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Abstract—Parallel file systems (PFS) are widely-used to ease the I/O bottleneck of modern high-performance computing systems.

However, PFSs do not work well for small requests, especially small random requests. Newer Solid State Drives (SSD) have excellent

performance on small random data accesses, but also incur a high monetary cost. In this study, we propose SLA-Cache, a Selective

and Layout-Aware Cache system that employs a small set of SSD-based file servers as a cache of conventional HDD-based file

servers. SLA-Cache uses a novel scheme to identify performance-critical data, and conducts a selective cache admission (SCA) policy

to fully utilize SSD-based file servers. Moreover, since data layout of the cache system can also largely influence its access

performance, SLA-Cache applies a layout-aware cache placement scheme (LCP) to store data on SSD-based file servers. By storing

data with an optimal layout requiring the lowest access cost among three typical layout candidates, LCP can further improve system

performance. We have implemented SLA-Cache under the MPICH2 I/O library. Experimental results show that SLA-Cache can

significantly improve I/O throughput, and is a promising approach for parallel applications.

Index Terms—Parallel I/O system, I/O middleware, solid state drive, cache system

Ç

1 INTRODUCTION

DATA access has become the major performance bottle-
neck of modern computer systems. Over the past three

decades, processor speeds have increased nearly 50 percent
per year, but disk speeds have only improved by roughly
7 percent [1]. Despite the large performance disparity
between processor and storage device, many scientific
applications are becoming increasingly data intensive in the
high-performance computing (HPC) domain. For example,
the astro program in astronomy, generates tens of gigabytes
of data in one run [2]. Such enormous data requirements are
putting unprecedented pressure on HPC systems.

To meet the ever increasing I/O demands, HPC clusters
rely on parallel I/O systems to provide efficient data serv-
ices. Parallel I/O system consists of several layers including
application, I/O middleware, parallel file system (PFS), and
storage system layer. In general, a parallel file system, such
as PVFS [3], Lustre [4], and GPFS [5], will stripe file data
across multiple file servers. By allowing file requests to be
concurrently served by multiple nodes, the I/O system per-
formance can be significantly improved.

While PFSs are an effective approach to increase the I/O
performance of large requests, they fail to perform well for

small requests, especially random requests. One reason is
that small requests lead to poor I/O parallelism among mul-
tiple servers. The other is that hard disk drives (HDD), the
dominant storage media on current servers, are notoriously
slow in random data access due to the mechanical nature of
disk head movements. Small random requests have become
the number one performance killer of PFSs [6], [7], [8].

A number of approaches have been proposed in the I/O
hierarchy to speed up the parallel I/O system performance.
I/O middleware techniques increase disk throughput by
transforming a large number of small and non-contiguous
requests into large contiguous requests [9], [10]. Memory
caching strategies reduce the I/O latency by accessing more
data from high-speed memory instead of storage devi-
ces [11], [12]. I/O scheduling approaches reorganize the
incoming I/O requests to create more sequential accesses in
order to improve performance [13]. These methods are very
helpful, however, they need to be extended to take the
advantage of the availability of new technologies, such as
solid state drives (SSDs).

Advanced storage devices, such as SSDs, provide a
promising solution to improve small random accesses. SSDs
can provide low I/O latency, high data bandwidth and low
power consumption, thus are attracting attention in HPC
systems [14]. Generally, an SSD is commonly used as a
cache of HDD [6], [7], [15] or as a persistent storage device
on a single file server [16], [17]. While straightforward to
implement, these approaches require a large number of
SSDs in a large-scale storage cluster, thus may be costly and
inflexible. Furthermore, since SSDs are deployed on each
file server, the global utilization of SSDs becomes impossi-
ble though it can be very useful to improve I/O system per-
formance [18], [19].

