
 74 COMPUTER Published by the IEEE Computer Society 0018-9162/14/$31.00 © 2014 IEEE

RESE ARCH FE ATURE

Traditional memory performance metrics, such as average memory access time
(AMAT), are designed for sequential data accesses and can prove misleading for
contemporary cache technologies that increasingly rely on access concurrency.
C-AMAT, a new performance metric, accounts for concurrency at both the
component and system levels for modern memory design.

G rowing disparities between processor and memory
speeds have resulted in a so-called “memory
wall,”1,2 an ever-widening gap between CPU and
chip-memory performance. Cache hierarchies

currently serve to mitigate delays in off-chip main memory
accesses, but as the memory wall looms larger, long delay
times will penetrate into cache hierarchies as well. Intel’s
Nehalem CPU architecture offers a good example: here,
each L1 data cache has a 4-cycle hit latency, while each L2
cache has a 10-cycle hit latency. Similarly, IBM’s Power 6
has a 4-cycle L1 cache hit latency and a 24-cycle L2 cache
hit latency. Modern multicore processor last-level latencies
can exceed 100 cycles.

Research to alleviate these performance gaps has fo-
cused on improving memory system concurrency—that
is, methods that support multiple requests simultaneously.
Advanced designs utilizing multiport, multibanked, and pipe-
lined cache,3 for example, improve cache hit concurrency;
complementary techniques, such as nonblocking cache,4
improve cache miss concurrency; and processor instruction-
level parallelism (ILP) techniques, such as out-of-order execu-
tion, multiple-issue pipelining, simultaneous multithreading,
and chip multiprocessing, improve both cache hit and miss
concurrency. These advanced cache optimizations and pro-
cessor ILP techniques mean that tens or even hundreds of
cache/memory accesses can coexist in the memory hierar-
chy simultaneously. Thus, a single cache miss is no longer a
determining factor for overall memory system performance.

However, existing memory metrics—miss rate (MR)
and average miss penalty (AMP) as calculations of average
memory access time (AMAT)—still measure hits and misses
based primarily on sequential single-access activity, and
so are inadequate for purposes of measuring concurrent
cache memory access activity. In addition, concurrency
effectiveness is application and implementation dependent:
accurate data storage and access measurements can vary.
Highly data-intensive applications, in particular, require an
alternative to existing memory metrics in order to take full
account of the various concurrency methods available for
modern memory systems.

To this end, we propose concurrent average memory
access time (C-AMAT), an extension of AMAT that we
developed as a more accurate metric for concurrent
memory systems. C-AMAT formulates memory access
delay as a summation of total access delays across cache
hierarchies. It introduces two new average concurrency
parameters—hit concurrency and miss concurrency—at
each level of the memory hierarchy and, in so doing,
posits that hit concurrency will always improve perfor-
mance, while a cache miss may or may not reduce overall
memory system performance, depending on the corre-
sponding hit concurrency. C-AMAT allows for more ac-
curate evaluation of concurrent memory behavior at both
the component and the system levels than traditional
memory metrics, which can provide misleading measure-
ments when concurrency is a factor. C-AMAT is a power-

Concurrent
Average Memory
Access Time
Xian-He Sun and Dawei Wang,
Illinois Institute of Technology

r5sun.indd 74 4/24/14 12:06 PM

 MAY 2014 75

ful tool for determining architecture design choices, from
hit–miss ratio to hit–miss concurrency.

C-AMAT FORMULATION
C-AMAT is formulated like AMAT, but takes into consider-
ation concurrent hit and concurrent miss accesses. Quan-
titatively, C-AMAT is defined as the total memory access
cycles (that is, the total number of cycles executed in which
there is at least one outstanding memory reference), repre-
sented as TMemCycle, divided by the total number of memory
accesses, represented as CMemAcc:

T

C
C-AMAT MemCycle

MemAcc

= . (1)

Concurrency is implicit in Equation 1, which as-
sumes that the memory cycles are parallel: when sev-
eral memory accesses coexist during the same cycle,
 TMemCycle increases by only one. In other words, in count-
ing memory access cycles, we adopt an overlapping mode
to account for advanced modern cache and memory
system structures—pipelined cache, multiported cache,
nonblocking cache, and the like—in which multiple hit
accesses and miss accesses can overlap one another.
TMemCycle assumes this concurrency.

