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Abstract—A lot of Not Only SQL (NoSQL) databases have
been proposed in the era of big data. Distributed Ordered
Table (DOT) is one kind of NoSQL database that has attracted
lots of attention. It horizontally partitions table into regions
and distributes regions to region servers according to the
keys. Multi-Dimensional Range Query (MDRQ) is a common
operation over DOTs. Many indexing techniques have been
proposed to improve the performance of MDRQ, but they
cannot guarantee high performance on both insert and flexible
MDRQ at the same time. In this paper, we propose a novel
indexing technique named LCIndex, short for Local and
Clustering Index, to solve this issue. Experimental results
confirm that LCIndex can achieve high performance on both
insert operations and flexible MDRQ.

Keywords-Distributed database; Indexing method; Multi-
dimensional range query

I. INTRODUCTION

Data volume grows rapidly in the era of big data. Tra-
ditional relational database management systems (RDBMS)
are facing challenges, such as high performance, huge stor-
age, high scalability, and high availability. To solve this
problem, a series of Not Only SQL (NoSQL) databases have
been proposed and widely used in industry and academia,
such as Google BigTable [1], Yahoo! PNUTS [2], HBase [3],
and Cassandra [4]. Some NoSQL databases, such as Google
BigTable, Yahoo! PNUTS and HBase, can be modeled as
Distributed Ordered Table (DOT). It horizontally partitions
the whole table into regions by continuous keys, distributes
the regions to region servers, and replicates the regions for
reliability and performance. Each region in DOTs contains
data with keys located in a certain range; regions between
region servers are ordered by keys and do not overlap. DOTs
naturally support range queries on keys by locating and
scanning regions with the start key and end key.

Multi-Dimensional Range Query (MDRQ) is a common
operation in databases and plays an important role in many
applications. For example, to report the real-time traffic jam
in a city with millions of cars, the traffic flow detection
system must execute MDRQ every minute. The expression
of MDRQ may look like: “select ALL from TABLE where
latitude > 50.18 AND latitude < 50.25 AND longitude

> 100.86 AND longitude < 101.05 AND direction = ‘west’
AND speed < 20.0”. Databases for similar cases expect both
high insert and MDRQ performance, while they mitigate the
requirements on delete and update operations. Since DOTs
only support range queries over keys, MDRQ over non-key
dimensions has to scan the whole table to get the proper
results. Due to the huge volume of data, this method is
inefficient and results in low throughput and high latency.

To improve the performance of MDRQ over DOTs, a
series of indexing techniques have been proposed. Some
of them, like UQE-Index [5] and MD-HBase [6], built
spatial trees on the top of DOTs. However, the performance
of spatial trees relies on balanced data whereas the data
distribution of indexed columns is usually unbalanced (e.g.
limited traffic speed in a jam), which limits the flexibility
of MDRQ of these indexing techniques. For example, the
MDRQ performance of k-d tree and R-tree degrades when
the tree is skew. On the other hand, maintaining a balanced
tree such like R+-tree is complex and decreases the perfor-
mance of insert [7].

To support MDRQ over DOTs without assumption on
data distribution, namely flexible MDRQ in this paper, some
non-tree indexing techniques build indexes on table level for
each indexed dimension, such as CMIndex [8], IHBase [9],
ITHBase [10], Asynchronous view [11], CCIndex [12],
HIndex [13], and IRIndex [14]. These indexing techniques
consider the trade-offs between implementation complexity,
insert performance, MDRQ performance, and storage over-
head. For example, CCIndex is easy to implement and has
high flexible MDRQ performance, but it suffers from poor
insert performance and expensive storage cost; IRIndex is
on the contrary of CCIndex. Overall, none of the current
techniques can guarantee high performance on both insert
and flexible MDRQ simultaneously.

In this paper, we classify the typical non-tree indexing
techniques and analyze their pros and cons. Then, we
propose a novel indexing technique, LCIndex (Local and
Clustering Index), which builds clustering indexes on local
file systems. We implement a prototype of LCIndex based
on HBase, conduct experiments to compare it with HBase,



CMIndex, CCIndex, and IRIndex to distinguish our contri-
butions.

The contributions of this paper are threefold:

1) Based on studying literatures and projects, we con-
clude a taxonomy on non-tree indexing techniques
targeting flexible MDRQ over DOTs.

2) We design LCIndex, aiming to provide high perfor-
mance on both insert and flexible MDRQ.