In this paper, we propose SLA-Cache, a Selective and
Layout-Aware SSD Cache architecture to combine the mer-
its of SSDs with a parallel file system. The main idea is to
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employ a small set of SSD-based file servers (SServers) as a
cache of conventional HDD-based file servers (HServers),
and apply two polices to improve the cache system perfor-
mance. To make full utilization of the limited space of SSer-
vers, SLA-Cache uses a selective cache admission (SCA)
policy to only buffer or cache large amounts of perfor-
mance-critical data for both read or write requests. To this
end, SLA-Cache develops a cost model in a parallel I/O sys-
tem to identify the performance-critical data. Furthermore,
since data layout of a parallel file system can largely
affect the I/O performance of the cache system, SLA-Cache
applies a layout-aware cache placement (LCP) policy to
stores data on SServers. Instead of using a fixed data layout,
SLA-Cache places data on SServers with an optimal layout
requiring the lowest access cost among three typical layouts.
Compared to the cache system adopting a layout-oblivious
placement scheme in our conference version [8], SLA-Cache
can further improve I/O system performance.

Conventionally, a cache system uses data locality princi-
pals to increase cache efficiency. However, SLA-Cache is
designed to utilize an SSD’s ability to support small random
data accesses. Therefore, the selection algorithm of SLA-
Cache is derived from the available performance benefits of
SSD-based file servers, not the data access locality. Applica-
tion-aware scheduling to utilize data access performance on
SSDs and the parallelism of PFS is one key strength of SLA-
Cache. Moreover, SLA-Cache stores data on SServers in a
layout-aware style, which is the first effort to further improve
cache system performance in a parallel I/O system.

In summary, we make the following contributions.

� We introduce a cost model for parallel file systems,
which evaluates the access time of a file request on
HServers under one data layout, and on SServers
under three typical data layouts.

� We propose a selective and layout-aware caching
scheme, which first identifies performance-critical
data by analyzing the data access cost under different
layouts, and then uses a selective cache admission
and layout-aware cache placement policy to take full
advantage of the hybrid SSD and PFS architecture.

� Wehave implemented SLA-Cache under theMPICH2
I/O library. Experimental results with representative
benchmarks show that SLA-Cache can significantly
improve the I/O performance of an original I/O sys-
tem, a cache systemwith non-selective caching admis-
sion policy, as well as a cache system with selective
but layout-oblivious caching admission policy.

The rest of this paper is organized as follows. The back-
ground and motivation are given in Section 2. Section 3
describes the design of SLA-Cache and Section 4 presents
the detailed implementation. Section 5 evaluates the perfor-
mance of SLA-Cache with representative benchmarks.
Section 6 discusses the related work. Finally, we conclude
the paper in Section 7.

2 BACKGROUND AND MOTIVATION

2.1 PFS Performs Poorly for Small
Random Requests

Due to the nature of HDDs and the low parallelism of
servers, PFSs usually show poor performance for small

random requests. To illustrate this, we ran IOR [20] on a
PVFS2 file system with eight file servers (each includes a
single HDD). We set the number of processes to 16, the
overall file size to 16 GB, and vary the request size from
4 KB to 32 MB. Each of the n MPI processes reads its
own 1=n of the shared file, and continuously issues
requests with random offsets.

Fig. 1 demonstrates the aggregated throughput for differ-
ent request sizes during random I/O operations. The aver-
age throughput is under 30 percent of the maximal system
throughput with different request sizes from 4 to 256 KB.
For request size larger than 8 MB, the I/O performance
shows small variance and is approaching the maximal I/O
system performance. These results confirm that small ran-
dom access is a major performance impediment to parallel
I/O systems.

2.2 SSD Has Workload-Dependent
Performance Advantages

As SSDs are completely built on semiconductor chips, they
provide much higher data transfer rate and lower access
latency than HDDs. To show the performance advantages
of SSDs, we tested I/O throughput of an OCZ-RevoDrive
X2 SSD and a Seagate HDD in our experiments. We make
two important findings for different access patterns. First,
SSD has the most significant performance gain in random
data accesses with small request sizes, for both reads
and writes. For example, with a request size of 4 KB, SSD
achieves more than 14.5 times and 27.2 times higher
throughputs than HDD for random reads and writes,
respectively. Second, the relative performance gains of
reads and writes diminish as request size increases. For
example, if the request size increases to 256 KB, the rela-
tive performance gains of sequential reads and writes
diminish to 2.2 times and 1.9 times. Similar findings can
be found in [16].