Another important aspect of TMemCycle is that it includes
only those clock cycles that have memory access activities;
cycles without memory references are excluded. This is
based on earlier work5 where we described memory access
per cycle (APC) or, more accurately, memory access per
memory active cycle (APMAC), a new performance metric
designed to measure concurrent memory system perfor-
mance as verified using the statistical variable correlate
coefficient. C-AMAT is the reciprocal of APC, and based on
this APC measurement methodology, we obtain the follow-
ing value for C-AMAT:

T

C
C-AMAT

1
APC

MemCycle

MemAcc

= = . (2)

To use C-AMAT as an analytic tool, like AMAT, we must
first derive a component-based, parameterized formula for
C-AMAT, which we do by extending AMAT with the addition
of concurrency.

Extending the AMAT formulation
to include concurrency
Traditional AMAT is calculated as HitCycle + MR × AMP,
where HitCycle (H) is the hit time of memory accesses,
MR is the miss rate of cache accesses, and AMP is the
average miss penalty. AMP is calculated as the sum of all
single-miss access latency divided by the total number of
miss accesses.

AMAT does not consider the concurrency of memory

accesses in terms of either hits or misses, based on the as-
sumption that memory accesses are sequential, one after
another; further, AMAT does not take into account that
with concurrent accesses, hits and misses may coexist
in the same cycle. The sequential assumption governing
AMAT worked well in the past, but applies less accurately
for modern processor architectures and memory systems
where concurrency is paramount. To properly analyze con-
currency, we extend AMAT with concurrency parameters
for hit and miss accesses, and propose a new counting
method for MR and AMP that considers the relation be-
tween concurrent hits and misses:

H
C C

MR
AMP

H M

+ × . (3)

The parameter CH represents hit concurrency, which results
from multiport, multibanked, and pipelined cache struc-
tures, while the parameter CM represents miss concurrency,
which results from nonblocking cache structures; these
parameters can also represent both hit concurrency and
miss concurrency that result from processor ILP design
techniques, such as out-of-order execution and multiple-
issue pipelining.

Equation 3 redefines MR as the number of pure misses—
with a pure miss assumed to contain at least one miss cycle
with no hit access activity—divided by the total number of
accesses. When measuring private caches—for example,
the L1 data cache—for multicore microprocessors, pure
misses are measured based on a “per-core” mode: every
core has its own detecting logic, and that logic measures
only that core’s private cache accesses. When a miss occurs
without a hit access inside the private cache, the corre-
sponding cycle is measured as a “pure miss cycle” for that
core. For shared caches—that is, L2 caches, L3 caches, and
so on—pure miss cycles are measured based on an “all-
core” mode: if there is no cache hit access from any core or
cores, then a miss cycle is counted as a “pure miss cycle.”
Equation 3 also redefines AMP as the average number of
pure miss cycles per miss access.

C-AMAT can be calculated using hit and miss concur-
rency factors for architecture design choices. The critical
question is how to obtain an accurate average CH and CM.
Here we apply a weighted method to calculate the aver-
age value.

If CH is the average hit cache concurrency, by definition,
it is equal to

C C

t
TH i

i

N
i

H0
∑= ×
=

, (4)

where N represents the total number of cache hit phases.
For each hit phase, the value of Ci remains constant; Ci
is the hit concurrency during phase i; ti is the number of
cycles of phase i. Note these hit access phases include only

r5sun.indd 75 4/24/14 12:06 PM

 76 COMPUTER

RESE ARCH FE ATURE

cache cycles containing at least one cache hit activity; clock
cycles without any hit accesses cannot be counted in a hit
access phase. TH is the total hit cycles in the overlapping
mode; therefore

T tH i
i

N

0
∑=
=

. (5)

Similarly, the average miss cache concurrency, CM, can
be defined as follows:

C C
t

TM j
j

Mj

M

0
∑= ×
=

, (6)

where M is the total number of pure cache miss phases.
In each miss phase, the value of Cj does not change; Cj
is the miss concurrency during phase j; tj is the number
of cycles of phase j. Note that the pure miss phases only
include the cache cycles that contain at least one pure
cache miss activity. If one clock cycle contains a miss
access as well as a hit access or does not contain any miss
access, this cycle is not counted in pure miss phases. TM
is the total number of pure miss cycles in the overlapping
mode; therefore

T tM j
j

M

0
∑=
=

. (7)

Based on these initial analyses and definitions, we fur-
ther prove that the formula for C-AMAT in Equation 1 is
equal to Equation 3 and show how the C-AMAT formula
established in Equation 3 can be extended recursively
from L1 cache memory and apply equally to lower levels
of cache memory.

