
I168 IEEE ‘IKANSAC‘I‘IONS Oh’ SOFTWARE ENGINEERING. VOL. IS. NO. IO. OCTORKR IYXY

Processing Implication on Queries
XIAN-HE SUN. NABIL N. KAMEL, A N D LIONEL M. NI. SENIOR MEMBER. IEEE

Abstract-The ability to quickly determine how to derive a given
query from a set of prestored fragments is highly demanded in many
database appliratlons, especially in distributed database syslems. where
the communication cost is a major concern. The main difficulty in snlv-
ing this problem lies in the implkation problem-given t w o predicates
av and or, can ay imply ar(ap + ar)? The implication problem has
been solved by cunverting it into a iatisfiability problem. No detailed
study of the implication problem on Its own has been presented. In this
paper, we study the general implication problem in which all six com-
parlson operators: =, #, < , > , S . Z , as well as conjunctions and
disjunctions are allowed. We proved that the general implication prob-
lem is NP-hard. In the case when ‘‘ # ” operators are not allowed in
uv and disjunctions are not allowed In or, a polynomial time algcwithm
is proposed to solve this restrkted implication problem. The influence
of the ‘‘#” operator and disjunctions are studied. Our theoretical re-
sults show that for some special cases the polynomial complexity nl-
gorithn can solve the implication problem which allows the “ # ” op-
erator or disjunctions in the predicates. Necessary conditions for
detecting when the “ # ” operator and disjunctions are allowed are
also given. These results are very useful in creating heuristic methods.

Index Terms-Database. derivability problem, directed graph, im-
plication problem, mathematical lugic, NP-hard, project-select-join
queries, satisfiability.

I. INTRODUCTION
HE problem of querying fragments of relations is of T fundamental importance in many database applica-

tions. This problem is known as the derivability problem
and can be formally defined as follows. Given a query Q
and a set of d stored fragments T I , T?, * - - , Ti , can the
query Q be computed from these d fragments? The frag-
ments could be, for example, a set of temporaries in a
distributed database system or a set of prestored main
memory query results. If Q and T I , T2, * - , Ti are
formed by selections and joins, then Q and TI, T2. - * ,
Td are reducible to boolean expressions, i.e., predicutes.
In this case, the derivability problem becomes the impli-
cation problem. Eficient solutions to the implication
problem are highly demanded in many database applica-
tions.

In the database community, the derivability problem has
gained much attention, especially in the area of distrib-
uted database systems, where the communication cost is
a major concern. The derivability problem has been stud-
ied in the past [I] , [2], [12], [131. However, no efficient
method has been obtained. As pointed out by Jarke and
Koch [5] , there seems to be no coherent theory in this area
yet. It is known that for Projection-Selecrion-Join (PSJ)

Manuscript received July 20, 1987: revised July 5 . 1986.
The authors are with the Department of Computcr Scirncc. Michigan

IEEE Log Number 8930140.
State University. East Lansing. MI 48824.

expressions (expressions in which the operations only in-
volve project, select, join, and Cartesian product), the de-
rivability entail processing implication 121.

Several other database applications also require the pro-
cessing of predicates implication. The performance of
global optimization protocols for global query optimiza-
tion proposed by Finkelstein and Sellis [I] , [1 I] is greatly
dependent on the eficiency of processing predicates im-
plication. The views in relational database which are
physically stored are called rnaferiulized views. When a
relational database is updated, it has to determine which
materialized views have to be updated. The finding of
these materialized views also requires implication pro-
cessing [131. [141. In a horizontally partitioned database
system, as indicated in [16], [18], implications between
predicates are relevant to the determination of access to
candidate fragments. The new query optimization ap-
proaches using the page-query and page-node structures
to retain the results of some queries as an aid in process-
ing subsequent queries rely on processing implications on
the prestored results [6], [7], [8], [9]. Several problems
in database design including access paths, consistency of
integrity contraints, and distribution of data can all be
treated as predicates implication problem [121.

Let aQ and aT be predicates with variables xI, x2,
. . . , x,~. ,The implication problem is traditionally solved
in the form of sufisjubility problem through the following
equivalence equation [I] , [2], [121, [131.

VXI. x,. * , x , , (u ~ + U T)

0 9.~1, * , ,T,,(1 ~ T A uQ). (1 . 1)

Here and throughout, we use v. A, and 1 to represent
logic OR, AND. and NOT operations. respectively. Also,

denote “if and only if” and “equiva-
lence,” respectively. If each of U p and aT is a conjunction
of one or two variable comparisons, up consists of n vari-
ables (or attributes in database term), and arconsists of k
comparkons (U T = El A BL A * * A &), then (1 . I) can
be rewritten as:

6 6 9 , and ‘ 6 (1

vxl. * . .r,t(aQ * U T)

* $11. * . x,l(1 6 7 A UQ)

e. $XI, - . , x,~(7 BI A ag v 1 BZ r\ UQ

v e . . V 1 BA A aQ)
1

0098-5589/89/ 1000- 1 I68$0 1 .OO O 1989 IEEE

Reproduced uith permission of copyriaht wwr. Further raproduction prohibited.

