottleneck for any of those systems.

A. Methodology

Comparing the performance of OrangeFS and HyperDex
under various scenarios is not an easy task since these two
storage systems have entirely different features and character-
istics. There are a lot of things that can affect the performance
of each system at any given time such as data distribution
schemes, data consistency or fault tolerance guarantees etc. In
order to achieve a fair comparison between them, we used the
following method.

1) Tracing: IOSIG [8], an I/O pattern analysis tool devel-
oped in I/O middle-ware level, is used to capture the run-time
statistics of data accesses. Using these information, we were
able to identify the key characteristics of the I/O behaviour of
the application. The IOSIG trace includes a lot of information
such as Process ID, Offset, Request size, Begin time, End time
and others. We only considered the offset and the request size
since these two values alone, can determine the access pattern
of the application.

2) Trace Player / Workload Generator: Having the desired
information extracted from the trace, we designed and im-
plemented a fairly straightforward workload generator. This
workload generator takes an I/O trace as input and it “replays”
all the I/O operations onto the file system that is being
tested. Practically, we developed three trace players, one for
OrangeFS, one for HyperDex and a third one for OrangeFS
again but modified to simulate some extra metadata operations.
The reason we designed this last one is mostly to bring a
balance between OrangeFS and HyperDex in terms of the
amount of metadata produced by the systems. Traditionally,
KVStore systems keep metadata for each object they store.
On the other hand, OrangeFS operates on the same big file
which means that it opens the file once, do the I/O on this
file and then closes it. The new trace player for OrangeFS,
for each request to the file system for I/O, it opens a small
file, do the I/O and then closes the file but it’s doing this
for every request found in the trace. This way, the amount
of metadata produced by OrangeFS are similar to that of
HyperDex. This new workload generator is mostly simulating
the behaviour of OrangeFS when operating with many small
files in applications such as graph applications. It is not to
penalize the performance of OrangeFS but to emphasize some
workloads that really hurt the performance and demonstrate
the strength of the KVStore in a similar case. With these
three workload generators, it is easy to test the systems under
various workloads since the only thing needed is to feed the
I/O trace into the appropriate trace player and measure the
time spent on I/O operations.

3) Performance Measurement: To measure the performance
of each storage system, we wrapped each I/O operation under
a time barrier and calculate the total time spent for I/O. When
doing so, special attention needs to be taken so total time
doesn’t include other operations such as system start up or
other preparations before the actual I/O operation. In order to
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focus on the file system performance, we removed the effects
of memory cache and buffer. Before each run of the test,
we clean the operating system cache to ensure all data will
be read from the storage devices. Prior to the first run, we
also prepared the data for both systems. The experiments are
measuring the read performance and so the data were already
there. For OrangeFS this was done with a simple copy but
for HyperDex, we implemented a simple tool to copy the
data into the storage system according to the trace of each
application. Each request was eventually turned into an object
with the offset as key and the request size as value. We also
run each test 10 times and calculated the average time, leading
the measurement closer to the actual time stripped from other
factors that can degrade the system’s performance such as
current system status, other running processes, overloaded
network, etc.

B. Results with Synthetic Benchmarks

We wanted to test specific access patterns that seem to
affect the performance on a traditional parallel file system like
OrangeFS. In particular, we designed and implemented three
simple synthetic benchmarks that can produce workloads with
three distinct access patterns: offset shifting, varying request
size, and noncontiguous access pattern.

1) Offset Shifting: The first synthetic benchmark was de-
signed to simulate an unaligned with the stripes of the parallel
file system access pattern where the offset of the next request
is shifted by some bytes and thus forcing the system to
coordinate each sub-request amongst multiple storage nodes.
This specific access pattern clearly stresses OrangeFS but it
doesn’t seem to be a problem for the KVStore system where
there is no need to synchronize the sub-requests since each
request is for a different object.