Proof of equality for the C-AMAT formula
H is the number of hit cycles when accessing the current
cache layer. Every cache access needs to spend H cycles to
determine whether this is a hit or a miss access. Note H is
a constant value in our cache model.

MR (miss rate) for our purposes is an extended version of
the traditional miss rate definition with the consideration
of concurrency. Only when a miss access has no overlap
with any hit accesses is this miss access considered a pure
miss access. Thus,

C
C

MR MemPMiss

MemAcc

= . (8)

In this formulation, CMemPMiss is the total number of pure
misses.

AMP is the average miss penalty, considering only pure
miss accesses:

T
C

AMP MemPMiss

MemPMiss

= , (9)

where TMemPMiss is the sum of total pure miss cycles. The
pure miss cycles are the cache miss access cycles without

any hit access. Thus,

H
C C

H

C
t
T

C
C

T
C C

t

T

H T

C t

T
C

T

C t

MR
AMP

1

H M
i

i

Hi

N

j
j

Mj

M

H

i i
i

N
M

j j
j

M

0

MemPMiss

MemAcc

MemPMiss

MemPMiss

0

0

MemPMiss

MemAcc

0

∑

∑

∑ ∑

+ × =
×

+ × ×
×

= ×

×
+ ×

×

=

=

= =

. (10)

Further, because

C t C Hi i
i

N

MemAcc
0
∑ × = ×
=

 (11)

and

C t Tj j
i

M

MemPMiss
0
∑ × =
=

, (12)

it follows that Equation 10 is

H T
C H

T
C

T
T

T T
C

T

C
C-AMAT.

H M H M

MemAcc

MemPMiss

MemAcc MemPMiss MemAcc

MemCycle

MemAcc

×
×

+ × = +

 (13)

Thus,

H
C C

C-AMAT MR
AMP

H M

= + × . (14)

Equation 14, then, reveals five important parameters that
determine overall memory performance: hit latency (H), hit
concurrency (CH), miss rate (MR), AMP, and miss concur-
rency (CM). Though the concepts of MR and AMP in C-AMAT
are similar to their counterparts in AMAT, C-AMAT excludes
concurrent hit and miss accesses for overlapping cycles.

As we will see, different processor and cache design
choices will affect one or more C-AMAT parameters in dif-
ferent ways—sometimes benefiting a specific factor while
acting to the detriment of others. These parameters in turn
affect overall data access time, and therefore determine
underlying design choices. Only by considering various
factors comprehensively can we determine the most ap-
propriate configuration given a particular memory system.

CACHE CONCURRENCY MEASUREMENT
Equation 14 introduces two concurrencies existing at each
memory hierarchy layer: hit concurrency and miss concur-
rency. Hit concurrency reflects parallelism in cache tag
query and cache data access. It does not matter whether a
cache access ultimately results in a hit or a miss; the cache
access in itself requires the system to spend a certain fixed

r5sun.indd 76 4/24/14 12:06 PM

 MAY 2014 77

cycle performing the cache tag query. In ad-
vanced cache designs such as multiport and
pipelined cache, the maximum hit cache
concurrency is (#cache port × #cache pipe-
line stage).

For example, the Advanced Micro Devices
Opteron CPU has a two-port L1 data cache and
a three-cycle pipeline stage for cache access;6
thus, the maximum hit concurrency is 2 × 3
= 6. The miss concurrency is usually deter-
mined by the number of miss status holding
register (MSHR) entries. The maximum miss
concurrency is equal to the number of out-
standing cache misses MSHR can support.

