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Abstract-The ability to quickly determine how to derive a given 
query from a set of prestored fragments is highly demanded in many 
database appliratlons, especially in distributed database syslems. where 
the communication cost is a major concern. The main difficulty in snlv- 
ing this problem lies in the implkation problem-given t w o  predicates 
av and or,  can ay imply ar(ap  + ar)? The implication problem has 
been solved by cunverting it into a iatisfiability problem. No detailed 
study of the implication problem on Its own has been presented. In this 
paper, we study the general implication problem in which all six com- 
parlson operators: =, #, < , > , S .  Z ,  as well as conjunctions and 
disjunctions are allowed. We proved that the general implication prob- 
lem is NP-hard. In the case when ‘‘ # ” operators are  not allowed in 
uv and disjunctions are  not allowed In or, a polynomial time algcwithm 
is proposed to solve this restrkted implication problem. The influence 
of the ‘‘#” operator and disjunctions are  studied. Our  theoretical re- 
sults show that for some special cases the polynomial complexity nl- 
gorithn can solve the implication problem which allows the “ # ”  op- 
erator or disjunctions in the predicates. Necessary conditions for 
detecting when the “ # ”  operator and disjunctions are allowed are  
also given. These results are  very useful in creating heuristic methods. 

Index Terms-Database. derivability problem, directed graph, im- 
plication problem, mathematical lugic, NP-hard, project-select-join 
queries, satisfiability. 

I. INTRODUCTION 
HE problem of querying fragments of relations is of T fundamental importance in many database applica- 

tions. This problem is known as the derivability problem 
and can be formally defined as follows. Given a query Q 
and a set of d stored fragments T I ,  T?, * - - , Ti ,  can the 
query Q be computed from these d fragments? The frag- 
ments could be, for example, a set of temporaries in a 
distributed database system or a set of prestored main 
memory query results. If Q and T I ,  T2, * - , Ti are 
formed by selections and joins, then Q and TI, T2.  - * , 
Td are reducible to boolean expressions, i.e.,  predicutes. 
In this case, the derivability problem becomes the impli- 
cation problem. Eficient solutions to the implication 
problem are highly demanded in many database applica- 
tions. 

In the database community, the derivability problem has 
gained much attention, especially in the area of distrib- 
uted database systems, where the communication cost is 
a major concern. The derivability problem has been stud- 
ied in the past [ I ] ,  [2], [12], [ 131. However, no efficient 
method has been obtained. As pointed out by Jarke and 
Koch [ 5 ] ,  there seems to be no coherent theory in this area 
yet. It is known that for Projection-Selecrion-Join (PSJ) 
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expressions (expressions in which the operations only in- 
volve project, select, join, and Cartesian product), the de- 
rivability entail processing implication 121. 

Several other database applications also require the pro- 
cessing of predicates implication. The performance of 
global optimization protocols for global query optimiza- 
tion proposed by Finkelstein and Sellis [I] ,  [ 1 I ]  is greatly 
dependent on the eficiency of processing predicates im- 
plication. The views in relational database which are 
physically stored are called rnaferiulized views. When a 
relational database is updated, it has to determine which 
materialized views have to be updated. The finding of 
these materialized views also requires implication pro- 
cessing [ 131. [ 141. In a horizontally partitioned database 
system, as indicated in [16], [18], implications between 
predicates are relevant to the determination of access to 
candidate fragments. The new query optimization ap- 
proaches using the page-query and page-node structures 
to retain the results of some queries as an aid in process- 
ing subsequent queries rely on processing implications on 
the prestored results [6], [7], [8], [9]. Several problems 
in database design including access paths, consistency of 
integrity contraints, and distribution of data can all be 
treated as predicates implication problem [ 121. 

Let aQ and aT be predicates with variables xI, x2, 
. . .  , x,~. ,The implication problem is traditionally solved 
in the form of sufisjubility problem through the following 
equivalence equation [ I ] ,  [2], [121, [131. 

VXI. x,. * , x , , ( u ~  + U T )  

0 9.~1, * , ,T,,( 1 ~ T A  uQ). ( 1 . 1 )  

Here and throughout, we use v. A, and 1 to represent 
logic OR, AND. and NOT operations. respectively. Also, 

denote “if and only if” and “equiva- 
lence,” respectively. If each of U p  and aT is a conjunction 
of one or two variable comparisons, up consists of n vari- 
ables (or attributes in database term), and arconsists of k 
comparkons ( U T  = El A BL A * * A &), then ( 1 .  I )  can 
be rewritten as: 

6 6  9 ,  and ‘ 6  ( 1  

vxl. * . .r,t( aQ * U T )  

* $11. * . x,l( 1 6 7  A UQ) 

e. $XI, - . , x,~( 7 BI A ag v 1 BZ r\ UQ 

v e . .  V 1 BA A aQ) 
1 
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From ( I  .2), the problem of solving one implication 
problem becomes the solving of k sati$ability problems. 
Rosenkrantz and Hunt [3] have shown that if the " # " 
operator is not allowed in ( 1 Bi A up), the time com- 
plexity for each satisfiability problem, ( 1 Bi A UQ. for 1 
1s i s k ) ,  is O ( n 3 ) .  Therefore, the time complexity for 
the implication problem shown in (1.2) is O ( n 3 k ) .  