SUN cr ul.: PROCESSING IMPLICATION ON QUERIES I 1 6 0

From (I .2), the problem of solving one implication
problem becomes the solving of k sati$ability problems.
Rosenkrantz and Hunt [3] have shown that if the " # "
operator is not allowed in (1 Bi A up), the time com-
plexity for each satisfiability problem, (1 Bi A UQ. for 1
1s i s k) , is O (n 3) . Therefore, the time complexity for
the implication problem shown in (1.2) is O (n 3 k) .

This paper is organized as follows. In Section 11, we
introduce the basic concept and some definitions and ter-
minologies of the implication problem. The implication
problem is modeled as a weighted directed graph. In Sec-
tion 111, we prove that the general implication problem
(up + UT?) is NP-hard. Consequently, we prove that the
derivability problem is NP-hard. Section IV presents an
O(n3 + k) time complexity algorithm for the restricted
implication problem in which the predicates consist of a
conjunction of one or two attribute comparisons and
does not contain the " # *' operator. Necessary conditions
for solving the general implication problem when " # '*
comparisons are allowed in uQ or disjunctions are allowed
in uT are developed in Section V. Using these conditions,
we show that in some special cases the polynomial com-
plexity algorithm can solve the general implication prob-
lem. Results presented in Section V are useful in creating
heuristic methods.

11. DEFINITIONS AND TERMINOLOGIES

Based on Rosenkrantz and Hunt in [3], a weighted di-
rected graph structure is used to model the implication
problem. This section gives definitions and terminologies
used in this paper. Some terminologies defined in 131 are
repeated here.

Dejinition I: A logic expression up implies another
logic expression Or(uQ 4 0,) if and only if every assign-
ment that maps uQ into the true statement also maps uT
into the true statement.

If the logic expressions oQ and uF represent the selec-
tion condition of a general PSJ query, then the above def-
inition means that UQ + UT if and only if every tuple ob-
tained by evaluating UQ can be obtained by evaluating U T .

Dejnition 2: A logic expression up is satisfiable if there
exists an assignment that maps into the true statement.
The problem of checking if a logic expression is satisfi-
able is called the sarisfiabiliry problem.

In a database all attributes belong to some countable
domains. Thus, all attributes in a database can be consid-
ered to have a subset of integers as their domain. In the
following discussions we assume that all attributes have
the set of all integers as their domains, although, as will
be shown later, this assumption of unbounded domains
can be removed with no effect on the computational com-
plexity.

A Comparison operator is one of the following six op-

Definition 3: A comparison is a simple comparison if
it involves no more than two attributes and is in one of
the following comparison forms:

erators: "=", "#", "<", " ~ 9 9 , ' 4 > 9 * , and L & L 9 9 .

I) A single-attribute simple comparison

< attribute > < comparison operator >
< constant expression >
< constant expression > < comparison operator >
C attribute >
2) A double-attributed simple comparison

< attribute > <cornparishoperator > < attribute >
+ < constant expression >
< attribute > + < constant expression >
C comparison operator > c attribute >

In Definition 3, the constant expression is an arithmetic
expression consisting of constants, where a constant can
be a zero, a negative integer, or a positive integer. In the
following discussions, in addition to those numerical val-
ues we shall use a, 6 , c , d , and e to represent constants
and all other variables are attributes. The following five
examples are simple comparisons:

ys -3

x > y + c

w # o

27 z x

x < y + (c - l) .

Definition 4: A logic expression is called a conjunctive
mixed predicate if it is a conjunction of simple compari-
sons.

Definition 5: A predicate with no " # " operator in-
volved is referred to as an unequal-jiree predicare.

Definition 6: A conjunctive mixed predicate is said to
be normalized if it contains only " 5 '* cornparisom. A
conjunctive mixed predicate is said to be seminormalized
if it contains only " I " and " # " comparisons.

The following lemma is useful in establishing the re-
lationship between these predicates defined above.

Lemma I: Any conjunctive unequal-free mixed predi-
cate can be converted, in linear time, into an equivalent
normalized predicate, and any conjunctive mixed predi-
cate can be converted, in linear time, into an equivalent
seminormalized predicate.

Proof: A conjunctive unequal-free mixed predlicate
may involve five different comparison operators: ' I . = " ,

- . We have to show that
these operators can be rewritten using the " s " operator
and conjunctions. For the case of double-attribute simple
expression, the following equivalence relations are al-
ways true.

"<**, "5" , & & > * * , and &6,33

[x c y + c] E [x s y + (c - l)]

[x > y + c] is [y I x + (-c - l)]

[x 2 y + c] = [y I x + (-c)]

[I = y + c] sz [(x 5 y + C) A (y I x -I- (-Cl)]

I170 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. IS. NO. IO. OCTOBER 1989

The equivalence relations can be similarly derived for the
case of single-attribute simple expressions. By induction
on the number of simple comparisons, any conjunctive
unequal-free mixed predicate can be convened into a
seminormalized predicate in linear time. Since the “ # ”
operator cannot be expressed in terms of ‘ ‘5 ’ ’ and con-
junctions, any conjunctive mixed predicate can be con-
verted into a seminormalized predicate in linear time. H

Because a normalized predicate consists of the “ 5 ”
operator only, it can be represented as a weighted di-
graph, where nodes represent attributes and directed edges
represent “ 5 ” comparisons. In other words, each node
in the digraph represents an attribute in the predicate, and
a directed edge from node x to node y with weight c rep-
resents the predicate x 5 y + c. A special node labeled
“0” is used for single-attribute predicates. Note that a
node may have multiple edges if the corresponding attri-
bute is involved in many predicates. The edge constructed
by the comparison x s y 4- c is referred to as edge x I:
y + c. The weight of a path (or a cycle) in a directed
graph is the accumulated sum of the weights of those
edges constituting the path (or cycle).