These observations indicate that performance benefits of
a single SSD are highly dependent on workload access pat-
terns. In terms of a parallel I/O system, the achievable per-
formance benefits of the SServers are also dependent on the
number of the HServers and the number of the SServers,
because the I/O parallelism is very important to the aggre-
gate I/O performance. We must identify the data that can
bring the most performance benefits and migrate them into
the SServers. SLA-Cache identifies the performance critical
data via a proposed cost model, and then uses a smart selec-
tive cache admission policy to make full utilization of the
limited SServer space.

Fig. 1. I/O throughput normalized to the maximal system performance
for random reads with different request sizes.
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2.3 Data Layout Affects the Cache Performance

A parallel file system, such as PVFS [3], Lustre [4], and
GPFS [5], supports three typical data layout policies—one-
dimensional horizontal (1-DH), one-dimensional vertical (1-
DV), and two-dimensional (2-D) data layout [21]. 1-DH is
the simple striping method that distributes a process’s data
across all available servers; 1-DV performs no striping at all,
and instead places the file data on one server; 2-D is a
hybrid method, it distributes the file on a subset of servers.

One can choose to distribute file data on servers with a
desired layout policy. As described in our prior work [18],
[21], each layout policy is only suitable for a specific kind of
I/O patterns and server configurations. For example, when
the number of processes is far less than the number of servers
and the request size is very large, 1-DH brings the best I/O
performance among the three policies. However, when the
number of processes is much larger than the number of serv-
ers, 1-DVwould be the best choice, because each server has to
serve requests fromall processes, incurring severe I/Oconten-
tionwhich can significantlydegrade the systemperformance.

Since data layout in a parallel file system can largely
affect I/O performance, data should be stored on the under-
lying servers with a proper layout. In SLA-Cache, we do not
change the original data layout (1-DH by default) on HSer-
vers, but we store the data on SServers in a layout-aware
style. With an optimal layout requiring lowest access cost
among the three typical layout candidates, the cache system
performance can be further improved.

3 SLA-CACHE DESIGN

SLA-Cache aims to use SSD-based file servers to cache per-
formance-critical data of a parallel I/O system. By exploit-
ing performance advantages of SSD-based file servers
for small random requests, SLA-Cache can significantly
improve the I/O system performance.

3.1 Architecture Overview

Fig. 2 shows the high performance computer systems for
which SLA-Cache is designed. SLA-Cache acts as an aug-
mented module to MPI-IO library [22], which is a middle-
ware between applications and underlying PFSs. In these
systems, besides the traditional HDD-based file servers, there
are a small number of SSD-based file servers. HServers are
accessed by the original parallel file system (OPFS); SServers
act as a fractional cache of HServers and are accessed by the

cache parallel file system (CPFS).When application processes
pass their I/O requests to MPI-IO, SLA-Cache intercepts all
the requests and chooses the proper servers to serve them.

Positioning SLA-Cache at the middleware layer is ideal
for several reasons. First, key global data access information
can be used to improve performance. Second, the middle-
ware layer is independent of the file system, allowing the
solution to support multiple file systems, such as PVFS [3],
Lustre [4], and GPFS [5]. Third, the plug-in design is trans-
parent to applications, therefore user programs do not
require any modifications. Finally, because only a small
cluster of SSDs are deployed into the system, the design is
flexible and highly cost-effective.