Figure 8 shows the comparison between OrangeFS and
HyperDex for this offset shifting testing case. We captured the
I/O trace of this synthetic trace and then gave it as input to the
workload generator for each system. Additionally, we run it
with the modified OrangeFS benchmark with increased meta-
data operation. The results clearly illustrate that HyperDex can
perform faster by an average of 244% and of 698% without
and with the increased metadata operations respectively.
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2) Varying Request Size: The second synthetic benchmark
is to simulate a varying request size access pattern. The
default value of the stripe size in OrangeFS is 64KB. When
a request is 64KB or a multiply of that value, then it is well
aligned with the stripes on each node. Generally, in parallel
file systems, stripe sizes are fixed. Its hard to match them
with various request sizes. If a request is not aligned with
the striping pattern such decomposition can make the first and
last sub-requests much smaller than the striping unit. This can
lead to some serious degradation, as we showed in Section
II. This benchmark is stressing the storage system exactly
on that access pattern. We tried some different cases where
each process is issuing requests with 64KB, 65KB, 80KB,
96KB, and 128KB size for each case and the results can
be seen in Figure 9. HyperDex clearly isn’t affected again
and the performance is higher from OrangeFS by at least
183% and at most by 338%. We also gave the trace of
this synthetic benchmark to the trace player with increased
metadata operations and the results are even more impressive.
OrangeFS seems to suffer by this access pattern and also by
the amount of the metadata operations. HyperDex achieved a
higher bandwidth by an average of 914%. Specifically, this
benchmark run on HDDs and HyperDex performed at around
200 MB/s where OrangeFS with increased metadata operations
was around 35 MB/s.

3) Noncontiguous Access Pattern: In this last synthetic
benchmark, a noncontiguous access pattern is produced where
a gap between each request is created and thus forcing the
storage system to move across the file to do the requested
I/O operation. Basically, each request is of various size and is
served from various offsets inside the file.

As Figure 10 illustrates, the performance comparison be-
tween OrangeFS and HyperDex, first on HDD and then on
SSD. We need to point out the difference that the storage
device type is playing. In this case, when we load the trace in
the workload generator and run it over HDD, the performance
difference between these systems is very large. Specifically,
while HyperDex kept a bandwidth of around 265 MB/s,
OrangeFS was under 30 MB/s and OrangeFS with increased
metadata was even lower.

But, if we look the SSD case, the picture is quite differ-
ent. OrangeFS demonstrated a very good bandwidth and in
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Fig. 10. Noncontiguous access pattern comparison.

some cases it surpasses HyperDex. There is some obvious
degradation for OrangeFS where for 64KB request size at
128 number of processes the bandwidth was close to 400
MB/s where fro 65KB request size on the other hand was 300
MB/s making a 24% degradation. Even with this degradation
though, OrangeFS managed to keep the performance very high
and compared to HyperDex, which was very stable, it had a
106% in average performance gain. Finally, OrangeFS with
increased metadata operations, demonstrated a relatively low
performance compared with both the normal OrangeFS and
HyperDex as well. HyperDex performed higher by an average
of 238% compared with the OrangeFS with increased metadata
operations.

C. Results with HPIO Benchmark

The HPIO (High-performance I/O) benchmark is a tool
for evaluating/debugging noncontiguous I/O performance for
MPI-IO. It allows the user to specify a variety of noncon-
tiguous I/O access patterns and verify the output. It has been
optimized for OrangeFS MPI-IO hints, but can be augmented
to use MPI-IO hints for other file systems. It is a widely
used open source I/O benchmark and it was designed and
implemented by Northwestern University. We designed a non-
contiguous access pattern with a fixed request size of 64KB
and measured the performance of these two storage systems.

Figure 11 demonstrates the comparison between OrangeFS
and HyperDex. Remarkably, HyperDex was very stable and it
achieved a bandwidth of about 240 MB/s. OrangeFS seemed
to suffer from this particular access pattern and as the number
of processes increased, the performance was decreased and
reached a low of 63 MB/s. Comparing these two, HyperDex
offered a better performance by an average 241%. OrangeFS
with increased metadata performed even lower where the
bandwidth was merely 50 MB/s.
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Fig. 11. HPIO trace comparison.
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Fig. 12. LANLApp1 trace comparison.