Definition 7: An implication problem (aQ + ar?) is
called a restricted implication problem if up is a conjunc-
tive unequal-free mixed predicate and uT is a conjunctive
mixed predicate.

From Definition 6, a restricted implication problem (up
4 uT?) has a normalized predicate and a seminormal-
ized predicate ay. The next section will prove that the
general implication problem is NP-hard. Then in Section
IV, we propose an efficient algorithm for solving the re-
stricted implication problem.

111. THE GENERAL IMPLICATION PROBLEM
A general implication problem (aQ -+ uT?) has two

predicates UQ and uf which may involve six comparisons

as well as conjunctions and disjunctions. We shall prove
that the general implication problem is NP-hard. This
leads to a conclusion that the more general problem, the
derivability problem, is NP-hard.

Theorem 1: If disjunctions are allowed in uT, the im-
plication problem (up -+ U T ?) is NP-hard.

Proof: The following boolean satisfiability problem
[I51 is known to be NP-hard. “Given rn clauses C,, C2, - * - , C,, where Ci = (x i , v x,, V * - v x,,) for 1 s i
s m involving n boolean variables x I , xt , * * , x,,, the
question of whether the formula C, A Cz A - A C,,, is
satisfiable is NP-complete.’’ We prove this theorem by
showing that the boolean satisfiability problem can be re-
duced polynomially to the implication problem with dis-
junctions allowed in uT.

Given a boolean formula CI A C2 A * - * A C,,, with
boolean variables x I , x2, - - * , x,,, the following two steps
are used to reduce the formula.

1) Choose a boolean variable x, + , such that x , ~ + I + { x , ,
x,, - * ’ , x,,). Thus, CI A C1 A - * - A C,,, is satisfiable
if and only if C, A C2 A * * A C,, A x, + , is satisfiable.

operators: b 6 = * 1 , “***, 6 b < q * , C 4 < * * - , “>”, and ‘ ‘ ~ ”

2) Replace each boolean variable xi by a simple com-
parkon ui s vi . X i , the complement of xi , is replaced by

We denote the clause Ci. with the boolean variables re-
placed, by Ri. Since there is no dependence among the
variables, and by choosing different values of U; and U,,
we can get each simple comparison ui I vi to be true or
false. Thus, we have

is satisfiable if and only if

is satisfiable. Equation (3.1) is satisfiable if and only if

1 (U / I U ;) .

C I A C ~ A . . . A c ,

R , A R2 A * * * A R m A (~ i + l 5 V i + 1) (‘3.1)

(~ i + l I v i + !) = (1 RI V -I Rz V * * V 1 Rm:)
is not true [lo]. Note that each 1 Ri is a conjunctive mixed
predicate. The satisfiability of each 7 Ri can be checked
in polynomial time [3]. If for some i , -I Ri is unsatisfi-
able, then the i R, is removed from the implication prob-
lem. If all Ri’s (for i = 1, 2, - - - , m) have beem re-
moved, then the implication is not true and we are done.
In this way, the boolean variable satisfiability problem is
reduced to the implication problem. Thus, if disjunctions
are allowed in or, the implication problem is NP-had.

Theorem 2: If the “ # * ’ operator is allowed in uQ, the
implication problem (UQ + aT?) is NP-hard.

Proof: We show that the satisfiability problem of
conjunctive mixed predicates with “ # ” operators al-
lowed can be solved by the implication problem (oe -+

uT?) with “ # ” operators allowed in uQ. By Rosenkrantz
and Hunt [3] the former is NP-hard, so the latter is also
NP-hard.

Suppose that we have a seminormalized predicate U =

are simple comparisons with the ‘‘ # ” operator. The sa-
tisfiability of U can be checked by the following steps.

1) If one of the Ai’s is unsatisfiable, then U is unsatis-
fiable.

2) Assume that we are given a seminormalized selec-
tion A and a simple comparison A i . If both A and Ai are
satisfiable, then A Ai is not true if and only if 7 .Ai A
A is satisfiable. The satisfiability problem can be solved
by checking the implication problem based on the follow-
ing procedure.

A , A A2 A a * * A A,, where Ai’s (f o r i = 1, 2. - - * * n)

A := A I
For i = 2 to n do

If A --+ 7 Ai is not true then A : = AAA,
else return(a is unsatisfiable);

return(a is satisfiable);

Step 1 can be solved in linear time. Step 2 is actually
the solving of the implication problem n - 1 times. Since
the satisfiability problem involving the ‘‘ # ’* operator is
known to be NP-hard [3], the implication problem is NP-
hard.

Theorems 4 and 5 show that the general implicaition
problem is NP-hard. As the general implication problem

Reproduced uith pamission of copyright owner. Further reproduction prohibited.