Compared with the traditional AMAT miss
rate measurement, C-AMAT does not include
any miss cycles that overlap with a hit cycle
because when a hit occurs, the memory does
not block CPU performance. Only pure miss access cycles
cause the CPU to discontinue execution. Thus, the chal-
lenge of measuring miss concurrency lies in eliminating
overlapping cycles that contain hit accesses. In other words,
the miss concurrency detector needs to simultaneously be
aware of both cache hit accesses and miss accesses. Only
pure miss cycles, defined as miss cycles that do not over-
lap with hit cycles, are counted in C-AMAT as miss cycles.
Figure 1 presents a structure for detecting cache hit and
miss concurrency using the C-AMAT metric.

The hit concurrency detector (HCD) counts the total hit
cycles and records each hit phase in order to calculate the
average hit concurrency. The hit cycles are the clock cycles
containing at least one hit access activity. The HCD also tells
the miss concurrency detector (MCD) whether a current
cycle has a hit access or not.

The MCD is a monitoring unit that counts the total
number of pure miss cycles and records each pure miss
phase in order to calculate the average miss concurrency,
pure miss rate, and pure miss penalty. With the information
provided by the HCD, the MCD is able to tell whether a cycle
is a pure miss cycle, and whether a miss is a pure miss.
Further, the pure miss rate and average pure miss penalty
can be calculated based on total miss data. Finally, C-AMAT
can be measured based on the five parameters on the right
side of Equation 14. As with AMAT, the AMP in Equation 14
can be further extended in a straightforward fashion as a
composition of hit and miss for each next cache level in the
memory hierarchy.

EXPERIMENTAL DESIGN AND RESULTS
To establish the feasibility of incorporating C-AMAT in
making cache/memory architecture design choices that
take concurrency into account, we first adopted a detailed
CPU model in the GEM5 simulator,7 which supports out-
of-order, speculative, superscalar, and multithreading

execution for a single core, as well as complicated cache
hierarchies for multicores with different cache coherency
protocols. Unless stated otherwise, our simulations assume
the default processor and cache configuration parameters
shown in Table 1. It is a common, general-purpose comput-
ing system configuration.

We conducted our simulations based on 24 bench-
marks from the SPEC CPU2006 suite8 (some benchmarks
were omitted because of simulator compatibility issues),
compiled using GCC 4.3.2 with -O2 optimization; for all
benchmarks, we adopted the suite-provided reference
input sizes. For each of the 24 benchmarks, we collected
statistics based on 10 million simulated instructions. The
memory performance results we present are the average
value for all 24 benchmarks.

Having previously verified APC’s accuracy as a measure-
ment,5 in this study we focused on establishing C-AMAT’s
usefulness in evaluating three widely implemented ad-
vanced technologies: multiple-issue pipelining, which in-
creases both cache hit and miss concurrency; nonblocking
cache, which increases cache miss concurrency; and mul-
ticore technologies, which also increase both cache hit and
cache miss concurrency. (We discuss AMAT and C-AMAT
performance comparisons more extensively elsewhere.9)

Table 1. Default processor and cache configuration parameters for
simulated testing of C-AMAT.

Device/parameter Value

Processor
Function units
ROB (reorder buffer) and LSQ (load/
store queue) size

1 core, 4 GHz, 4-issue width
6 IntALU: 1 cycle; 1 IntMul: 3 cycles;
2 FPAdd: 2 cycles; 1 FPCmp: 2 cycles;
1 FPCvt: 2 cycles;
1 FPMul: 4 cycles; 1 FPDiv: 12 cycles
ROB 64, LQ 48, SQ 24

L1 caches 32 KB inst/32KB data, 2-way, 64B line,
4-cycle hit latency, inst/4-cycle data,
ICache 8 MSHR entry,
DCache 8 MSHR entry

L2 cache 512 KB, 16-way, 64B line,
24-cycle hit latency, 16 MSHR entry

DRAM latency/width 240-cycle access latency/64 bits

Figure 1. Structure for detecting cache hit concurrency and
cache miss concurrency using the C-AMAT metric.