This paper is organized as follows. In Section 11, we 
introduce the basic concept and some definitions and ter- 
minologies of the implication problem. The implication 
problem is modeled as a weighted directed graph. In Sec- 
tion 111, we prove that the general implication problem 
(up + UT?) is NP-hard. Consequently, we prove that the 
derivability problem is NP-hard. Section IV presents an 
O(n3 + k )  time complexity algorithm for the restricted 
implication problem in which the predicates consist of a 
conjunction of one or two attribute comparisons and 
does not contain the " # *' operator. Necessary conditions 
for solving the general implication problem when " # '* 
comparisons are allowed in uQ or disjunctions are allowed 
in uT are developed in Section V.  Using these conditions, 
we show that in some special cases the polynomial com- 
plexity algorithm can solve the general implication prob- 
lem. Results presented in Section V are useful in creating 
heuristic methods. 

11. DEFINITIONS AND TERMINOLOGIES 

Based on Rosenkrantz and Hunt in [3], a weighted di- 
rected graph structure is used to model the implication 
problem. This section gives definitions and terminologies 
used in this paper. Some terminologies defined in 131 are 
repeated here. 

Dejinition I: A logic expression up implies another 
logic expression Or(  uQ 4 0,) if and only if every assign- 
ment that maps uQ into the true statement also maps uT 
into the true statement. 

If the logic expressions oQ and uF represent the selec- 
tion condition of a general PSJ query, then the above def- 
inition means that UQ + UT if and only if every tuple ob- 
tained by evaluating UQ can be obtained by evaluating U T .  

Dejnition 2: A logic expression up is satisfiable if there 
exists an assignment that maps into the true statement. 
The problem of checking if a logic expression is satisfi- 
able is called the sarisfiabiliry problem. 

In a database all attributes belong to some countable 
domains. Thus, all attributes in a database can be consid- 
ered to have a subset of integers as their domain. In the 
following discussions we assume that all attributes have 
the set of all integers as their domains, although, as will 
be shown later, this assumption of unbounded domains 
can be removed with no effect on the computational com- 
plexity. 

A Comparison operator is one of the following six op- 

Definition 3: A comparison is a simple comparison if 
it involves no more than two attributes and is in one of 
the following comparison forms: 

erators: "=", "#", "<", " ~ 9 9 ,  ' 4 > 9 * ,  and L & L 9 9 .  

I )  A single-attribute simple comparison 

< attribute > < comparison operator > 
< constant expression > 
< constant expression > < comparison operator > 
C attribute > 
2) A double-attributed simple comparison 

< attribute > <cornparishoperator > < attribute > 
+ < constant expression > 
< attribute > + < constant expression > 
C comparison operator > c attribute > 

In Definition 3, the constant expression is an arithmetic 
expression consisting of constants, where a constant can 
be a zero, a negative integer, or a positive integer. In the 
following discussions, in addition to those numerical val- 
ues we shall use a, 6 ,  c ,  d ,  and e to represent constants 
and all other variables are attributes. The following five 
examples are simple comparisons: 

ys -3  

x > y + c  

w # o  

27 z x 

x < y + ( c - l ) .  

Definition 4: A logic expression is called a conjunctive 
mixed predicate if it is a conjunction of simple compari- 
sons. 

Definition 5: A predicate with no " # " operator in- 
volved is referred to as an unequal-jiree predicare. 

Definition 6: A conjunctive mixed predicate is said to 
be normalized if it contains only " 5 '* cornparisom. A 
conjunctive mixed predicate is said to be seminormalized 
if it contains only " I " and " # " comparisons. 

The following lemma is useful in establishing the re- 
lationship between these predicates defined above. 

Lemma I: Any conjunctive unequal-free mixed predi- 
cate can be converted, in linear time, into an equivalent 
normalized predicate, and any conjunctive mixed predi- 
cate can be converted, in linear time, into an equivalent 
seminormalized predicate. 

Proof: A conjunctive unequal-free mixed predlicate 
may involve five different comparison operators: ' I .  = " , 

- . We have to show that 
these operators can be rewritten using the " s " operator 
and conjunctions. For the case of double-attribute simple 
expression, the following equivalence relations are al- 
ways true. 