SUN et ut.: PROCESSING IMPLICATION ON QUERIES I171

is a special caw of the derivability problem, by the lower
bound property we have the following result.

Corollary 1: The derivability problem is NP-hard.
In the next section, we shall show that if “# ” com-

parisons are not allowed in up and disjunctions are not
allowed in u2. this restricted implication problem can be
efficiently solved.

IV. THE RESTRICTED IMPLICATION PROBLEM
This section considers the restricted implication prob-

lem (UQ or?) in which UQ is a conjunctive unequal-free
mixed predicate and uT is a conjunctive mixed predicate.
Note that according to Definition 6. UQ and uT are ex-
pressed in normalized and seminormalized predicate, re-
spectively. Let G(up) be the corresponding weighted di-
graphs of up. We assume that no multiple edges exist
between two nodes in G(uQ) . If there were multiple
edges, the graph constructing algorithm will only keep the
edge with the smallest weight and remove all other edges.
Furthermore, both up and UT are assumed satisfiable. De-
termination of the satisfiability of a normalized predicate
is stated in Theorem 3 which is due to Rosenkrantz and
Hunt [3].

Theorem 3: For any normalized predicate uQ, UQ is un-
satisfiable if and only if there is a negative cycle in G(aQ).

Lemma 2: For any normalized predicate UP, UQ -+ U I
v + c if and only if there is a path in G(ua) from node U

to node v with weight less than or equal to c.
Proof; Since uQ and U 5 v + c are satisfiable, by

mathematical logic [lo], UQ -+ (U 5 U + c) if and only
if

- (U I v + C) A U Q = 0. (4.1)

Here Q represents an empty set or the logical expression
is unsatisfiable. By Theorem 3, 1 (U 5 v + c) A UQ is
unsatisfiable if and only if there exists a negative cycle in
the graph of (v 5 U - c - 1) A up. Note that (U 5 U
- c - 1) = 1 (U 5 v + c). Since UQ is satisfiable,
there is no negative cycle in G (uo). Thus, the negative
cycle must contain the edge (Y s U - c - 1). This im-
plies the existence of a path in G(uQ) from node U to node

H
Lemma 3: For any normalized predicate UQ and any

simple comparison U # v + c, uQ 4 (U # U -t c) if and
only if one of the following conditions occurs:

I) There is a path in G (up) from node U to node v with
weight less than or equal to c - 1 .

2) There is a path in G(UQ) from node U to node U with
weight less than or equal to (- c - 1).

v with weight less than or equal to c.

Proof: By mathematical logic [lo],

UQ --* U # v + c

c) UQ- (U 5 v + c - 1)

v (v 4 u - c - I)

SJ 1 (u 5 v + c - I)

A UQ 3 (v 5 U - c - 1). (4.2)

By (4.2) and Lemma 2, the “if” part is trivial. Here
we examine the “only if *’ part. If 1 (U s v + c - 1)
A UQ = 0, then UQ + U 5 U + C. By Lemma :2, the
condition (I) is proven.

If (U 5 U - c) A UQ, where (U 5 U - c) SR 1 (U 5
v + c - I) , is satisfiable, then by Lemma 2 there is a
path from node v to node U with weight less than or equal
to (-c - 1) in G((v s U - c) A up). This path cannot
contain the edge U I U - c; otherwise, there is a negative
cycle in G(up) which contradicts with the fact that UQ is

Lemma 4: For any normalized predicate UQ and any
seminormalized predicate uT, UQ + UT if and only if for
any simple comparison U s U + c (or U # U + c) in uT,
U 5 v + c (or U # v + c) is implied by uQ.

Proof: Let UQ, uT consist of n variables and UT = BI
A B, A - * - A Bk, where B,.’s are simple comparisons, the
following equivalence holds:

satisfiable. Thus, the condition (2) is proven.

vxl, . * ’ 9 -%(Up -* 07‘)

U V I , , *

evxl, ’ 9 xn[(UQ -* Bl) A (UQ 8 2)

* , X,,(UQ -+ B I A B, A ’ * A Bk)

* [vxl, ’ ’ xn(uQ -* El)]

A (Vxlr * * xn(uQ + &)I
A * . . A [V X ~ , * * * , X,,(UQ -* Bk)] . (4.3)

This is true if is a conjunctive mixed predicate and
UQ is in any form. If uQ is a normalized predicate and U,
is a seminormalized predicate, this lemma is proven by

Theorem 4 is a direct result of Lemma 2, Lemma 3,
and Lemma 4.

Theorem 4: For any normalized predicate up and any
seminormalized predicate uT. uQ -+ uT if and only if for
any simple comparison U I v + c in U T , there is a1 path
in C(ua) from node U to node U with weight less thian or
equal to c, and for any simple comparison U # v 4- c in
bT, one of the following conditions occurs:

1) There is a path in G (up) from node U to node P with
weight less than or equal to c - 1.

2) There is a path in G(uQ) from node U to node hi with
weight less than or equal to (-c - 1).

Now we are ready to present an algorithm to the solu-
tion of the restricted implication problem. The input
to this algorithm, RESTRICTED-IMPLICATION-
CHECK, is a seminormalized predicate uT and the graph
of a normalized predicate up. The output of this algorithm
is YES if UQ 4 UT; otherwise, the output is NO.

the above equivalence.