CPU interface

Cache Hit concurrency detector

Miss concurrency detectorMiss status holding register (MSHR)

r5sun.indd 77 4/24/14 12:06 PM

 78 COMPUTER

RESE ARCH FE ATURE

Based on our initial default configuration, we modified
only one or two parameters in each simulation to show the
influence of the specific memory design choice on cache
concurrency and C-AMAT. We used the same variation for
other common memory performance metrics (MR, AMP,
and AMAT) to establish a base level of accuracy for each,
assuming that the winner among these would correlate to
the targeted processor design.

The results of our simulations comparing AMAT, tra-
ditional MR, and traditional AMP with C-AMAT for pur-
poses of measuring concurrent cache hits and misses show
that only C-AMAT consistently matches the actual design
choices for modern processors.

Hit concurrency results based
on multiple-issue pipeline width increases
Multiple-issue pipelining represents an important improve-
ment in processor microarchitecture design to increase ILP.
It allows multiple instructions to be fetched, decoded, issued,
executed, and committed within the same cycle. Because of
algorithm data dependency, the high penalty paid for branch
misprediction, load data constraints, and general power-wall
limitations, increasing pipeline width is not a viable option,
so most commercial processors adopt a 4- to 8-width pipe-
line per core at different processing stages.3 For simplicity,
our study assumes the same pipeline width at each stage.

As the graphs in Figure 2 demonstrate, only the
memory performance reflected by C-AMAT consistently
matches the performance improvement trend indicated
by this ILP technique.

Figure 2a shows the average hit concurrency and the
average pure miss concurrency of an L1 data cache as pipe-
line issue width increases from 1 to 8. As is clear, the aver-
age hit concurrency increases at a greater rate than average
pure miss concurrency when the pipeline width is larger
than 4, representing an improvement in memory.

But, as Figure 2b shows, traditional AMAT increases as
pipeline width increases, which indicates a decrease in
memory performance—a finding contrary to the fact that
application performance should improve with increased
pipeline issue width.3 C-AMAT, on the other hand, not only
correctly describes the overall memory performance as in-
creasing, but also correctly reflects the diminishing returns
that come with a pipeline issue width greater than 4. Also
interesting to note, this C-AMAT result confirms current
designs that select issue widths of between 4 and 6 as opti-
mal for general-purpose processors, further demonstrating
C-AMAT’S usefulness in practice.

Figures 2c and 2d reveal that traditional MR and AMP
are also relatively ineffective at measuring memory perfor-
mance as pipeline issue width increases. Only the compre-
hensive memory metric C-AMAT, which considers hit and

Figure 2. Memory performance measured as multiple-issue pipeline width increases. (a) Average hit concurrency and average
pure miss concurrency of L1 data cache as pipeline issue width increases from 1 to 8, showing memory improvement. (b) Average
memory access time (AMAT) and concurrent average memory access time (C-AMAT) measurements as pipeline width increases:
AMAT shows decrease in memory performance, while C-AMAT accurately reflects an increase. (c) Miss rate (MR) measurement and
pure MR as pipeline width increases. (d) Average miss penalty (AMP) measurement and pure AMP as pipeline width increases.

(a)

Width 1

3.5
3.0
2.5
2.0
1.5
1.0

0

Average hit concurrency
Average pure miss concurrency

Width 2 Width 4 Width 8

(b)

Width 1

20

15

10

5

0

Average memory access time (AMAT)
Concurrent average access time (C-AMAT)

Cy
cle

s

Width 2 Width 4 Width 8

(c)

Width 1

0.10

0.08

0.06

0.04

.0.02

0

Miss rate (MR)
Pure MR

Width 2 Width 4 Width 8

(d)

Width 1

130
125
120
115
110
105
100

Average miss penalty (AMP)
Pure AMP

Cy
cle

s
Width 2 Width 4 Width 8

r5sun.indd 78 4/24/14 12:07 PM

 MAY 2014 79

miss access delay, proportion, and concurrency, can cor-
rectly reflect overall memory performance. (Admittedly, the
differences reflected in Figures 2c and 2d are very small—
between MR and pure MR the average difference is 1.2 per-
cent, while between AMP and pure AMP it is 7.1 percent; the
finer accuracy of C-AMAT is attributable mainly to the con-
currency of memory accesses—a reasonable measure, given
that changing pipeline issue width changes concurrency.)