D. Results with a Real Application

To take this comparison even further to real world scientific
applications, we took the I/O trace of LANL Anonymous App1
and feed it to the workload generator. In this application, there
are three I/O requests in each loop, one small request with 16
bytes followed by two large requests with (128K-16) bytes
and 128 KB respectively.

In Figure 12 we can observe that HyperDex hit a bandwidth
of 220 Mb/s in the case of 32 processes whereas OrangeFS was
only at 120 MB/s. In average, HyperDex achieved a 179 MB/s
bandwidth and OrangeFS a 110 MB/s. When the increased
metadata scenario run, OrangeFS performed really bad and it
had a 25 MB/s average bandwidth resulting in an impressive
756% difference with HyperDex.

V. RELATED WORK

Parallel file systems are the de-facto method of data storage
for HPC systems. They provide high data access performance
and the consistent file based storage space. Popular PFSs
include Lustre [9], OrangeFS, GPFS [10], etc. Researchers
found that the server-side data layout and client-side data
access pattern can largely affect the overall I/O performance,
because they affects the mapping between the logical data
requests from the applications and the physical data layout
on server nodes [11]. The parallel data access between mul-
tiple client nodes and multiple server nodes inevitably brings
data synchronization. Song [2] designed an I/O coordination
scheme to reduce the average completion time for concurrent



applications. Zhang [12] also noticed the sub-request data syn-
chronization caused performance degradation, and designed a
scheme called “iBridge,” using SSDs to eliminate unaligned
data access. The “offset shifting” and “varying request size”
synthetic benchmarks are based on the benchmarks used in
Zhang’s iBridge work.

Most parallel file systems support the POSIX standard,
however in many cases POSIX is unnecessarily strict [13]. It
may heart the system’s scalability and the ability to control
the small objects contained in a file independently [14].
Object based systems and Key-Value Stores provides better
flexibility with an object based interface, instead of the file
based interface. KVStore is widely used in internet services
and cloud storage services [15], but it is rarely used for HPC
systems. Many existing works have compared the advantages
and disadvantages of file systems and object storage systems
[16] [15] [17]. Some other works tried to integrate PFS and
object storage system [18] or expose the underlying object
data streams of PFS [14] to gain better I/O performance. This
study tries to explore whether HPC workloads can benefit from
object based system like KVStore.

VI. DISCUSSION

In this study, we use OrangeFS as the PFS and HyperDex
as the KVStore. We know that the experimental results are
dependent on the specific implementations of PFS or KVStore.
So the actual performance of the tests presented in this study
might change if they were ran in a different platform or with
different PFS and KVStore implementations. Still, we believe
the comparison and the performance characteristics provided
by the results are highly valuable.

VII. CONCLUSION

PFSs are the dominant storage systems in HPC systems.
KVStores are widely used by Internet and Cloud storage
service, but are rarely used by HPC systems. By thought-
fully examining the performance characteristics of PFS and
KVStore, we proposal to utilize KVStore to optimize some
workload’s I/O performance, especially for the workloads that
does not favor PFS.

We conducted comprehensive and extensive experiments
and the results proved the value of our proposal. It is notewor-
thy that, our proposal is not to replace PFS with KVStore. A
PFS’s performance can be very high for its ideal workloads,
and it can also be very low for some irregular workloads.
With the same hardware, KVStore’s performance is stable
somewhere between PFS’s high and low points. So, it is
valuable to optimize the performance with KVStore for PFS’s
low-performance cases.

In our future work, we want to extent the experimentation
in larger scales and with better network interfaces like In-
finiBand. We may explore the comparison between different
representatives from PFSs and KVStores. Finally, we also plan
to build a performance model to help users decide what storage
system (PFS or KVStore) they should choose for their target
workloads.
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