3) We implement a prototype of LCIndex based on
HBase, our experiments show that LCIndex has high
insert performance, high flexible MDRQ performance,
and low network traffic distinguished from other rep-
resentative indexing techniques.

The rest of this paper is organized as follows. Section II
introduces the motivation of LCIndex. Section III elaborates
the design and the query optimization of LCIndex in de-
tail. The evaluation results and analysis are presented in
Section IV. Section V lists the related work. Section VI
concludes this paper and proposes future work.

II. MOTIVATION

To meet the demand of high performance on insert and
flexible MDRQ over DOTs, we study a series of indexing
techniques. Indexing techniques leveraging spatial trees can
provide high insert and MDRQ performance, at the cost of
losing flexibility of MDRQ. Since the flexibility is conflict
with the inherent design of spatial trees, we review the
non-tree indexing techniques to explore the potential of
providing high performance on insert and flexible MDRQ
simultaneously.

A. Index Classification

1) Secondary/Clustering: It is conventional to divide the
ordered index structures into two groups by the layout
of index data: secondary index and clustering index [15].
This classification suits DOTs as well. The secondary index
provides a mapping between the value of indexed dimension
and the key of raw table, while clustering index stores a
copy of the raw data in each index. An example is given in
Figure 1, in which the key of index table is pieced by the
value of indexed dimension and the raw key.

The procedures of MDRQ on secondary index and clus-
tering index are also shown in Figure 1. The secondary
index takes three steps, it 1) gets the candidate key lists
by scanning all index tables, 2) merges the common keys
of the candidate key lists, and 3) reads the raw table by the
common keys. MDRQ on clustering index is straightforward,
it only needs to select an index table and scan the selected
table with filter conditions. With the performance considera-
tion, clustering index usually selects one indexed dimension
with the minimum number of records to be scanned.
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Figure 1. Classification according to index data layout and MDRQ
procedure: (1)(2)(3) for secondary index and (I) for clustering index

2) Global/Local: According to the location of index
record and raw record, the non-tree indexing techniques can
be classified to global index and local index. The global
index manages the index table as a common table of DOT,
and the regions of the index table will be distributed to
different region servers. The local index co-locates the index
records and the raw records on the same region server. The
storage of raw data is balanced by DOT. While the size of
indexes is related to the size of raw data, local index can
balance storage inherently.

Figure 2 gives an example of global index and local index
in the layout of secondary index. For global index, an index
record (D-002 in table G-t1-idx1) may be distributed to
another region server compared to the raw record (002 in
table t1) while the records of local index are always co-
located with the raw records. The insert procedures of global
index and local index are the same. During MDRQ, local
index must spread the query to all region servers because
index records are out-of-order among region servers.
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Figure 2. Classification according to index data distribution

B. Pros and Cons

Table I lists the pros and cons of the four classes in four
metrics. The concise structure of secondary index leads to
higher insert performance, lower storage overhead compared
with clustering index. However, its MDRQ performance is



lower due to the considerable cost introduced by a more
complicated procedure. The local index has lower network
traffic compared to the global index because index records
are operated locally. By leveraging the APIs of DOT, the
global index can maintain indexes and process MDRQ in
a simple way. To co-locate the index records, the local
index usually modifies underlying code, which increases the
complexity of implementation. For example, HIndex uses
a special balancer to co-locate the index tables whereas
IRIndex directly writes index files on local file system.

Table I
COMPARISON BETWEEN DIFFERENT INDEXING TYPES

Indexing Type Pros Cons

Secondary
High insert

performance, low
storage overhead

Low MDRQ
performance

Clustering
High MDRQ
performance

Low insert
performance, high
storage overhead

Global Easy to implement High network traffic

Local Low network traffic
Complex MDRQ

procedure

C. Existing Non-Tree Indexing Techniques on DOT

Based on the taxonomy above, the non-tree existing
indexing techniques on DOT are listed in Table II.

Table II
EXISTING INDEXING TECHNIQUES ON DOT

Indexing Type Global Local

Secondary
CMIndex, ITHBase,

Apache Phoenix

IHBase, HIndex,
IRIndex, Apache

Phoenix
Clustering GCIndex, CCIndex None

1) Global & Secondary: CMIndex (Client-Managed In-
dex) is the basic secondary index, which is completely
managed in the application layer. ITHBase (Indexed-
Transactional HBase) [10] focuses on transaction support
of index. The synchronization overhead for transaction is
considerable, which degrades the overall performance.