"<**,  "5" ,  & & > * * ,  and &6,33 

[x c y + c ]  E [x s y + ( c  - l ) ]  

[x > y + c ]  is [y I x + ( -c - l ) ]  

[x 2 y + c ]  = [ y  I x + ( -c)]  

[I = y + c ]  sz [(x 5 y + C) A ( y  I x -I- (-Cl)] 
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The equivalence relations can be similarly derived for the 
case of single-attribute simple expressions. By induction 
on the number of simple comparisons, any conjunctive 
unequal-free mixed predicate can be convened into a 
seminormalized predicate in linear time. Since the “ # ” 
operator cannot be expressed in terms of ‘ ‘5 ’ ’  and con- 
junctions, any conjunctive mixed predicate can be con- 
verted into a seminormalized predicate in linear time. H 

Because a normalized predicate consists of the “ 5 ” 
operator only, it can be represented as a weighted di- 
graph, where nodes represent attributes and directed edges 
represent “ 5 ” comparisons. In other words, each node 
in the digraph represents an attribute in the predicate, and 
a directed edge from node x to node y with weight c rep- 
resents the predicate x 5 y + c. A special node labeled 
“0” is  used for single-attribute predicates. Note that a 
node may have multiple edges if the corresponding attri- 
bute is involved in many predicates. The edge constructed 
by the comparison x s y 4- c is referred to as edge x I: 
y + c. The weight of a path (or a cycle) in a directed 
graph is the accumulated sum of the weights of those 
edges constituting the path (or cycle). 

Definition 7: An implication problem (aQ + ar?) is 
called a restricted implication problem if up is a conjunc- 
tive unequal-free mixed predicate and uT is a conjunctive 
mixed predicate. 

From Definition 6, a restricted implication problem ( up 
4 uT?) has a normalized predicate and a seminormal- 
ized predicate ay. The next section will prove that the 
general implication problem is NP-hard. Then in Section 
IV, we propose an efficient algorithm for solving the re- 
stricted implication problem. 

111. THE GENERAL IMPLICATION PROBLEM 
A general implication problem (aQ -+ uT?) has two 

predicates UQ and uf which may involve six comparisons 

as well as conjunctions and disjunctions. We shall prove 
that the general implication problem is NP-hard. This 
leads to a conclusion that the more general problem, the 
derivability problem, is NP-hard. 

Theorem 1: If disjunctions are allowed in uT,  the im- 
plication problem (up -+ U T ? )  is NP-hard. 

Proof: The following boolean satisfiability problem 
[I51 is known to be NP-hard. “Given rn clauses C,, C2, - * - , C,, where Ci = ( x i ,  v x,, V * - v x,,) for 1 s i 
s m involving n boolean variables x I ,  xt , * * , x,,, the 
question of whether the formula C, A Cz A - A C,,, is 
satisfiable is NP-complete.’’ We prove this theorem by 
showing that the boolean satisfiability problem can be re- 
duced polynomially to the implication problem with dis- 
junctions allowed in uT. 

Given a boolean formula CI A C2 A * - * A C,,, with 
boolean variables x I ,  x2, - - * , x,,, the following two steps 
are used to reduce the formula. 

1) Choose a boolean variable x, + , such that x , ~  + I + { x , ,  
x,, - * ’ , x,, ). Thus, CI A C1 A - * - A C,,, is satisfiable 
if and only if C, A C2 A * * A C,, A x, + , is satisfiable. 

operators: b 6 = * 1 ,  “***, 6 b < q * ,  C 4 < * *  - , “>”, and ‘ ‘ ~ ”  

2) Replace each boolean variable xi by a simple com- 
parkon ui s vi .  X i ,  the complement of xi ,  is replaced by 

We denote the clause Ci. with the boolean variables re- 
placed, by Ri.  Since there is no dependence among the 
variables, and by choosing different values of U; and U,, 
we can get each simple comparison ui I vi to be true or 
false. Thus, we have 

is satisfiable if and only if 

is satisfiable. Equation (3.1) is satisfiable if and only if 

1 ( U /  I U ; ) .  

C I A C ~ A . . .  A c ,  

R ,  A R2 A * * * A R m  A ( ~ i + l  5 V i +  1 )  (‘3.1) 

( ~ i + l  I v i + ! )  = (1 RI V -I Rz V * * V 1 Rm:) 
is not true [lo]. Note that each 1 Ri is a conjunctive mixed 
predicate. The satisfiability of each 7 Ri can be checked 
in polynomial time [3]. If for some i ,  -I Ri is unsatisfi- 
able, then the i R, is removed from the implication prob- 
lem. If all Ri’s (for i = 1, 2, - - - , m )  have beem re- 
moved, then the implication is not true and we are done. 
In this way, the boolean variable satisfiability problem is 
reduced to the implication problem. Thus, if disjunctions 
are allowed in or, the implication problem is NP-had. 

