The LQCD Workflow Experience:
What Have We Learned

Luciano Piccolil2, Xian-He Sun®?2, James N. Simone?, Donald J. Holmgren?, HuiJin2, James B. KowalkowskiZ, Nirmal Seenu?, Amitoj G. Singh?
Ullinois Institute of Technology, Chicago, IL, USA 60616
2Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL, USA 60510

Introduction

*QCD (Quantum Chromo Dynamics): theory of the strong
force that describes the binding of quarks by gluons to
make particles such as neutrons and protons.

*LQCD (Lattice QCD): computation and data intensive
numerical simulation of QCD using a discrete space-time
lattice. Its calculations allow us to understand the results
of particle and nuclear physics experiments in terms of
QCD. Representative of large scale scientific computing.

The Environment

* Tens of users running several complex workflows
(campaigns) concurrently.

* Campaigns are composed of identical embarrassingly
parallel sub-workflows running on distinct inputs.

¢ Campaign running time may span several months.

¢ Hundreds of running campaigns.

* Typical workflows:

« Configuration Generation workflow.

 Tasks composed of parallel MPI jobs requiring tens to
hundreds of processors.

¢ Dedicated clusters with Infiniband and Myrinet (qcd, kaon
and pion at Fermilab).

* Large input and output files, from hundreds of MBytes to
a few GigaBytes in size.

Requirements

*Templates: recipe for solving a LQCD problem with
parameterized physics values (e.g. particle masses)

Instances: a template with validated physics parameters

¢ Execution: schedule each workflow task (participant)
upon resolution of control and data dependencies, by
mapping it to available resources

*Monitoring: ability to monitor the current status of a
workflow instance

e History: for accounting and prediction for future workflow
executions

*Multiple Instances: support multiple campaign execution

+Stage in files: ability to pre-fetch workflow input files

* Fault Tolerance: recovery from hardware and software
failures along a workflow execution

*Management of intermediate files: track generated files,
optimize file re-usage among workflows

*Campaign execution: ability to execute long-term
workflows composed of identical embarrassingly parallel
sub-workflows running on distinct input configurations

*Campaign dispatching: submission of campaigns
(workflow instances) to the system. New campaigns may
extend ongoing campaigns by adding new inputs,
participants and dependencies.

* Service-oriented workflows:
* Participants are black-boxes represented by remote
services.
* Participants can be easily replaced/replicated by services
(as long as the interface remains the same).
 Fault-tolerance at participant level.

* LQCD workflows:
« Scientific applications requiring dedicated/predefined
hardware.
* Software fine tuned for specific platforms.
* Large input and output files, including intermediate
results.
* Need for data provenance.

Challenges

* Create an effective model and a set of tools to deal with
LQCD workflows.

« Clear definition of responsibilities for each participant.

* The experience with LQCD gives us insights to understand
where the boundaries should be drawn between
workflow management systems, web services, task
schedulers and other subsystems.

Experience with Existing Systems

* Variety of systems targeting scientific workflows available
(e.g. Askalon, Swift, Kepler and Triana).

* All systems provide integration with the Grid.

« Very active research area.

« Lack of data provenance support, which is critical for most
scientific workflows.

* Some systems require moderate to advanced
programming knowledge to create workflows.

« Steep learning curve for domain scientists, difficult to
migrate from original batch scripts into workflow
specifications.

* Lack of common language between workflow systems

* Abstraction of physics parameters from workflow.
template is not straight forward (sometimes not
possible).

« Limited quality of service features.

* No complete solution available yet.

Scientific Workflows vs. Conventional
Batch Scheduler

 Batch scheduling:

* Independent jobs.

 Primitive support for job dependencies through
digraphs.
No fault tolerance.

o Scientific workflows:

 Control and data dependencies between jobs define
execution order.

 The result of one job could determine further execution
of the workflow.

 Each job instance could require tightly coupled parallel
execution.

* Number of jobs and inputs may be determined by the
outputs generated by previous jobs.

Scientific Workflows vs. Service-Oriented
Workflows

* Service-oriented architecture:
» Well defined and modularized architecture.
* Decouples service providers and users.

* Service-oriented workflows:
* Business-oriented workflows are usually implemented
as service-oriented workflows.

Two-Level Workflow Scheduling
Service-level scheduling and task-level scheduling, where
service-level scheduling supports both control and data

dependency.

« Participant

1D registered with
two scheduling levels

Participant
Application or

remote service
description

Parameters

Test specification

¢ Task-level scheduling (participant-level)

¢ Support execution of participants from multiple
workflows: accept participant submissions from multiple
workflow instances and execute them.

* Monitor execution: of uniquely identified participants
and report failures to the service-level scheduler.

* Record execution times: keep records of execution times
for participants, which can be used for predictions and
accounting.

* Task-level scheduling (participant-level)
¢ Estimate execution time: based on the recorded history
and cluster status the task-level scheduler can provide
the service-level scheduler with data for Quality of
Service purposes.
* Resource reservation: for participants based on data
and control dependencies from the workflow.

Task-level
scheduler

Participants to be scheduled

Execution |
history
h_d

o] [fer] [ ] ]

Resources

¢ Service-level scheduling (workflow-level)

¢ Track dependencies: is the basic function of a workflow
system; it must enforce control and data dependencies
of the workflow instances.

¢ Submit participants: as dependencies get resolved
participants are submitted to the task-level scheduler
for execution.

o Estimation of workflow run time: based on participants
run time estimates from the task-level scheduler, report
the workflow instance expected run time.

R REREEE

Resources.

Conclusion

¢ Current workflow systems do not support most LQCD
requirements.

* Systems can meet requirements, provided that the
underlying architecture is modularized and expandable.

Future Work

* Prototype the two-level workflow proposal by extending
current systems.
« Can currently available languages adequately express
the LQCD workflows?
* Meet requirements posed by LQCD workflow problems.
 Apply solution to similar workflow problems.

This work was supported in part by Fermi National Accelerator Laboratory, operated by Fermi Research Alliance, LLC. under contract No. DE-AC02-07CH11359 with the United States Department of Energy (DoE), and by DoE SciDAC program under the contract No. DOE, DE-FC02-06 ER41442.