2) Global & Clustering: GCIndex (Global and Clustering
Index) builds clustering indexes and replicates all index
tables, which is simple to implement but involves huge stor-
age overhead. Hence, CCIndex (Complemental Clustering
Index) sets the replication factor of index table to one (the
default value of HBase is three) and creates replicated Com-
plemental Check Table (CCT) to help data recovery from
failure. During MDRQ, GCIndex and CCIndex leverage the
region-to-server mapping information to estimate the data
size covered by each query condition, and select the query
condition with the minimum data size to execute the real
scan.

3) Local & Secondary: IHBase (Indexed HBase) builds
secondary indexes in memory when a region is opened
for the first time or a MemStore is flushed. There is no
index for the un-flushed data, IHBase directly scans the in-
memory data when processing queries. The drawback of
IHBase is clear, it consumes considerable memory space
and time to maintain indexes. HIndex (Huawei-Index) builds
indexes in separate tables, leverages co-processors to build
and maintain indexes. HIndex uses a custom region load-
balancer to co-locate the index regions with the raw regions.
IRIndex (Inside Region Index) builds indexes for each HFile
rather than region, it builds indexes when a MemStore is
flushed. The index records are written into a customized
IndexFile instead of HFile in order to reduce storage cost.
When processing MDRQ, IRIndex sorts common keys of
raw table before reading them. By converting the massive
random reads to a set of sequential reads, IRIndex signifi-
cantly decreases the total disk seek time at the cost of higher
latency to get the first result. Apache Phoenix is an open-
source project that can execute SQL queries, which provides
secondary index both globally and locally for different use
cases. When using local index, Apache Phoenix stores local
indexes of a table in a single, separate shared table.

4) Local & Clustering: To our best knowledge, there is
no local and clustering indexing technique.

D. Comparison

Table III
EXISTING INDEXING TECHNIQUES ON DOT [14]

Metric CMIndex CCIndex HIndex IRIndex
Insert throughput 27% 23% 71% 78%

Insert latency 412% 444% 16% 10%
MDRQ throughput 4% 330% 47% 137%
Storage overhead 40% 123% 58% 9%

Authors of [14] did experiments to compare performance
of CMIndex, CCIndex, HIndex and IRIndex, which is shown
in Table III. The performance on non-indexed HBase is
the baseline. As the results indicate, MDRQ throughput
of CMIndex is only 4% of a raw table scan, because
CMIndex needs to get all candidate keys from all index
tables when processing MDRQ, which is time-consuming.
IRIndex outperforms HIndex in MDRQ because sequential
reading is much faster than random reading in HBase. On the
other hand, the latency of IRIndex is high due to additional
sorting operations.

To sum up, the spatial tree indexing techniques can
achieve high insert and MDRQ performance, but not flexi-
ble; these non-tree indexing techniques can provide flexible
MDRQ, but none of them can obtain high insert and MDRQ
performance at the same time. To this end, we propose
LCIndex (Local and Clustering Index), which can achieve
high performance on both insert and flexible MDRQ at a
modest cost of storage.



III. DESIGN AND IMPLEMENTATION

A. HBase Architecture
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Figure 3. Architecture of HBase [8]

We implemented the prototype of LCIndex based on
HBase. The architecture of HBase is presented in Figure 3.
In the following text, the term “column” in HBase is the
counterpart of “dimension” in MDRQ.

HBase consists of three parts, one HMaster, several HRe-
gionServers, and several clients. A table in HBase will be
horizontally partitioned into HRegions. HMaster manages
the metadata and distributes HRegions into different region
servers. Each HRegion has one Store for each column
family. Each Store includes one MemStore and several
StoreFiles. Like its name, MemStore is an in-memory struc-
ture. Each StoreFile has a corresponding HFile, which is the
stored on HDFS. HBase adopts write-ahead logging (WAL)
for fault tolerance, operations first write the event into HLog
before execution. WAL will be discarded only after the
corresponding operations have been applied to HFiles.

B. Challenges

HIndex employs co-processors to build and maintain
indexes. The index records are written in a co-located
separate table. However, there are two main drawbacks for
clustering index that HIndex proposed: 1) co-processor op-
erations introduce high latency to build and insert clustering
indexes, and 2) the number of records to be scanned for
each condition is hard to estimate, which may decrease the
MDRQ performance. Thus, we build and maintain indexes
in a way similar to IRIndex, say, building indexes when a
MemStore is flushed, and maintaining HFile-level indexes
for each StoreFile, which leads to some other challenges.