Theorem 2: If the “ # * ’  operator is allowed in uQ, the 
implication problem ( UQ + aT?) is NP-hard. 

Proof: We show that the satisfiability problem of 
conjunctive mixed predicates with “ # ”  operators al- 
lowed can be solved by the implication problem (oe -+ 

uT?) with “ # ” operators allowed in uQ. By Rosenkrantz 
and Hunt [3] the former is NP-hard, so the latter is also 
NP-hard. 

Suppose that we have a seminormalized predicate U = 

are simple comparisons with the ‘‘ # ” operator. The sa- 
tisfiability of U can be checked by the following steps. 

1) If one of the Ai’s is unsatisfiable, then U is unsatis- 
fiable. 

2) Assume that we are given a seminormalized selec- 
tion A and a simple comparison A i .  If both A and Ai  are 
satisfiable, then A Ai is not true if and only if 7 .Ai A 
A is satisfiable. The satisfiability problem can be solved 
by checking the implication problem based on the follow- 
ing procedure. 

A ,  A A2 A a * * A A,, where Ai’s ( f o r i  = 1, 2. - - * * n )  

A := A I  
For i = 2 to n do 

If A --+ 7 Ai is not true then A : = AAA, 
else return(a is unsatisfiable); 

return(a is satisfiable); 

Step 1 can be solved in linear time. Step 2 is actually 
the solving of the implication problem n - 1 times. Since 
the satisfiability problem involving the ‘‘ # ’* operator is 
known to be NP-hard [3], the implication problem is NP- 
hard. 

Theorems 4 and 5 show that the general implicaition 
problem is NP-hard. As the general implication problem 
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is a special caw of the derivability problem, by the lower 
bound property we have the following result. 

Corollary 1: The derivability problem is NP-hard. 
In the next section, we shall show that if “# ”  com- 

parisons are not allowed in up and disjunctions are not 
allowed in u2. this restricted implication problem can be 
efficiently solved. 

IV. THE RESTRICTED IMPLICATION PROBLEM 
This section considers the restricted implication prob- 

lem ( UQ or?) in which UQ is a conjunctive unequal-free 
mixed predicate and uT is a conjunctive mixed predicate. 
Note that according to Definition 6. UQ and uT are ex- 
pressed in normalized and seminormalized predicate, re- 
spectively. Let G( up) be the corresponding weighted di- 
graphs of up. We assume that no multiple edges exist 
between two nodes in G(uQ) .  If there were multiple 
edges, the graph constructing algorithm will only keep the 
edge with the smallest weight and remove all other edges. 
Furthermore, both up and UT are assumed satisfiable. De- 
termination of the satisfiability of a normalized predicate 
is stated in Theorem 3 which is due to Rosenkrantz and 
Hunt [3]. 

Theorem 3: For any normalized predicate uQ, UQ is un- 
satisfiable if and only if there is a negative cycle in G( aQ). 

Lemma 2: For any normalized predicate UP, UQ -+ U I 
v + c if and only if there is a path in G( ua) from node U 

to node v with weight less than or equal to c. 
Proof; Since uQ and U 5 v + c are satisfiable, by 

mathematical logic [lo], UQ -+ ( U  5 U + c) if and only 
if 

- ( U  I v + C ) A U Q  = 0.  (4.1) 

Here Q represents an empty set or the logical expression 
is unsatisfiable. By Theorem 3, 1 ( U  5 v + c) A UQ is 
unsatisfiable if and only if there exists a negative cycle in 
the graph of ( v  5 U - c - 1) A up. Note that ( U  5 U 
- c - 1)  = 1 ( U  5 v + c). Since UQ is satisfiable, 
there is no negative cycle in G (  uo). Thus, the negative 
cycle must contain the edge ( Y s U - c - 1 ). This im- 
plies the existence of a path in G(  uQ) from node U to node 

H 
Lemma 3: For any normalized predicate UQ and any 

simple comparison U # v + c, uQ 4 ( U  # U -t c )  if and 
only if one of the following conditions occurs: 

I )  There is a path in G (  up) from node U to node v with 
weight less than or equal to c - 1 .  

2) There is a path in G( UQ) from node U to node U with 
weight less than or equal to ( - c  - 1).  

v with weight less than or equal to c. 