Fig. 3 presents the key software modules of SLA-Cache. It
includes three components: Data Identifier, Redirector and
Rebuilder. Data Identifier intercepts every file request issued
to HServers, and identifies requests for performance-critical
data using a data access cost model. Redirector redirects the
selected requests to the high-performance SServers. While
selected write requests and cached read requests are redir-
ected to SServers, other write requests and missed read
requests are directed to the traditional HServers. Rebuilder is
responsible for flushing the selected write data back to HSer-
vers, and fetching selected read data to SServers. In addition
to the functional components, SLA-Cache maintains two
important data tables, CDT and DMT, to recognize perfor-
mance-critical data and keep track of cached data.

3.2 Data Access Cost Model

Since SServer has a relatively small storage capacity, it is
cost-efficient for SLA-Cache to only cache performance-
critical data. Thus, the potential performance benefit of redi-
recting a request to SServers must be evaluated to prioritize
their eligibility for caching. To this end, a cost model is
derived to evaluate the data access time for each file request
in a parallel file system.

We consider three data layouts: 1-DH, 1-DV, and 2-D, as
shown in Fig. 4. We choose these layouts because they are
typical and widely used in current parallel file systems.
Since we do not change the data layout on HServers,
we assume the original data are placed on HServers with
the default 1-DH layout. But for the cache data, we assume
them can be distributed on SServers with one of the three
layouts to achieve best performance. Table 1 lists the corre-
sponding parameters in the model.

Fig. 2. The SLA-Cache architecture overview.

Fig. 3. The software structure of SLA-Cache.
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3.2.1 Access Cost of Request on HServers

Under 1-DH Layout

For each file request req served by HServers, the access cost
is defined as

TH ¼ Ts þ Tt; (1)

where Ts is the startup time, including disk seek and rota-
tion delay, and Tt is the data transfer time spent on actual
data movement.

Startup time. As a parallel request req may involve multi-
ple sub-requests on m file servers, the startup time of req is
determined by the maximum of all its sub-requests. We fist
calculate the startup time of a single sub-request, then
describe the startup time of the file request.

Let a denote the startup time of a sub-request on a single
HServer, then a usually is a random variable since multiple
sub-requests from different processes will be concurrently
served by the HServer. Assume a follows a uniform distri-
bution on [a, b], then its probability function is

P ða < xÞ ¼ x� a

b� a
; a 4 x 4 b; (2)

where a is the minimal startup time cost on an HServer, and
b is the maximal startup cost.

Let X denote the startup time of request req, then it can
be a variable X ¼ maxða1;a2; . . . ;amÞ, where ai ( 1 4
i 4 m) has an independent identical distribution as a. Thus
the probability density function ofX is

fðxÞ ¼ m� ðx� aÞm�1

ðb� aÞm ; a 4 x 4 b: (3)

With Equation (3), the startup time of req can be calcu-
lated as

Ts ¼
Z b

a

xfðxÞdx ¼ aþ m

mþ 1
ðb� aÞ: (4)

Under 1-DH layout, because in the best case there is only
one seek operations on each HServer, a ¼ aH . But in the
worst case, there are p seeks since an HServer has to concur-
rently serves p processes, thus b ¼ p � aH . Based on the
value of a and b, we can gets the cost of Ts

Data transfer time. The data transfer time Tt is determined
by the maximal data transfer time of all the m sub-requests.
Since each sub-request’s data transfer time is proportional
to its size, we first calculate the size of each sub-request,
then discuss Tt for the whole file request according to the
maximal sub-request size.

Under 1-DH layout, for a given request req with offset f
and size r, the serial number of the involved beginning file

stripe is B ¼ b f
strc, the ending file stripe is E ¼ bfþr

str c, and the

number of the involved file servers is

m ¼ E �Bþ 1; E �Bþ 1 < M
M; otherwise:

�
(5)

Accordingly, the size of the beginning fragment can be
calculated as b ¼ str� f%str, and the size of the ending
fragment is e ¼ ðf þ rÞ%str. Fig. 5 shows an example of the
possible sub-request distributions. Let 4 ¼ E �B, sðiÞ is
the sub-request size on server i (1 � i � m), then sm ¼ max
fsð1Þ; sð2Þ; . . . ; sðmÞg can be calculated as Table 2. Based on
the value of sm, the data transfer time

Tt ¼ sm � bH: (6)

With Equations (4) and (6), TH of each file request in
Equation (1) can be obtained.