1) Index storage: IRIndex stores indexes in customized
IndexFiles to save storage overhead, however, the format of
IndexFile is not suitable for LCIndex. Leveraging HFile to
store LCIndex is feasible, but needs extra work.

2) Index building: IRIndex builds indexes when a Mem-
Store is flushed. It works well for IRIndex but meets
problems for LCIndex because generating clustering record
is a complicated and time-consuming procedure, which can
easily reach the timeout threshold of HBase. In our previous
test on a small cluster, IRIndex costs 0.25 seconds to
generate indexes while clustering index costs 3.1 seconds.

Raising the parameter hbase.rpc.timeout can not eliminate
the TimeoutException problem.

3) Index maintenance: LCIndex must compact index files
when HFiles are compacted or split. Since the data size
grows bigger in compaction, the timeout threshold may
be reached. When a region is split and a child region is
partitioned to a remote region server, some index files on
the child region may not be found on the hosting node.

4) MDRQ optimization: CCIndex counts the number of
regions covered by query condition to estimate the number
of records to be scanned. However, this does not work for
LCIndex because index records are out-of-ordered between
regions. Choosing an index table randomly works but inef-
ficient, an effective way to select a proper indexed column
is necessary.

C. Prototype of LCIndex

1) Index storage: HFile as the storage format of index
files (IFile) meets our design. Hence, we reuse it rather than
designing a new format to avoid unnecessary engineering
efforts. By improving existing HBase methods, LCIndex
writes index records to local file system in HFile format.

For each HFile, LCIndex builds several IFiles according
to the number of indexed columns, as shown in Figure 4.
Compared with writing all index records in one IFile, this
way has three advantages: 1) each IFile has a similar size
with the raw HFile, the time spent on reading or scanning
such IFiles is acceptable, 2) it is much easier to estimate the
number of records scanned for MDRQ since each indexed
column can be calculated separately, and 3) after selecting
the indexed column to scan, LCIndex only needs to scan the
IFile on that column, which significantly reduces scanning
overhead therefore enhances MDRQ performance.

To calculate the result size of MDRQ, LCIndex urges
users to describe indexed column like “PRICE(column
name) DOUBLE(data type) 0(minValue) 99999(maxValue)
100(flagNum)”. When building indexes, LCIndex calculates
the flagNum flags and writes a statistic file (SFile) together
with IFile. Each SFile contains flagNum+1 lines, where
line i indicates the number of records whose value locates
in range (flagi−1, f lagi]. The SFile is co-operated with
corresponding IFile (e.g. building, deleting, etc.) if not
stated. By default, LCIndex stores IFiles and SFiles on local
file system to accelerate MDRQ.
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HFile
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IFile-idx1
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Figure 4. Index storage on local disk



2) Index building and maintenance: Operations in build-
ing and maintaining HFiles in raw HBase can be divided into
six stages; they are Flush, Commit, Compact, CompleteCom-

pact, Archive, and Split. Flush creates HFile under temporary
directory and appends records into it, Commit moves the
HFile to online directory after Flush. Compact compacts
several HFile into one temporary file, CompleteCompact

moves the compacted temporary file to online directory and
Archive deletes the HFiles used for compaction. Split splits
a region into two sub-regions; in HFile level, two reference
files are created for a parent HFile in the parent region.
The reference does not contain any data, it points to the
top/bottom of the parent HFile and will be deleted are the
compaction in the sub-region.

To avoid the TimeoutException caused by building and
maintaining indexes synchronously, LCIndex builds five
jobs, say FlushJob, CommitJob, CompactionJob, Complete-

CompactJob, and ArchiveJob; and creates a job queue for
each kind of job to manage IFiles in background. RemoteJob

and RemoteJobQueue are introduced to help processing
MDRQ and recovering indexes, which will be explained
later. Similar to the stage dependencies of different stages,
we show the dependencies between jobs in Figure 5. The
dependencies must be carefully handled to ensure correct-
ness.