Miss concurrency results based
on MSHR size in nonblocking cache
To accommodate new processor microarchitectures
based on out-of-order execution and speculation as well
as multiple- issue, multithread, and multicore technologies,
modern CPUs like the Intel Core and Itanium and IBM’s
Power series employ nonblocking cache heavily at each
level of a memory hierarchy in order to enhance memory
access parallelism. Nonblocking caches can continue sup-
plying data under a certain number of cache misses by
adopting a miss status holding register (MSHR).4

The MSHR is a structured table that records cache miss
information such as access type (load/store), access ad-
dress, return register, and so forth. When the MSHR table
is empty, no outstanding cache misses remain. When the
MSHR is attached to the last-level cache (LLC) and empty,
no outstanding main memory accesses remain. When the
MSHR table is full, the cache cannot afford more cache
accesses, which blocks the CPU’s memory accesses or next-
level memory accesses. Therefore, the number of MSHR
entries can directly determine miss access concurrency.

However, even though MSHR table size can directly de-
termine maximum miss concurrency, it does not have a
direct impact on hit concurrency, as Figure 3 shows. In
Figure 3a, for example, as the number of MSHR entries
increases, the average hit concurrency remains approxi-
mately the same, but the average pure miss concurrency
increases steadily. C-AMAT reflects this reality that the
larger the MSHR table, the smaller the miss concurrency

gain; as Figure 3b demonstrates, when the number of
MSHR entries increases, C-AMAT decreases. Under the
same circumstances, however, AMAT increases, which
inaccurately describes a memory performance decrease.
Only C-AMAT accurately portrays the performance im-
provement resulting from the wide adoption of nonblock-
ing cache techniques in modern processor design; AMAT
fails completely in describing concurrency variations in-
volved with MSHR.

Hit and miss concurrency results
based on multicore technologies
Faced with a looming power wall resulting from limited ILP
technology gains, researchers see an increase in the number
of processor cores per die as the most effective and effi-
cient means to increase total system performance. In mul-
ticore processors, different cores share an LLC; this greater
number of cores obviously increases LLC hit and miss
concurrency, which AMAT cannot measure correctly but
C-AMAT can measure accurately, as Figure 4 demonstrates.

We assume that L2 is the LLC. Positing an increase in the
number of cores by a factor of 2 (1 → 2 → 4 → 8), L2 cache
size increases accordingly (512 KB → 1 MB → 2 MB → 4 MB),
as do L2 cache concurrencies, as shown in Figure 4a. Miss
rates also increase because of the increased number of con-
flicts (Figure 4b). Figure 4c shows AMAT’s failure as a metric
when concurrency is a factor: the AMAT metric suggests
a decrease for overall L2 cache memory performance as
the number of cores increases, but this is obviously wrong.
Using C-AMAT for the metric here, however, shows an ap-
propriate increase in L2 cache memory performance.

While AMAT is widely used as a tool for architecture
analysis and design, it does not accurately take
into account access concurrency, an increasingly

vital factor in measuring memory performance. C-AMAT
extends AMAT to consider data access concurrency in

Figure 3. Memory performance measured as a function of miss status holding register (MSHR) entries adopted in nonblocking
cache technologies. (a) As the number of MSHR entries increases, average hit concurrency remains the same, while average miss
concurrency increases, resulting in better memory performance. (b) C-AMAT reflects this smaller miss concurrency gain, showing a
decrease, while AMAT inaccurately increases, suggesting a decrease in memory performance.

(a)

1

3.0

2.5

2.0

1.5

1.0

0.5

0

MSHR (number of entries)

Average hit concurrency Average pure miss concurrency

2 4 8 16

(b)

1

16
14
12
10

8
6
4
2
0

MSHR (number of entries)

AMAT C-AMAT

Cy
cle

s

2 4 8 16

r5sun.indd 79 4/24/14 12:07 PM

 80 COMPUTER

RESE ARCH FE ATURE

modern memory systems. Extensive simulations confirm
C-AMAT’s effectiveness for evaluating modern memory
system design and architecture configuration. When access
concurrency remains unchanged, C-AMAT produces results
identical to those of AMAT. However, when memory access
improvement results from concurrence—whether through
ILP or other advanced cache design techniques or as a result
of multicore technologies—AMAT cannot correctly reflect
these memory performance changes, and so provides mis-
leading information. C-AMAT takes into account memory
access improvements that result from concurrency.