Fig. 4. Three typical data layouts in a parallel file system.

TABLE 1
Parameters in Cost Analysis Model

Symbol Description

M Number of HServers
N Number of SServers (N < M)
str Stripe size of the parallel file system
g Number of storage groups in 2-D layout
p Number of processes
f File offset of request req
r Data size of request req
aH Average startup delay for HServer
bH Cost of access one unit of data for HServer
aS Average startup delay for SServer
bS Cost of access one unit of data for SServer

Fig. 5. Four cases where a file request involves a different number of
sub-requests.

TABLE 2
The Maximal Sub-Request Sizes in Different Access Cases

Case Maximal sub-request size (sm) Condition

1 r 4 ¼ 0
2 maxfbþ eþ ðd4Me � 1Þ � str; 4 > 0&4%M ¼ 0

d4Me � strg
3 maxfbþ ðd4Me � 1Þ � str; 4 > 0&4%M ¼ 1

eþ ðd4Me � 1Þ � strg
4 d4Me � str otherwise
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3.2.2 Access Cost of Request on SServers

under Three Layouts

For each request served by SServers, we calculate the access
cost in a similar way but with two differences. First, we
evaluate the cost under three typical data layouts. Second,
the storage parameters of SServers and HServers show dis-
tinct features in the model. On the one hand, SServer has a
much smaller start up time than HServer. On the other
hand, SServer has a smaller data transfer time than HServer.

For a given request req, the number of involved SServers
and the maximal sub-request size are different under 1-DH,
1-DV, and 2-D data layouts. We calculate the data access
cost of req respectively as following.

� For 1-DH, we assume nh is the number of involved
SServers, then the startup time

T 1h
s ¼ aþ nh

nh þ 1
ðb� aÞ; (7)

where a ¼ aS and b ¼ p � aS . Here we set a and b
with these values because each SServer only needs
one seek operations to serve a continues request in
the best case and needs p startup operations to con-
currently serve all the p processes in the worst case.

Assume snh is the maximal sub-request size, then
the data transfer cost is

T 1h
t ¼ snh � bS: (8)

� For 1-DV, assume nv is the number of involved SSer-
vers under this layout, then the startup time is

T 1v
s ¼ aþ nv

nv þ 1
ðb� aÞ; (9)

where a ¼ aS and b ¼ b p
Nc � aS . Since there are b p

Nc
processes on each SServer at most, we calculate b dif-
ferently compared to 1-DH layout.

Similarly, assume snv is the maximal sub-request
size, then the data transfer cost of req is

T 1v
t ¼ snv � bS: (10)

� For 2-D, we assume ng is the number of involved
SServers, then the startup time of req can be calcu-
lated as

T 2d
s ¼ aþ ng

ng þ 1
ðb� aÞ; (11)

where a ¼ aS and b ¼ bpgc � aS . We set b with this

value because there are bpgc processes on one SServer

at most in this case.
For the data transfer cost, assume sg is the maxi-

mal sub-request size, then it can be described as

T 2d
t ¼ sng � bS: (12)

Based on Equation (7) to Equation (12), we can get the
data access costs of req on SServers under three data lay-

outs, denoted by T 1h
S , T 1v

S , and T 2d
S , which are the sum of the

corresponding startup time and transfer time respectively.

The above formulas show that more processes will lead
to a larger access cost whatever the data layout is. This is
because a larger p produces a longer startup time, implying
that the model could dynamically change under I/O inter-
ference from multiple processes.

3.3 Layout-Aware Critical Data Identification

With the proposed data access cost model, the available per-
formance benefit of request req on SServers under three data
layouts can be calculated as following:

B1h ¼ TH � T 1h
S ; (13)

B1v ¼ TH � T 1v
S ; (14)

B2d ¼ TH � T 2d
S : (15)

For the given request req, each layout may incur a differ-
ent access cost. Although an HServer has lower performance
than an SServer, all HServers in a parallel environment can
provide higher I/O performance if more HServers are
deployed. Thus, the performance benefit of each layout is
not always positive.