FlushJob

CommitJob CompactJob
Complete

CompactJob

ArchiveJobRemoteJob

Figure 5. Dependencies between jobs

For the four basic operation Flush, Commit, Complete-

Compact, and Archive. LCIndex operates IFiles and SFiles
according to the operation on the raw HFile. As an excep-
tion, LCIndex does nothing for Split. This is because HBase
can directly read the top/bottom half of the parent HFile
of the reference file, but since IFiles are re-ordered by the
indexed column, restoring the order on raw keys and splitting
the IFile is complex and time consuming, splitting SFiles is
also impossible because it only contains statistic data. This
exception is handled during the compaction of IFiles, the
algorithm is shown in Algorithm 1.

After compacting the raw HFiles, LCIndex creates a new
compact job for IFiles and adds it in the CompactJobQueue.
The action of the job is decided by how many reference
files are compacted. If there are any reference files, the
CompactJob will be marked to rebuild and drop all related
jobs; then it will generate new IFiles by travering the
new generated HFile when triggered by CompactJobQueue.
Otherwise, LCIndex checks the existence of IFiles. If an

IFile is not stored on local file system, LCIndex firstly
tries to find the corresponding jobs in CommitJobQueue

and CompleteCompactJobQueue. If there is no such a job,
LCIndex will create a new RemoteJob to get files from
the other region servers. After that, the compact job adds
this job as a related job. A non-rebuild compact job will
check the status of all related job and run after all jobs
are finished. If any related job fails, the compact job will
run as a rebuild compact job. Otherwise, LCIndex leverages
Compact method of HBase to compact the corresponding
IFiles directly because IFiles are in HFile-format, which is
shown in Figure 6.

The compaction of SFiles is straightforward, as the SFiles
for the same indexed column has the same number of lines.
The value of ith line in the new generated SFile is the sum
of the values of ith line from the compacted SFiles.

Algorithm 1 Compact IFiles

Require: run newFile← Compact(compactedF iles) be-
fore compacting IFiles

Input: compactedF iles← HFiles to be compacted
Input: newFile← the HFile newly generated

1: cJob← new compactJob(compactedF iles, newFile)
2: cJob.rebuild← false
3: for file in compactedF iles do
4: if file.isRef then
5: cJob.rebuild← true
6: break
7: else if localfs.has(file.IF iles) = false then
8: job← inCommmitOrCompleteQueue(file)
9: if job ̸= NULL then

10: job← new RemoteJob(file.IF iles)
11: end if
12: cJob.addDep(job)
13: end if
14: end for
15: if cJob.rebuild = true then
16: cJob.dropDepJobs()
17: end if
18: CompactJobQueue.add(cJob)

3) Query processing: Based on SFiles, the MDRQ al-
gorithm is shown in Algorithm 2. Line 3 ∼ 11 calculate
the number of records covered by query condition on each
indexed columns and marks the missing IFile. Line 12
selects the indexed column with the minimal number of
records to be scanned while the missing IFile should not
exceed a threshold. Line 14 executes MDRQ on this selected
column, for missing IFiles, LCIndex will scan the whole raw
HFile to get results. If every indexed column misses a lot of
IFiles, LCIndex will run MDRQ on raw HBase, as seen in
line 16. After processing MDRQ, LCIndex will check the
missing IFiles and again adds them to RemoteJob.



Figure 6. Example of compacting two StoreFiles

Algorithm 2 MDRQ processing based on statistic files

Input: store← the store to query
Input: indexColumns← index columns build
Input: columnRanges← condition on each index column

1: gCount[index column number] ← 0
2: gMiss[index column number] ← 0
3: for storeF ile in store do
4: for idxCol in indexColumns do
5: if storeF ile.IF iles[idxCol] exists then
6: gCount[idxCol] ← gCount[idxCol]+

number covered by storeF ile.SF iles[idxCol])
7: else
8: gMiss[idxCol]← gMiss[idxCol] + 1
9: end if

10: end for
11: end for
12: col← gCount.MinColNotExceedMissingThreshold
13: if col ̸= null then
14: execute query on col, scan the whole raw HFile for

missing IFiles
15: else
16: scan raw HBase with conditions
17: end if
18: create RemoteJob for missing IFiles and SFiles

4) RemoteJob: A RemoteJob is created when a IFile is
not found on local file system, there are three potential
causes for the “data lost”: 1) the source HFile is a reference,
2) the region is recently migrated and the IFile is stored
remotely, or 3) node failure.