Proof: By mathematical logic [lo], 

UQ --* U # v + c 

c) UQ- ( U  5 v + c - 1) 

v ( v 4 u - c - I )  

SJ 1 ( u 5 v + c - I )  

A UQ 3 ( v  5 U - c - 1). (4.2) 

By (4.2) and Lemma 2, the “if” part is trivial. Here 
we examine the “only if *’ part. If 1 (U s v + c - 1 ) 
A UQ = 0,  then UQ + U 5 U + C. By Lemma :2, the 
condition ( I )  is proven. 

If ( U  5 U - c) A UQ, where ( U  5 U - c )  SR 1 ( U  5 
v + c - I ) ,  is satisfiable, then by Lemma 2 there is a 
path from node v to node U with weight less than or equal 
to ( -c - 1 ) in G( ( v s U - c )  A up). This path cannot 
contain the edge U I U - c; otherwise, there is a negative 
cycle in G( up) which contradicts with the fact that UQ is 

Lemma 4: For any normalized predicate UQ and any 
seminormalized predicate uT, UQ + UT if and only if for 
any simple comparison U s U + c (or U # U + c )  in uT, 
U 5 v + c (or U # v + c )  is implied by uQ. 

Proof: Let UQ, uT consist of n variables and UT = BI 
A B, A - * - A Bk, where B,.’s are simple comparisons, the 
following equivalence holds: 

satisfiable. Thus, the condition (2) is proven. 

vxl, . * ’ 9 -%(Up -* 07‘) 

U V I , ,  * 

evxl,  ’ 9 xn[(UQ -* Bl) A (UQ 8 2 )  

* , X,,(UQ -+ B I  A B, A ’ * A Bk) 

* [vxl, ’ ’ xn(uQ -* El)] 

A (Vxlr * * xn(uQ + &)I 
A * . . A [ V X ~ ,  * * * , X,,(UQ -* Bk)] .  (4.3) 

This is true if is a conjunctive mixed predicate and 
UQ is in any form. If uQ is a normalized predicate and U, 
is a seminormalized predicate, this lemma is proven by 

Theorem 4 is a direct result of Lemma 2, Lemma 3, 
and Lemma 4. 

Theorem 4: For any normalized predicate up and any 
seminormalized predicate uT. uQ -+ uT if and only if for 
any simple comparison U I v + c in U T ,  there is a1 path 
in C( ua) from node U to node U with weight less thian or 
equal to c, and for any simple comparison U # v 4- c in 
bT, one of the following conditions occurs: 

1) There is a path in G (  up) from node U to node P with 
weight less than or equal to c - 1. 

2) There is a path in G( uQ) from node U to node hi with 
weight less than or equal to ( -c  - 1).  

Now we are ready to present an algorithm to the solu- 
tion of the restricted implication problem. The input 
to this algorithm, RESTRICTED-IMPLICATION- 
CHECK, is a seminormalized predicate uT and the graph 
of a normalized predicate up. The output of this algorithm 
is YES if UQ 4 UT; otherwise, the output is NO. 

the above equivalence. 

Algorithm RESTRICTED-IMPLICATION-CHECK 
S 1 : If an attribute U appears in uT, but U is not a node 

S2: Using Floyd’s Algorithm to find the weight of the 
in G(  uQ), then return (NO). 

shortest path for each pair of nodes in G( IQ). 
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If a negative cycle is found in running Floyd's al- 
gorithm, then return(YES). 

S3: For each comparison U 15; U + c in U T ,  check the 
result obtained in S2. 

If the shortest path from node U to node v in 
G( up) has its path weight greater than c, then 
return (NO). 

If there is a shortest path from node U to node v 
in G (  U,) with its path weight > c - 1 

and there is a shortest path from node v to node 
U in G( uQ) with its path weight > ( -c - 1 ), 
then return(N0). 

S4: For each comparison U # v + c in UT 

S5: return(YES). 

We denote the number of comparisons of U, by Ei and 
denote the number of attributes in ai by V, for I = T, Q. 
Here EQ is greater than or equal to the number of edges 
in G(u,) and V, + 1 is equal to the number of nodes 
(vertices) in G( uQ) including the node labeled "0". 

S1 is a quick scan to eliminate some cases where the 
implication is trivially unsatisfied. Its complexity is 
O( VrVp) .  Floyd's algorithm which can be found in most 
graph algorithm books ([4], for example) is used to find 
the weight of the shortest path for each pair of nodes. The 
complexity of S2 is O( Vb) .  If a negative cycle is found, 
then uQ is unsatisfiable (Theorem 3) and the implication 
is true. The complexity of S3 is O ( E T ) .  The complexity 
of S4 is also O( E T ) .  Thus, the complexity of the algo- 
rithm is O(Er + Vi). For VQ = n and Er = k the com- 
plexity of the algorithm is O(n3 + k) which is signifi- 
cantly less than 0 ( n 3 k )  if the problem is solved based on 
the satisfiability problem. If we assume that ET I Vi, 
which is almost always true in real cases, then the com- 
plexity of the algorithm is O(n3). Based on Lemma 1, 
Theorem 4, and the above discussions, we have the fol- 
lowing main result. 