Algorithm RESTRICTED-IMPLICATION-CHECK
S 1 : If an attribute U appears in uT, but U is not a node

S2: Using Floyd’s Algorithm to find the weight of the
in G(uQ), then return (NO).

shortest path for each pair of nodes in G(IQ).

I172 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. IS, NO. IO. 0CTOBF.IR 198Y

If a negative cycle is found in running Floyd's al-
gorithm, then return(YES).

S3: For each comparison U 15; U + c in U T , check the
result obtained in S2.

If the shortest path from node U to node v in
G(up) has its path weight greater than c, then
return (NO).

If there is a shortest path from node U to node v
in G (U,) with its path weight > c - 1

and there is a shortest path from node v to node
U in G(uQ) with its path weight > (-c - 1),
then return(N0).

S4: For each comparison U # v + c in UT

S5: return(YES).

We denote the number of comparisons of U, by Ei and
denote the number of attributes in ai by V, for I = T, Q.
Here EQ is greater than or equal to the number of edges
in G(u,) and V, + 1 is equal to the number of nodes
(vertices) in G(uQ) including the node labeled "0".

S1 is a quick scan to eliminate some cases where the
implication is trivially unsatisfied. Its complexity is
O(VrVp) . Floyd's algorithm which can be found in most
graph algorithm books ([4], for example) is used to find
the weight of the shortest path for each pair of nodes. The
complexity of S2 is O(Vb) . If a negative cycle is found,
then uQ is unsatisfiable (Theorem 3) and the implication
is true. The complexity of S3 is O (E T) . The complexity
of S4 is also O(E T) . Thus, the complexity of the algo-
rithm is O(Er + Vi). For VQ = n and Er = k the com-
plexity of the algorithm is O(n3 + k) which is signifi-
cantly less than 0 (n 3 k) if the problem is solved based on
the satisfiability problem. If we assume that ET I Vi,
which is almost always true in real cases, then the com-
plexity of the algorithm is O(n3). Based on Lemma 1,
Theorem 4, and the above discussions, we have the fol-
lowing main result.

Theorem 5: The restricted implication problem (up 4
uT?) can be solved in O(n3 + k), where n is the number
of attributes in U, and k is the number of Comparisons in
UT*

In order to simplify the proof, we have assumed that
the domain of each attribute is the set of all integers. In
fact, this assumption is unnecessary. The algorithm pre-
sented above can be used for attributes having a set of
consecutive integers, either bounded or unbounded, as
their domain. The only thing we need to do is to modify
the predicates uT and U, by adding the domain constraints
into the graph G(U,). Let xi be the attribute appearing in
UT with domain [a i , b j] for 1 I i I n. if some of the xi's
do not appear in G(uQ), then the implication does not
hold. Otherwise, we begin adding edges. For each x i , by
the restriction ai I xi si b, in the following ways. If b, is
finite, we add an edge from node xi to node 0 with weight
bi into G(uT). If a, is finite, we add an edge from node 0
to node xi with weight -ai into G(uT). Similarly, we add
edges into G (Q) for each attribute appearing in up. Since
the algorithm presented above can solve the restricted im-
plication problem on predicates with unbounded domains

based on the modified graph, the restricted implication
problem with attributes having bounded domains is iread-
ily solved.
Now let us consider some applications of the proposed

RESTRICTED-IMPLICATION-CHECK algorithm.
Consider the following frequently asked database ques-
tion. Given a group of fragment predicates UT,,, UT?, ... , UT,, and one query predicate up, does there exist an
i(1 5 i I d) such that UQ + un is true? In the above
algorithm. we only run Floyd's algorithm to find the
shortest path of each pair of nodes in G(uQ) . For each
comparison in UT we simply compare their offset witlh the
weight of the shortest path in C (0,). This property mlakes
the algorithm much more efficient for the solution of the
above question. If predicate un has ki comparisons for i
= 1, - - * , d , then instead of O((cfE , k,) n3) time com-
plexity obtained by solving the problem by satisfiability ,
the algorithm we proposed reduces the time complexity

In the case when disjunctions are used in uQ(oQ
uQ, v - - v uQd, where ua's are conjunctive unequal-free
mixed predicates), the proposed algorithm can still be ap-
plied. Disjunctions in UQ can be handled by showing that
the implication is true if any of the uQ's (for I S j :S d)
in uQ is true. If each ua has n attributes, then the time
complexity is O (d (n 3 + k)), where k is the number of
comparisons in uT. However, if conjunctions are used in-
stead of disjunctions, i.e., U? = 09, A - - - A upd, the
corresponding time complexity will be increased to

Another important feature of the proposed algorithm is
the ability to allow the " # * * operator in uT. It is kinown
that the " # '' operator makes the satisfiability problem
very difficult to solve [3] should it occur in the predicates.
However, as indicated in Lemma 3, our proposed algo-
rithm does allow the occurrence of the " # " operator in
UT-

In the next section, we shall show that in some special
cases, our proposed algorithm can solve the general im-
plication problem in which " f " operators are used in UQ

or disjunctions are used in UT.