Among the three layouts, the optimal data layout yields
the lowest access cost and brings the maximal performance
benefit, hence the data should be placed on SServers with
this optimal layout if needed. Assume the maximal perfor-
mance benefit of req is B, then B can be described as

B ¼ maxfB1h; B1v; B2dg: (16)

To maximize system performance, Data Identifier identi-
fies the performance-critical data based on the value of B. A
positive B means that serving the request on SServers will
reduce the I/O access time, i.e., increase the I/O system per-
formance, thus the request should be critical and served on
SServers with the optimal layout. Otherwise, serving the
request on HServers helps improve the I/O performance
and there is no need to serve it on SServers. Therefore, if B
of a request is larger than zero, Data Identifier regards the
requested data as performance-critical data, and selectively
caches it on SServers with the optimal data layout bringing
maximal performance benefit.

Previous work identifies performance-critical data only
based on the value of B1h [8]. If B1h is larger than zero, the
data is regarded as performance-critical and should be
cached on SServers. As only default 1-DH layout is consid-
ered, this layout-oblivious identification scheme may suffer
from sub-optimal performance as shown in Section 5.

Data Identifier uses a critical data table (CDT) to record
the information of performance-critical data. As shown in
Fig. 6, each entry in CDT consists of five variables, D_file,
D_offset, Length, Layout, and C_flag, indicating the original
file name on HServers, the data offset in the file, the data
length, the optimal data layout, and whether the data needs
to be cached on SServers, respectively. It is worth noting

Fig. 6. The data structure of CDTand DMT.
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that, while the performance-critical data are eligible, they
may not be in the cache system. The information of the data
really in the cache is managed by another data table DMT,
which we will discuss in the next section.

3.4 Cache Metadata Management

3.4.1 Kernel Metadata Structure

SLA-Cache uses a datamapping table (DMT) to keep track of
data information that has been cached on SServers. To enable
layout-aware data placement on SServers, SLA-Cache cre-
ates three cache files, each using a different layout, for each
original user file. As shown in Fig. 6, each entry in DMT
includes six important fields. D_file and D_offset are the file
name and offset for the data in the original file, C_file and
C_offset are the file name and offset for the data in the cache
file. Length is the size of the cached data, and D_flag indi-
cates whether the cached data is dirty. The D_flag is set
when SServers contains data that requires to be copied back
to HServers. DMT is updated each time a data location has
changed. By maintaining DMT, Redirector can continuously
track the most up-to-date location of the data, which ensures
data consistency betweenHServers and SServers.

In memory, DMT is organized as a hash table to speedup
lookups, incurring minimal overhead with several memory
accesses. Since only remapped data needs to be tracked, the
spatial overhead of the mapping table is small. Besides the
memory-resident copy, the DMT table is also maintained in
persistent storage. In order to reduce the I/O delay of DMT
access, in our implementation, DMT is written to an
addressable file on SServers. Changes to the mapping table
are synchronously written to the storage in order to survive
power failures.

3.4.2 Metadata Consistency

In a parallel I/O environment, there are multiple processes
possibly accessing DMT concurrently. To keep the consis-
tency of the metadata, DMT is maintained in a global data
file, and each process sends a lock request to access the
DMT table. To simplify the implementation, we leverage
Berkeley DB to perform metadata operations and address
lock contention. Similar techniques, such as the distributed
metadata management [11], can also be applied to maintain
the metadata among multiple processes, to minimize the
communication contention of metadata accesses.

3.5 Selective and Layout-Aware Caching Scheme

Redirector is a core module in SLA-Cache, it caches data on
SServers based on four factors: (1) the mapping entry in
DMT, indicating if the request can be served by SServers,
(2) the entry in CDT, indicating if the missed request should
be admitted on SServers and what is the preferred layout to
store the request data, (3) type of I/O request (read or
write), and (4) the available space on SServers.