AMAT’s attraction as a metric is its simplicity. But it is
designed to characterize memory hierarchy, not concur-
rency. C-AMAT offers a practical, accurate alternative for
modern memory architecture analysis and design, both
now and in the future.

Acknowledgments
This research was supported in part by the National Science

Foundation under grants CCF-0621435, CNS-0751200, and

CCF-0937877.

References
1. X.-H. Sun and L.M. Ni, “Another View on Parallel

Speedup,” Proc. 1990 ACM/IEEE Conf. Supercomputing
(SC 90), 1990, pp. 324–333.

2. W.A. Wulf and S.A. McKee, “Hitting the Memory Wall:
Implications of the Obvious,” ACM SIGARCH Computer
Architecture News, vol. 23, no. 1, 1995, pp. 20–24.

3. J.L. Hennessy and D.A. Patterson, Computer Architecture: A
Quantitative Approach, 5th ed., Morgan Kaufmann, 2011.

4. D. Kroft, “Lockup-free Instruction Fetch/Prefetch
Cache Organization,” Proc. 8th Ann. Symp. Computer
Architecture (ISCA 81), 1981, pp. 81–87.

5. X.-H. Sun and D. Wang, “APC: A Performance Metric
of Memory Systems,” ACM SIGMETRICS Performance
Evaluation Rev., vol. 40, no. 2, 2012, pp. 125–130.

6. H. de Vries, Understanding the Detailed Architecture of
AMD’s 64-bit Core, 21 Sept. 2003; http://chip-architect.
com/news/2003_09_21_Detailed_Architecture_of
_AMDs_64bit_Core.html.

7. N. Binkert et al., “The M5 Simulator: Modeling Networked
Systems,” IEEE Micro, vol. 26, no. 4, 2006, pp. 52–60.

8. C.D. Spradling, “SPEC CPU2006 Benchmark Tools,” ACM
SIGARCH Computer Architecture News, vol. 35, no. 1,
2007, pp. 130–134.

9. D. Wang and X.-H. Sun, Concurrent Average Memory
Access Time, tech. report IIT/CS-SCS-2012-05, Dept.
Computer Science, Illinois Inst. Technology, 2012.

Xian-He Sun is a distinguished professor of computer science
and chair of the Department of Computer Science at the Illi-
nois Institute of Technology, where he also directs the Scalable
Computing Software Laboratory. He is also a guest faculty
member with the Argonne National Laboratory’s Mathemat-
ics and Computer Science Division. Sun’s research interests
include parallel and distributed processing, and performance
evaluation and optimization. He received a PhD in computer
science from Michigan State University. Sun is an IEEE Fellow.
Contact him at sun@iit.edu.

Dawei Wang is an ASIC design engineer with Juniper Net-
works and was previously a postdoctoral researcher in the
Scalable Computing Software Laboratory at the Illinois In-
stitute of Technology. His research interests include com-
puter architecture, large-scale interconnection networks,
and architectural simulation and emulation. Wang received
a PhD in computer science from the Institute of Computing
Technology, Chinese Academy of Sciences. Contact him at
david.albert.wang@gmail.com.

Figure 4. Memory performance measured for multiple cores.
(a) As the number of cores increases, LLC (here L2 cache) concur-
rencies also increase. (b) Miss rates increase accordingly. (c)
AMAT increases with the number of cores, showing an inac-
curate decrease in overall memory performance; C-AMAT de-
creases, which accurately reflects overall memory improvement.

(a)

6
5
4
3
2
1
0

Core 1 Core 2 Core 4 Core 8
Average hit concurrency Average pure miss concurrency

(b)

0.36

0.34

0.32

0.30

0.28

0.26

Core 1 Core 2 Core 4 Core 8

(c)

120

100

80

60

40

20

0

Cy
cle

s

Core 1 Core 2 Core 4 Core 8

L2 cache miss rate L2 cache pure miss rate

L2 AMAT L2 C-AMAT

r5sun.indd 80 4/24/14 12:07 PM