Therefore, a RemoteJob checks each potential causes in
the following order: 1) if the source HFile is a reference,
the job checks the parent IFiles. If they are stored on local
file system, the job reads corresponding IFiles by adding
filter on raw keys to distinguish the top/bottom half; if
not, the job treats it as node failure. 2) the RemoteJob

communicates with all other region servers for the lost
IFiles, each region node checks the target files in its local

file system, CommitJobQueue and CompleteCompaction-

JobQueue. If the corresponding local IFile is found, the
IFile will be transfered via network. If the IFile is in the
job queues, which means it will be generated later, the
RemoteJob will be asked to wait until the file is ready. 3)
If the IFile cannot be found anywhere, LCIndex treats it
as node failure, which means LCIndex will create a new
CompactJob to “‘compact” the corresponding HFile.

D. Discussion

1) Data Reliability: We have considered building local
complementary clustering indexes. It sets the replication
factor of raw data and indexes to one, and leverages CCTs to
recover data. But soon we found such method cannot work
because the raw data and all related indexes are stored on
the same node. Once the node fails, the raw data and the
indexes will be lost because the data cannot be recovered
from CCTs only. Replicating IFiles is expensive due to
high storage overhead. A cost-effective way is to set the
replication factor of IFiles to one, LCIndex can recover
IFile and SFile according to the rebuilt indexes from the
RemoteJobs.

2) Add/Remove indexes dynamically: Compared with
other existing indexing techniques, a remarkable feature
of LCIndex is the natural support to adding/removing in-
dexes dynamically. Once a new indexed column is added,
LCIndex will “miss” corresponding IFiles when processing
compaction or MDRQ. As explained in Algorithm 1, the
CompactJob will use the new generated HFile to build
indexes in compaction; in MDRQ, the RemoteJob will also
build indexes based on the existing HFiles because no
region server contains the target IFiles, which is described in
Algorithm 2. Removing indexes is straightforward, LCIndex
urges all region servers to delete IFiles and SFiles corre-
sponding to the removed indexed column from their local
file systems.

IV. EVALUATION

A. Environment

We use a cluster that consists of thirteen nodes intercon-
nected by a Gigabit Ethernet switch as our testbed. One node
is used as single NameNode/HMaster, seven nodes are used
as DataNode/HRegionServer, and the other five nodes are
used as clients to submit requests. Each node is equipped
with a Quad-Core AMD Opteron(tm) Processor 2376, 8 GB
RAM, and one 150 GB SATA disk. In order to adapt to
the existing implementations, such like CMIndex, GCIndex,
CCIndex and IRIndex, we implement LCIndex based on
HBase 0.94.16.

B. Experiment Design

YCSB [16] is a widely used benchmark to evaluate
NoSQL database, it generates data in different distributions
and workloads, but the data are not accordant with the actual



case. So we leverage TPC-H, the famous benchmark for
relational databases. We select order.tbl generated as our
input (5 million rows), and build three indexed columns,
say date, total-price and priority; other columns are used
as non-indexed columns. All columns are designed under a
single column family.

In the Insert experiment, for each indexing technique,
we 1) create an empty table and add indexes on it, 2)
insert records via five clients, each client runs 30 threads,
and 3) flush the table. Five MDRQ requests with different
conditions are submitted by a single client. The client gets
1000 records from server each time.

We measure the execution time, and collect the insert
latency and network traffic during the insert and queries,
respectively. In order to reflects the modest overhead of
indexing techniques, we measure the insert latency when
HBase is heavy-loaded. The network traffic is collected
every second on the NameNode/HMaster node and the seven
DataNode/HRegionServer nodes by dstat.

C. Results

1) Insert throughput: Figure 7 shows the throughput by
using different techniques. The insert throughput of CMIn-
dex, GCIndex, CCIndex, IRIndex and LCIndex is 18.5%,
13.6%, 17.2%, 90.6% and 72.5% compared to raw HBase,
respectively. The insert throughput of LCIndex is 422% of
CCIndex and 80% of IRIndex. The insert throughput of
CMIndex, GCIndex and CCIndex are very poor because the
indexes are built on client side. IRIndex operates indexes
with raw HFiles synchronously, though building secondary
is fast, it still decreases the insert throughput. LCIndex builds
and maintains indexes in background, but the interference to
throughput is clear due to the resource competition on region
servers.
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Figure 7. Insert throughput

2) Insert latency: Figure 8 presents the cumulative distri-
bution function (CDF) of latency. Up to 96.9% insert oper-
ations return from server for HBase, IRIndex and LCIndex

within 0.02 seconds because they only write the raw records
into memory. About 96% insert operations of CMIndex and
CCIndex return within 0.1 seconds, and more than 5% insert
operations of GCIndex return after 0.2 seconds because four
tables with three replications are written.
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Figure 8. CDF for insert latency

3) Query processing: Figure 9 presents the results of
scanning five different queries, the meaning of each query
is explained in Table IV. Both IRIndex and LCIndex have
lower performance than CMIndex, GCIndex and CCIndex
in a single indexed column Scan-A, because they must scan
all related MemStore.

