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Introduction

*QCD (Quantum Chromo Dynamics): theory of the strong
force that describes the binding of quarks by gluons to
make particles such as neutrons and protons.

*LQCD (Lattice QCD): computation and data intensive
numerical simulation of QCD using a discrete space-time
lattice. Its calculations allow us to understand the results
of particle and nuclear physics experiments in terms of
QCD. Representative of large scale scientific computing.

The Environment

* Tens of users running several complex workflows
(campaigns) concurrently.

* Campaigns are composed of identical embarrassingly
parallel sub-workflows running on distinct inputs.

¢ Campaign running time may span several months.

¢ Hundreds of running campaigns.

* Typical workflows:

« Configuration Generation workflow.

 Tasks composed of parallel MPI jobs requiring tens to
hundreds of processors.

¢ Dedicated clusters with Infiniband and Myrinet (qcd, kaon
and pion at Fermilab).

* Large input and output files, from hundreds of MBytes to
a few GigaBytes in size.

Requirements

*Templates: recipe for solving a LQCD problem with
parameterized physics values (e.g. particle masses)

Instances: a template with validated physics parameters

¢ Execution: schedule each workflow task (participant)
upon resolution of control and data dependencies, by
mapping it to available resources

*Monitoring: ability to monitor the current status of a
workflow instance

e History: for accounting and prediction for future workflow
executions

*Multiple Instances: support multiple campaign execution

+Stage in files: ability to pre-fetch workflow input files

* Fault Tolerance: recovery from hardware and software
failures along a workflow execution

*Management of intermediate files: track generated files,
optimize file re-usage among workflows

*Campaign execution: ability to execute long-term
workflows composed of identical embarrassingly parallel
sub-workflows running on distinct input configurations

*Campaign dispatching: submission of campaigns
(workflow instances) to the system. New campaigns may
extend ongoing campaigns by adding new inputs,
participants and dependencies.

* Service-oriented workflows:
* Participants are black-boxes represented by remote
services.
* Participants can be easily replaced/replicated by services
(as long as the interface remains the same).
 Fault-tolerance at participant level.

* LQCD workflows:
« Scientific applications requiring dedicated/predefined
hardware.
* Software fine tuned for specific platforms.
* Large input and output files, including intermediate
results.
* Need for data provenance.

Challenges

* Create an effective model and a set of tools to deal with
LQCD workflows.

« Clear definition of responsibilities for each participant.

* The experience with LQCD gives us insights to understand
where the boundaries should be drawn between
workflow management systems, web services, task
schedulers and other subsystems.

Experience with Existing Systems

* Variety of systems targeting scientific workflows available
(e.g. Askalon, Swift, Kepler and Triana).

* All systems provide integration with the Grid.

« Very active research area.

« Lack of data provenance support, which is critical for most
scientific workflows.

* Some systems require moderate to advanced
programming knowledge to create workflows.

« Steep learning curve for domain scientists, difficult to
migrate from original batch scripts into workflow
specifications.

* Lack of common language between workflow systems

* Abstraction of physics parameters from workflow.
template is not straight forward (sometimes not
possible).

« Limited quality of service features.

* No complete solution available yet.

Scientific Workflows vs. Conventional
Batch Scheduler

 Batch scheduling:

* Independent jobs.

 Primitive support for job dependencies through
digraphs.
No fault tolerance.

o Scientific workflows:

 Control and data dependencies between jobs define
execution order.

 The result of one job could determine further execution
of the workflow.

 Each job instance could require tightly coupled parallel
execution.

* Number of jobs and inputs may be determined by the
outputs generated by previous jobs.

Scientific Workflows vs. Service-Oriented
Workflows

* Service-oriented architecture:
» Well defined and modularized architecture.
* Decouples service providers and users.

* Service-oriented workflows:
* Business-oriented workflows are usually implemented
as service-oriented workflows.

Two-Level Workflow Scheduling
Service-level scheduling and task-level scheduling, where
service-level scheduling supports both control and data

dependency.
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¢ Task-level scheduling (participant-level)

¢ Support execution of participants from multiple
workflows: accept participant submissions from multiple
workflow instances and execute them.

* Monitor execution: of uniquely identified participants
and report failures to the service-level scheduler.

* Record execution times: keep records of execution times
for participants, which can be used for predictions and
accounting.

* Task-level scheduling (participant-level)
¢ Estimate execution time: based on the recorded history
and cluster status the task-level scheduler can provide
the service-level scheduler with data for Quality of
Service purposes.
* Resource reservation: for participants based on data
and control dependencies from the workflow.
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Resources

¢ Service-level scheduling (workflow-level)

¢ Track dependencies: is the basic function of a workflow
system; it must enforce control and data dependencies
of the workflow instances.

¢ Submit participants: as dependencies get resolved
participants are submitted to the task-level scheduler
for execution.

o Estimation of workflow run time: based on participants
run time estimates from the task-level scheduler, report
the workflow instance expected run time.
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Conclusion

¢ Current workflow systems do not support most LQCD
requirements.

* Systems can meet requirements, provided that the
underlying architecture is modularized and expandable.

Future Work

* Prototype the two-level workflow proposal by extending
current systems.
« Can currently available languages adequately express
the LQCD workflows?
* Meet requirements posed by LQCD workflow problems.
 Apply solution to similar workflow problems.
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