V. THE INFLUENCE OF f OPERATORS AND
DISJUNCTIONS

In this section we show that the "2" operator in UQ

sometime have no influence on the implication prolblem.
In this case, the " f " comparison can be ignored. The
influence of disjunctions in

Theorem 6: Let U be a normalized predicate. If (x #
y + c') A U is satisfiable and ((x # y + c ') A U) + (U
s U + c) , then U 3 (U I U -t c + 1).

to 0 (~ 3 + cp=, k,).

0 ((d n) 3 + k).

is also studied.

Proof: Since
(x # y + c') = ((x 5 y + c' - 1)

v (y 5 x - c' - I))
where

((X # y + c ') A 0) E ((x I y -I- C' - 1 A U)

V (y S x - c' - 1 A (I)).

Reproduced uith permission of copyright ownsr'. Further reproduction prohibited.

SUN r f al.: PROCESSING IMPLICATION ON QUERIES I I I.'

Consider the following three cases.
1) If (x 5 y + c' - 1) A a is unsatisfiable, then a

-+ 1 (x s y + c' - 1), where 1 (x I y + c ' - 1) P
y s x - c'. Since (x # y + c ') A a is satisfiable, we
must have (y I x - c' - 1) A a satisfiable and ((y I

A U) -+ (U S v + c + I) . Because a -+ (y I x - c'),
it follows that U = (y I x - c ') A a and U + (U s t!
+ c + I) .

2) If (y 5 x - c' - 1) A a is unsatisfiable, then a --*

7 (y 5 x - c f - I), where 1 (y I x - c' - 1) I (x
c y + c ') . By a similar argument as I) , we have a --* (U
I V + C + I) .

3) If both (y I x - c' - I) A a and (x 5 y + c' -
1) A a are satisfiable, then

x - c ' - I) A u) - * (u s v + ~) . T h u s , ((y I x - ~ ')

((y 5 x - c' - I) A a) + (U 5 v + c)

and

((x I y + c' - 1) A U) --* (U 5 + c) .

By Lemma 2 there exists a path pI from U to o with
weight less than or equal to c in the weighted digraph
G((y s x - c' - 1) A a). If p , does not contain the
edge (y I x - c' - I) , by Lemma 3 we have a (U
I v + c) and the theorem is proved. Now we assume
thatp, contains the edge (y 5 x - c f - 1). Furthermore,
we assume that in the path pI. the weight from node U to
node y is b and the weight from node x to node v is e. By
the same reason there exists a path pz from U to v with
weight less than or equal to c in G((x z; y + c' - 1) A
a). Similarly, we assume that p2 contains the edge (x I
y + c' - 1). Furthermore, we assume that in the path p 2 ,
the weight from node U to node x is a and the weight from
node y to node v is d . The relation of those nodes and
paths is shown in Fig. 1.

If a -.) (U 5 v + c) is true, then a ---. (U 5 v + c +
1) is true and we are done. If a -.) (U 5 v + c) is not
true, we have the following inequalities:

b + d > a + c ' - l + d

a + e > b - c' - 1 + e

b + d > b - c ' - I + e
a + e > a + c ' - l + d .

Subsequently, we have

U - b 5 -c'

a - b e -c'

e - d r c '

e - d L c'.

Thus, we obtain b - a = c' and e - d = c ' which
result ina + e = a + c' + d. Sincea + c' - 1 + d s
c, we have a + e s c + 1. Thus there is a path from U
to U with weight less than or equal to c + 1 in G(a). By
L e m m a 2 w e h a v e u + (u r u + c + 1). rn

w
Fig. I . The graph reprcsentution of the paths in Theorem 6.

Theorem.6 can be generalized to seminormalized Ipred-
icates containing more than one " # " comparisons.

Corollary 2: If up = (a, A a2) is satisfiable and a -,
(U I v + c) , where al is a conjunction of m * ' f. " simple
comparisons and is a normalized predicate, then a? --*
(U I Z? + c + m).

Proof: This proof is done by induction on the num-
ber of '"#" comparisons in ul and using the result of

From Lemma 2, Lemma 3, and Corollary 2. we have
the following result.

Corollary 3: If up = (ul A u2) is satisfiable and up -+

0 7 , where al is a conjunction of m " # " simple coimpar-
isons, u2 is a normalized predicate, and uT is a seminor-
malized predicate, the following hold:

1) For any simple comparison U 5 U + c in a,., u2 -+

(U s U + c + m).
2) For any simple comparison x + y + c' in uT, a2 -+

(x s y + c ' + m - I)ora2 3 (y 5 x - c'+ m - I) .
Corollary 3 may be used to solve a general implilcation

problem (aQ 4 Or?) when the '' # " operator is involved
in the predicate uI. We can first process (a? --* a,?). For
each simple comparison U I ZJ + c in aT. if q -+ (U 5
v + c) then U I U + c can be removed from uT. If a,
does not imply U I v + c + m, then the implication (aQ
--+ uT?) is not true. For each simple comparison x :f y C
c' in or , we have a similar statement for x 4 y + 4;' - I
or y 5 x - c' - 1 . In this way if the above conditions
are satisfied, without processing the " # " comparisons
in Up, the implication problem (UQ -+ q?) can be solved.
Based on this result, heuristic methods can be created.
Now we turn to the case when disjunctions are allowed

in UT in the general implication problem (aQ -+ a,?). Here
we assume that the up is a satisfiable normalized predi-
cate, art and UT? are satisfiable seminormalized predi-
cates, and ay E (aTt V uT2).