In MDRQ-A, B, C and D, the total elapsed time of
CMIndex are 606.9, 1748.2, 1413.6 and 1288.3 seconds
respectively. This is because CMIndex must collect all
candidate raw keys in all conditions, and the condition
priority = “3-MEDIUM” covers about 20% records in our
test. The MDRQ performance of GCIndex and CCIndex are
nearly the same because their procedure are same. From
MDRQ B to D, the efficiency (the reciprocal of time) ratio
between LCIndex and CCIndex decreases from 54.6% to
43.4%, because the proportion of MemStore scanned by
LCIndex is increasing, which is inevitable. On the other
hand, the efficiency ratio between LCIndex and IRIndex
raises from 183% to 407% because the number of records
scanned by LCIndex decreases more rapidly than that of
IRIndex.

We measure the time spent on selecting the indexed col-
umn during queries on LCIndex, the average and maximum
time are 0.0011 and 0.025 seconds respectively. Since the
size of SFile is small and the algorithm to compact SFile
is straightforward, it involves little overhead to build and
maintain SFiles. Thus, it is worthwhile to introduce SFiles
because the MDRQ execution can be accelerated.

4) Storage overhead: The storage of CMIndex, GCIndex,
CCIndex, IRIndex and LCIndex is 1.35x, 4.58x, 2.76x,
1.44x and 2.31x compared to raw HBase, respectively.
The storage cost of HBase without index and the five



Figure 9. Query runtime

Table IV
EXPLANATION OF QUERIES

Query
Type

Conditions
Number of

Records
Scan-A 20000 ≤ totalPrice ≤ 45000 390138

MDRQ-A
20000 ≤ totalPrice ≤ 45000

AND date ≥ 19970310
82892

MDRQ-B
20000 ≤ totalPrice ≤ 45000
AND date ≥ 19970310 AND
priority = “3-MEDIUM”

16508

MDRQ-C
20000 ≤ totalPrice ≤ 35000
AND date ≥ 19971110 AND
priority = “3-MEDIUM”

4889

MDRQ-D
25000 ≤ totalPrice ≤ 35000
AND date ≥ 19980310 AND
priority = “3-MEDIUM”

1818

different indexing techniques is shown in Figure 10. Both
CMIndex and IRIndex have small storage overhead because
they are secondary indexing techniques. GCIndex has the
highest storage overhead because all data has three replicas.
CCIndex saves about 40% space compared with GCIndex
because the CCIT has only one replication. In theory, the
storage cost of LCIndex should be about 2.0x compared
with HBase but 2.31x in our test, this is because IFile has
longer keys and is not compressed.
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Figure 10. Storage cost

5) Job waiting time: Since the jobs to maintain indexes
are executed in background, it is important to know how long
one job needs to wait before execution. Figure 11 presents
the cumulative distribution function of job wait time for
different type of jobs. Both FlushJob and CommitJob wait
no longer than 25 seconds because their dependencies are
simple. A CompactJob may rely on several CommitJobs and
CompleteCompactJob, which prolongs its wait time. As a
result, corresponding CompleteCompactJob and ArchiveJobs

also have long wait time. Though some CompactJobs will
be extended to 120 seconds, the average wait time of
CompactJob is as low as 3.55 seconds, which indicates most
CompactJobs can start in a short time.
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Figure 11. CDF for job waiting time

6) Network traffic: We accumulate the package sizes
received during insert and sent during queries on all region
servers, which is illustrated in Figure 12.

The total package size received by region servers during
insert is nearly the same among HBase, IRIndex and LCIn-
dex since the indexes on IRIndex and LCIndex are built on
local file system. The package size in CCIndex is smaller
than CMIndex because some HFiles of CCTs are compacted
and deleted before replicated by the background thread.
The package size sent by region servers during queries
is almost the same between HBase, GCIndex, CCIndex,
IRIndex, and LCIndex, because all of them execute query in
local node and only those records that meet the condition are
returned. The size of LCIndex is slightly bigger than others
because the RemoteJobs sends IFiles between region servers.
CMIndex involves about 5x network traffic compared with
other indexing techniques, because lots of candidate results
are sent to clients during MDRQ.