Theorem 5: The restricted implication problem ( up 4 
uT?) can be solved in O(n3 + k), where n is the number 
of attributes in U, and k is the number of Comparisons in 
UT* 

In order to simplify the proof, we have assumed that 
the domain of each attribute is the set of all integers. In 
fact, this assumption is unnecessary. The algorithm pre- 
sented above can be used for attributes having a set of 
consecutive integers, either bounded or unbounded, as 
their domain. The only thing we need to do is to modify 
the predicates uT and U, by adding the domain constraints 
into the graph G( U,). Let xi be the attribute appearing in 
UT with domain [a i ,  b j ]  for 1 I i I n. if  some of the xi's 
do not appear in G(uQ), then the implication does not 
hold. Otherwise, we begin adding edges. For each x i ,  by 
the restriction ai I xi si b, in the following ways. If b, is 
finite, we add an edge from node xi to node 0 with weight 
bi into G( uT). If a, is finite, we add an edge from node 0 
to node xi with weight -ai into G( uT).  Similarly, we add 
edges into G ( Q )  for each attribute appearing in up. Since 
the algorithm presented above can solve the restricted im- 
plication problem on predicates with unbounded domains 

based on the modified graph, the restricted implication 
problem with attributes having bounded domains is iread- 
ily solved. 
Now let us consider some applications of the proposed 

RESTRICTED-IMPLICATION-CHECK algorithm. 
Consider the following frequently asked database ques- 
tion. Given a group of fragment predicates UT,,, UT?, ... , UT,, and one query predicate up, does there exist an 
i( 1 5 i I d )  such that UQ + un is true? In the above 
algorithm. we only run Floyd's algorithm to find the 
shortest path of each pair of nodes in G(uQ) .  For each 
comparison in UT we simply compare their offset witlh the 
weight of the shortest path in C (  0,). This property mlakes 
the algorithm much more efficient for the solution of the 
above question. If predicate un has ki comparisons for i 
= 1, - - * , d ,  then instead of O( ( cfE , k, ) n3)  time com- 
plexity obtained by solving the problem by satisfiability , 
the algorithm we proposed reduces the time complexity 

In the case when disjunctions are used in uQ(oQ 
uQ, v - - v uQd, where ua's are conjunctive unequal-free 
mixed predicates), the proposed algorithm can still be ap- 
plied. Disjunctions in UQ can be handled by showing that 
the implication is true if any of the uQ's (for I S j :S d ) 
in uQ is true. If each ua has n attributes, then the time 
complexity is O ( d ( n 3  + k)), where k is the number of 
comparisons in uT. However, if conjunctions are used in- 
stead of disjunctions, i.e., U? = 09, A - - - A upd, the 
corresponding time complexity will be increased to 

Another important feature of the proposed algorithm is 
the ability to allow the " # * *  operator in uT. It is kinown 
that the " # '' operator makes the satisfiability problem 
very difficult to solve [3] should it occur in the predicates. 
However, as indicated in Lemma 3, our proposed algo- 
rithm does allow the occurrence of the " # " operator in 
UT- 

In the next section, we shall show that in some special 
cases, our proposed algorithm can solve the general im- 
plication problem in which " f " operators are used in UQ 

or disjunctions are used in UT. 

V. THE INFLUENCE OF f OPERATORS AND 
DISJUNCTIONS 

In this section we show that the "2" operator in UQ 

sometime have no influence on the implication prolblem. 
In this case, the " f " comparison can be ignored. The 
influence of disjunctions in 

Theorem 6: Let U be a normalized predicate. If (x # 
y + c') A U is satisfiable and ((x # y + c ' )  A U )  + (U 
s U + c ) ,  then U 3 (U I U -t c + 1). 

to 0 ( ~ 3  + cp=, k,). 

0 ( ( d n ) 3  + k). 

is also studied. 

Proof: Since 
( x  # y + c') = ((x 5 y + c' - 1) 

v (y 5 x - c' - I ) )  
where 

((X # y + c ' )  A 0 )  E ((x I y -I- C' - 1 A U) 

V (y S x - c' - 1 A (I)). 
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Consider the following three cases. 
1) If ( x  5 y + c' - 1)  A a is unsatisfiable, then a 

-+ 1 ( x  s y + c' - 1 ), where 1 (x I y + c '  - 1 ) P 
y s x - c'. Since ( x  # y + c ' )  A a is satisfiable, we  
must have ( y  I x - c' - 1) A a satisfiable and ( (  y I 

A U )  -+ (U S v + c + I ) .  Because a -+ ( y  I x - c'), 
it follows that U = ( y  I x - c ' )  A a and U + ( U  s t! 
+ c +  I ) .  