Theorem 7: If (TI', -t i (U i u + c + 1) and au -+

(UT , V (aT2 A U 5 U + c)), then ac, 4 (U I; v -1- c) or

Theorem 6.

OQ -+ U T I *

I I74 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. IO. OCTOBER 1989

-e -1 \

Fig. 2. The graphmpresentation of the paths in Theorem 7.

Proof: Since UQ + (urI V (aTz A U 5 v + c)) , by
mathematical logic [101, we have (i (U I U + c) A uQ)
+ aTl. If 1 (U 5 U + C) A is unsatisfiable, then uc,
4 (U s v -?- c) and we are done. If 7 (U 5 v + c) A

is satisfiable, since url + -I (U S v + c + 1), where
-(U s v + c + 1) = (U 5 U - c - 2)and (- (U I
Y + c) A aQ) + U,, we have (1 (U S U + c) A aQ) +

(U d U - c - 2). There is a path p from U to U with
weight less than or equal to (-c - 2) in the weighted
graph G(7 (U S v + c) A ae). If the path p contains
the edge 1 (U s v + c) = (U I U - c - I) , then aQ
has a negative cycle (see Fig. 2). This contradicts the as-
sumption that ap is satisfiable. If the path p does not con-
tain theedgeu s U - c - 1, thenaQ-) (U s U - c -
2). Thus we have (1 (U 5 v + C) A aQ) = uQ, and aQ

Since Orl -+ 1 (U S v f c + 1) is equivalent to having
a negative cycle with weight less than - I (Lemma 2) in
G(uT, A (U I v + c)) . Theorem 7 can be restated in the
following form.

Theorem 7': If G(aT, A (U 5 v + c)) has a cycle with
weight less than - 1 and uQ + (uTl V (uT2 A (U 5 v +
c))), then ae 4 url or UQ + (U s U + c) .

Theorem 7 shows that to solve the implication problem
uQ -+ (orl v q2), we can do preprocessing on
uTI and aT,. We first find all the simple comparisons U s
v + c i n a T I s u c h t h a t a T , + -.(U 5 v + c + 1)istrue.
Then we find all the simple comparisons U ' i v' + c' in
an such that uTI -t 1 (U ' s U' + C' + 1) is true. If aQ
--+ uTz is true, we are done and the implication up +

(url V (IT*) is true. If UQ + UT^ is not true, then UQ -t (U

5 v + c) must be true for all the comparisons found
above. Otherwise, the implication up --* (a, v a,) is not
true. Similar arguments can be stated for arl and all the
comparisons U ' 5 U' + c' found above. Thus, in these
conditions, the implication problem uQ 4 (uTl V an) can
be solved without processing the disjunctions in uT. The
following corollary is a direct result of Theorem 7'.

Corollary 4: (IQ --* (U f v + c) if and only if uQ +

(~ ~ v + c - I) o r u ~ 4 (~ ~ u - c - I) .
Proof: Since(u # v + c) = (((U 5 v -+ c - I)

V (U 5 U - c - 1 I), the "if" part is trivial.
Since(u S v 4- c - 1) A (U I U - c - 1)formsa

cycle with weight -2, the "only if" part follows from
Theorem 7'

+ uTI is proved. H

Note that by Lemma 2, Corollary 4 is equivalent to
Lemma 3. In other words, Corollary 4 is another proof
for Lemma 3.

VI. CONCLUSION
This paper has addressed the problem of solving the

implication problem (up + aT?) which is frequently used
in many database applications. A general implication
problem involves '' = * '
" 2 * ' comparison operaton, and conjunctions and dis-
junctions among predicates. We have proven that the gen-
eral implication problem is NP-hard. For the restricted
implication problem in which the "# " operator is not
allowed in and dis'unction is not allowed in uT, we

parisons in uT and n is the number of attributes in ae,
algorithm to solve the problem. The proposed algorithm
is much more efficient than the traditionally used algo-
rithm which has complexity O(n3k).

For the general implication problem, we have shown
that in some conditions even when the " # *' operator is
allowed in aQ or disjunctions are allowed in uz, the prob-
lem can still be solved using the algorithm proposed in
Section IV. These necessary conditions stated in Section
V are useful in creating heuristic methods for solving gen-
eral implication problems.

ACKNOWLEDGMENT
The authors are indebted to anonymous referees for their

constructive comments and suggestions. We would also
like to thank V. Drake for assisting with the final manu-

REFERENCES

, U * . . , "<*., LL<.., ''>.., -

proposed an O(k + n 4), where k is the number of com-

script.

[I] S. Finkelstein. "Common expression analysis in database applica-
tion:." in Proc. ACM SICMOD Conf.. 1982, pp. 235-245.

121 P.-A. Larson and H. Z . Yang. "Computing queries from derived
relations." in Proc. 11th lnt. Con/. Very Large Databases, 1985, pp.

131 D. J . Rosenkrantr and H . B. Hunt 111. "Processing conjunctive pred-
icates and queries." in Proc. 6th Int. ConJ Very Large Dutubases,

141 S. Even, Gruph Algorifhms. Rockville. MD: Computer Science
Press. 1979.

IS1 M. Jarke and 1. Koch. "Query optimization in database systems,"
ACM Compuf. Surwys, vol. 16, no. 2, pp. I 11-152, June 1984.