7) Summary: We summarize the results of insert through-
put, MDRQ performance of the MDRQ-B∼D, and the
storage cost in Table V. All values are normalized based
on the values of HBase. We find that CMIndex is poor
on both insert and MDRQ and not suitable for practical
applications. Both GCIndex and CCIndex are well suited
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Figure 12. Network traffic during insert and scan

Table V
NORMALIZED RESULTS OF INDEXING TECHNIQUES

Indexing
Technique

Insert
Throughput

MDRQ
Throughput

Storage
Cost

HBase 1 1 1
CMIndex 0.185 0.07∼0.08 1.35
GCIndex 0.136 5.6∼17.80 4.58
CCIndex 0.172 5.7∼17.17 2.76
IRIndex 0.906 1.72∼1.83 1.44
LCIndex 0.725 3.15∼7.46 2.31

for workloads that favor high MDRQ performance and do
not concern about insert performance. CCIndex performs
better in insert and saves lots of storage. IRIndex performs
well on insert and medium on MDRQ. Distinguished from
these algorithms, LCIndex obtains high MDRQ performance
and maintains high insert performance at the cost of high
storage space. LCIndex is suitable for workloads with strict
performance requirements on both insert and MDRQ.

V. RELATED WORK

For particular workloads, spatial trees can obtain high
MDRQ performance, UQE-Index [5] builds a k-d tree for
coarse-grained indexes and a set of fine-grained indexes
via R-tree for local regions. MD-HBase [6] leverages lin-
earization techniques such as Z-ordering to transform multi-
dimensional data into single-dimensional space, and uses
Quadtree and k-d tree to split the multi-dimensional space
into subspaces.

On improving the performance of HBase, Hybrid
HBase [17] enhanced the performance of HBase by using
SSD for different components of HBase. Harter et. al pre-
sented a comprehensive study about the behavior of HDFS
under HBase in a case of Facebook Message, the authors
also used SSD to improve the performance of HBase [18].
In [19], Huang et. al extended HBase to leverage RDMA
capable network and obtained high throughput.

Some literatures focus on indexing techniques for MDRQ
on cloud system. Literature [20] proposed by Liao et al.

built multi-dimensional indexes on HDFS based on R-tree.
Dehne et al. introduced CR-OLAP [21], which can achieve
real time response for OLAP based on distributed PDCR
tree. HD Tree [22] is built over complete k-ary tree to
support MDRQ for peer-to-peer networks. In [23], Wu et
al. proposed a general indexing framework for peer-to-peer
network, which consists of global index and local index.
The global index is a subset of local index selected and
published by some rules. Each node builds local indexes
for data stored on it and maintains a subset of the global
index. RT-CAN [24] is proposed to build multi-dimensional
indexes, it leverages CAN to maintain the global indexes and
builds local indexes via R-tree. CG-index [25] is proposed to
execute range queries on one dimension, it builds local B+-
tree indexes and organizes the nodes into a BATON network.
However, maintaining peer-to-peer network is complex and
introduces communication overhead, especially that master-
slave systems have been well deployed in cloud systems.
Thus it is natural to build a single global index on master
and build a set of local indexes for each slave. Zhang et
al. proposed EMINC [26], which builds local k-d tree, and
further constructs the node as a cube in which contains
information of the ranges of indexed dimensions. The cubes
are organized on master nodes by R-tree for fast queries.

VI. CONCLUSION AND FUTURE WORK

Numerous techniques have been proposed to build indexes
on Distributed Ordered Tables (e.g. HBase), aiming at im-
proving the performance of flexible MDRQ. However, none
of them can support high performance on both insert and
flexible MDRQ.

In this paper, we propose a novel indexing technique
called LCIndex, and implement its prototype on HBase.
Experiments show that the insert throughput of LCIndex is
422% of CCIndex and 80% of IRIndex, and the MDRQ
efficiency ratio between LCIndex and CCIndex is 43.4%
to 54.6% and that between LCIndex and IRIndex is 183%
to 407%. Besides, LCIndex features low network traffic
during insert and query, and dynamic adding/removing index
support. We plan to improve the IFile format to reduce
the storage cost and accelerate scan operations, and apply
LCIndex to Cassandra to improve its MDRQ performance.
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