2) If ( y 5 x - c' - 1 ) A a is unsatisfiable, then a --* 

7 ( y  5 x - c f  - I ), where 1 ( y I x - c' - 1 ) I (x 
c y + c ' ) .  By a similar argument as I ) ,  we have a --* (U 
I V + C +  I ) .  

3) If both ( y I x - c' - I ) A a and ( x  5 y + c' - 
1 ) A a are satisfiable, then 

x - c ' -  I ) A u ) - * ( u s  v + ~ ) . T h u s , ( ( y I x - ~ ' )  

( (y  5 x - c' - I )  A a) + (U 5 v + c )  

and 

((x I y + c' - 1) A U) --* (U 5 + c ) .  

By Lemma 2 there exists a path pI from U to o with 
weight less than or equal to c in the weighted digraph 
G(( y s x - c'  - 1 ) A a). If p ,  does not contain the 
edge ( y  I x - c' - I ) ,  by Lemma 3 we have a (U 
I v + c) and the theorem is proved. Now we assume 
thatp, contains the edge ( y 5 x - c f  - 1 ). Furthermore, 
we assume that in the path pI. the weight from node U to 
node y is b and the weight from node x to node v is e. By 
the same reason there exists a path pz  from U to v with 
weight less than or equal to c in G( (x z; y + c' - 1 ) A 
a). Similarly, we assume that p2 contains the edge (x  I 
y + c' - 1). Furthermore, we assume that in the path p 2 ,  
the weight from node U to node x is a and the weight from 
node y to node v is d .  The relation of those nodes and 
paths is shown in Fig. 1. 

If a -.) (U 5 v + c )  is true, then a ---. ( U  5 v + c + 
1 )  is true and we are done. If a -.) (U 5 v + c )  is not 
true, we have the following inequalities: 

b + d > a + c ' - l + d  

a + e > b - c'  - 1 + e 

b + d > b - c ' -  I + e 
a + e > a + c ' - l + d .  

Subsequently, we have 

U - b 5 -c' 

a - b e -c' 

e - d r c '  

e - d L c'. 

Thus, we obtain b - a = c' and e - d = c '  which 
result ina + e = a + c' + d.  Sincea + c' - 1 + d s 
c,  we have a + e s c + 1. Thus there is a path from U 
to U with weight less than or equal to c + 1 in G( a). By 
L e m m a 2 w e h a v e u + ( u r  u + c +  1).  rn 

w 
Fig. I .  The graph reprcsentution of the paths in Theorem 6. 

Theorem.6 can be generalized to seminormalized Ipred- 
icates containing more than one " # " comparisons. 

Corollary 2: If up = (a, A a2) is satisfiable and a -, 
(U I v + c) ,  where al  is a conjunction of m * '  f. " simple 
comparisons and is a normalized predicate, then a? --* 
(U I Z? + c + m). 

Proof: This proof is done by induction on the num- 
ber of '"#" comparisons in ul and using the result of 

From Lemma 2, Lemma 3, and Corollary 2. we have 
the following result. 

Corollary 3: If up = ( ul A u2) is satisfiable and up -+ 

0 7 ,  where al is a conjunction of m " # " simple coimpar- 
isons, u2 is a normalized predicate, and uT is a seminor- 
malized predicate, the following hold: 

1) For any simple comparison U 5 U + c in a,., u2 -+ 

(U s U + c + m). 
2) For any simple comparison x + y + c' in uT, a2 -+ 

(x s y  + c '  + m - I)ora2 3 ( y  5 x - c'+ m - I ) .  
Corollary 3 may be used to solve a general implilcation 

problem ( aQ 4 Or?) when the '' # " operator is involved 
in the predicate uI. We can first process (a? --* a,?). For 
each simple comparison U I ZJ + c in aT. if q -+ (U 5 
v + c )  then U I U + c can be removed from uT. If a, 
does not imply U I v + c + m, then the implication (aQ 
--+ uT?)  is not true. For each simple comparison x :f y C 
c' in or ,  we have a similar statement for x 4 y + 4;' - I 
or y 5 x - c' - 1 .  In this way if the above conditions 
are satisfied, without processing the " # " comparisons 
in Up, the implication problem ( UQ -+ q?) can be solved. 
Based on this result, heuristic methods can be created. 
Now we turn to the case when disjunctions are allowed 

in UT in the general implication problem ( aQ -+ a,? ). Here 
we assume that the up is a satisfiable normalized predi- 
cate, art and UT? are satisfiable seminormalized predi- 
cates, and ay E (aTt V uT2). 