161 M. Jarke. "Common subexpression isolation in multiple query opti-
mization," in Query Processing in Dutuhse Systems, W. Kim, D.
Reiner. and D. Batory. Eds.

171 N. N. Kamel. "The use of controlled redundancy in self-adaptive
databases.'' Ph.D. dissertation. Dep. Comput. Sci., Univ. Colorado,
Boulder. Aug. 1985.

181 -. "Performance enhancements of rete networks through the use
o f page-nodes." in Prm. 3rd IEEE Con/. Artifciul InfelliRencc Ap-
plications. Orlando, FL, 1987.

191 N. N. Kamel and R. King, "Optimal mmngement of temporaries in
distributed databases," in Proc. Second In,. Con/. Supercomputing.
1986.

I IO] H. Hermes. Intrfxlurtinn io Muthemuric Lugic. New York: Sprin-
ger-Verlag.

1 1 1 1 T. K. Sellis. "Global query optimization." in Proc. ACM
SICMOD'86. 1986. pp. 191-205.

1121 R. Munz. H.-I. Schneider, and F. Steyer. "Application of sub-pred-
icate tests in database systems," in Proc. Fifrh In!. Conj Very Large
Dufu Bases. Oct. 1979. pp. 426-435..

1131 I . A. Blakeley, N. Cobum, and P.-A. Larson. "Updating derived
relations: Detecting irrelevant and autonomously computable up-

259-269.

1980. pp. 64-72.

New York: Springer.

Reproduced uith permission of copyright owner. Further reproduction prohibited.

SUN rt U / . : PROCESSING IMPLICATION ON QUERIES I I75

dates." in Prw. FlJIh In(. Con/: Very h r g e Dutu Buses. Kyoto. 1986.

J. A. Blakeley. P. A. Larson, and F. W. Tompa. "Efficiently updat-
ing materialized views." in Proc: ACM SIGMOD'86. pp. 61-71.
C. H. Papadimitriou and K. Steiglitz, Cotnbinotionul Oprimizution
Algorithm And Complexity.
D. Maier and J. D. Ullman, "Fragments of relations," in Proc. ACM

J.-P. Cheiney. P. Paudemay. and R. Michel. "An extension access
path to impmve joins and selections." in Proc. 1986 Inr. ConJ Dura
Engineering, 1986. pp. 270-280.

pp. 457-466.

Englewood Cliffs, NJ: Prentice-Hall.

S/GMOD Con/.. 1983. pp. 15-22.

Nabil N. Kame1 received the B.S. degree in clcc-
trical engineering from Cairo University in 1978.
the M.S. degree in electrical engineering from the
University of Colorado in 1983. and rhe Ph.D. dc-
pree in computer science from the University of'
Colorado in 1985.
He has been o n the faculty of the Departments

of Computer Science at the American Univenitj
in Cairo and Michigan Siate University. He has
also been a visiting scholar at the University or
Indonesia in Jakana and a researcher at the Unitcd

[IS] S. &ri, M; Negri, and G. Pelagatti, "Horizontal data pafiitioning in Nations Development Program project in Cairn. His research interests in-
clude databrse theory. database design. expen systems. geographic infor-
mation systems. and distributed database systems.

database design," in Proc. ACMS/GMOD'82. pp. 128-136.

Xian-He Sun received the B S. degree in mathe-
matics from Beijing Normal University. Beijing.
China. in 1982 and the M S. degree in mathemat-
ics and another M S. degree in computer science
from Michigan Scale University. East Lansing. in
1985 and 1987, respectively

He is now a Ph D. candidate and system man-
ager in the Department of Computer Science at
Michigan State University. Hc is active in the
areas of databases, parallel processing, and sci-
entific computation

Mr. Sun is a member of the IEEE Computer Society and Phi Kappa Phi.

Lbnd M. Ni (S'78-M'81-SM'117) wab born in
Taiwan on December 13. 1951. He received the
B.S. degree in clcctrical engineering from Na-
tional Taiwan Univenity in 1973. the M.S dc-
gree in electncal and computer engineering from
Wayne State University. Detroit. MI. in 1977. and
the Ph.D degree in electrical engineering from
Purdw University. West Lafayette. IN. in I980

In 1981 he joined the faculty of the Depaflment
of Computer Science. Michigan State University.
East Lansing. where he is currently a Professor

and Director of the Advanced Computer Systems Laboratory. During the
bummers of 1979 and 1981. he was a Researcher at the IBM San Josc Re-
search Laboratorier. During the year of 1987-1988. he was a viriting sci-
entist in the Division of Mathematics and Computer Science at Argonne
National Laboratory. He i s an Aqsociate Editor of the Jounarl nJPurdlrl
und Distributed Computing. His research interests include parallel prn-
cessing. distributed computing, VLSl design automation. and computer
networks.

Dr. NI bewed as a Distingusihed Viritor of the IEEE Computer Society
from 1985 to 1988. He is a member of ihe Association for Computing
Machinery and SIAM

Reproduced uith pamission o€ copyright ouner. Further reproduction prohibited.