Theorem 7: If  (TI', -t i (U i u + c + 1 ) and au -+ 

(UT ,  V (aT2 A U 5 U + c)), then ac, 4 (U I; v -1- c) or 

Theorem 6. 

OQ -+ U T I *  
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-e -1 \ 

Fig. 2. The graphmpresentation of the paths in Theorem 7. 

Proof: Since UQ + (urI V (aTz A U 5 v + c ) ) ,  by 
mathematical logic [ 101, we have ( i ( U  I U + c )  A uQ) 
+ aTl. If 1 ( U  5 U + C )  A is unsatisfiable, then uc, 
4 (U s v -?- c )  and we are done. If 7 ( U  5 v + c )  A 

is satisfiable, since url + -I (U S v + c + 1 ), where 
-(U s v + c + 1 )  = ( U  5 U - c - 2)and ( - ( U  I 
Y + c )  A aQ) + U,, we have (1 ( U  S U + c )  A aQ) + 

(U d U - c - 2). There is a path p from U to U with 
weight less than or equal to ( -c  - 2)  in the weighted 
graph G( 7 ( U  S v + c )  A ae). If the path p contains 
the edge 1 (U s v + c )  = (U I U - c - I ) ,  then aQ 
has a negative cycle (see Fig. 2). This contradicts the as- 
sumption that ap is satisfiable. If the path p does not con- 
tain theedgeu s U - c - 1, thenaQ-) ( U  s U - c - 
2). Thus we have ( 1 ( U  5 v + C) A aQ) = uQ, and aQ 

Since Orl -+ 1 (U S v f c + 1 ) is equivalent to having 
a negative cycle with weight less than - I (Lemma 2) in 
G(uT, A ( U  I v + c ) ) .  Theorem 7 can be restated in the 
following form. 

Theorem 7': If G(aT, A ( U  5 v + c ) )  has a cycle with 
weight less than - 1 and uQ + ( uTl V ( uT2 A ( U 5 v + 
c))), then ae 4 url or UQ + ( U  s U + c ) .  

Theorem 7 shows that to solve the implication problem 
uQ -+ (orl v q2), we can do preprocessing on 
uTI and aT,. We first find all the simple comparisons U s 
v + c i n a T I s u c h t h a t a T , +  -.(U 5 v + c +  1)istrue.  
Then we find all the simple comparisons U '  i v' + c' in 
an such that uTI -t 1 ( U '  s U' + C' + 1 ) is true. If aQ 
--+ uTz is true, we are done and the implication up + 

( url V (IT*) is true. If UQ +  UT^ is not true, then UQ -t ( U  

5 v + c )  must be true for all the comparisons found 
above. Otherwise, the implication up --* (a,  v a,) is not 
true. Similar arguments can be stated for arl and all the 
comparisons U '  5 U' + c' found above. Thus, in these 
conditions, the implication problem uQ 4 ( uTl V an) can 
be solved without processing the disjunctions in uT. The 
following corollary is a direct result of Theorem 7'. 

Corollary 4: (IQ --* ( U  f v + c )  if and only if uQ + 

( ~ ~ v + c - I ) o r u ~ 4 ( ~ ~ u - c -  I ) .  
Proof: Since(u # v + c )  = (((U 5 v -+ c - I )  

V (U 5 U - c - 1 I), the "if" part is trivial. 
Since(u S v 4- c - 1 )  A ( U  I U - c - 1)formsa 

cycle with weight -2, the "only if" part follows from 
Theorem 7' 

+ uTI is proved. H 

Note that by Lemma 2, Corollary 4 is equivalent to 
Lemma 3. In other words, Corollary 4 is another proof 
for Lemma 3. 

VI. CONCLUSION 
This paper has addressed the problem of solving the 

implication problem (up  + aT?) which is frequently used 
in many database applications. A general implication 
problem involves '' = * '  
" 2 * '  comparison operaton, and conjunctions and dis- 
junctions among predicates. We have proven that the gen- 
eral implication problem is NP-hard. For the restricted 
implication problem in which the "# "  operator is not 
allowed in and dis'unction is not allowed in uT, we 

parisons in uT and n is the number of attributes in ae, 
algorithm to solve the problem. The proposed algorithm 
is much more efficient than the traditionally used algo- 
rithm which has complexity O(n3k). 

For the general implication problem, we have shown 
that in some conditions even when the " # *'  operator is 
allowed in aQ or disjunctions are allowed in uz, the prob- 
lem can still be solved using the algorithm proposed in 
Section IV. These necessary conditions stated in Section 
V are useful in creating heuristic methods for solving gen- 
eral implication problems. 
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