When Redirector receives an I/O request, it looks up DMT
and checks if the request hits SServers or not. If so, Redirector
directly serves the request with the data in SServers. Other-
wise, Redirector handles the request obeying a selective
cache admission policy. If the request is a write operation,
SLA-Cache stores the data on SServers with a layout-aware
cache placement policy.

Algorithm 1. Redirection Algorithm

Require: I/O Request: req, Data Mapping Table: DMT, Critical
Data Table: CDT.

1: if req misses in DMT then
2: if req is write then
3: if req is in CDT then
4: find free space on SServers
5: if free space is found then
6: allocate space for req
7: set the space layout with the layout in CDT
8: add new entry in DMT (mark dirty)
9: change the req location as the DMT entry
10: else
11: find clean space on SServers
12: if clean space is found then
13: allocate space for req
14: set the space layout with the layout in CDT
15: change the entry in DMT (mark dirty)
16: change the req location as the DMT entry
17: end if
18: end if
19: end if
20: else
21: if req is in CDT then
22: set the C_flag of the entry in CDT
23: end if
24: end if
25: else
26: change the req location as the DMT entry
27: end if
28: send request req

Algorithm 1 shows the work-flow of Redirector for each
I/O request. The algorithm attempts to utilize SServers
whenever possible. For write requests, SServers are
regarded as a write buffer. If there is a sufficient space in
SServers (lines 5 and 12) or the request is already mapped
(line 26), the request will be absorbed by SServers. To
reduce data migration, the algorithm first looks for free
space in SServers when allocating an available space for a
write request. If the free space cannot be found, a clean
space will be the candidate based on a LRU policy. To
further improve performance, the new write data are
stored on SServers with the optimal data layout specified
by the layout field in CDT (lines 7 and 14), which could
be 1-DH, 1-DV, or 2-D. Fig. 7 illustrates the cache data
placement of SLA-Cache, compared with the layout-obliv-
ious cache systems [8]. Current parallel file systems pro-
vide interfaces to set the layout attributes of a file

Fig. 7. (a): Current cache systems are layout-oblivious to place cache
data. (b) The cache data placement in SLA-Cache.
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directory. To enable the layout-aware cache placement,
SLA-Cache creates three cache files, each in a different
directory configured with a specific data layout, for an
original data file. By writing the data into a different tar-
get cache file, the new write data can be stored on SSer-
vers with an optimal data layout.

For read requests, Redirector uses SServers as a caching
area. When the required data misses, the request is cached in
a “lazy”way. This means that Redirector marks the C_flag in
the corresponding entry of CDT (line 22), which indicates
that an actual data movement should be conducted by
Rebuilder in the following data reorganization stage. This
method reduces the response time of read requests.

Please note that this algorithm is selective: instead of
writing or reading all data, it only attempts to absorb the
most performance-critical requests in CDT (lines 3 and
21), to efficiently utilize SServers space. Furthermore, this
algorithm is layout-aware: instead of writing data on
SServers only with the default 1-DH layout, it stores data
with an optimal data layout requiring the lowest access
cost among three candidates, to further improve the cache
system performance.

3.6 Data Reorganization

Rebuilder plays the role of freeing SServers space for future
use. It is triggered periodically, and performs two kinds of
operations. 1) It writes dirty data back to HServers, and
then sets the D_flag in DMT to 0, indicating the data is clean
and the space is available for future use. 2) It reads
data from the HServers into SServers by consulting the
CDT table, and then sets the C_flag to 0 to show the
data has been cached.

The data reorganization activities may interfere with
the normal I/O activities. For this reason, Rebuilder issues
low-priority I/O requests for the reorganization to reduce
the interference to the normal I/O operations.

4 IMPLEMENTATION

We have implemented a prototype of SLA-Cache under
MPICH2 [23]. The primary and challenging parts are
explained below.

4.1 Cache Metadata Mapping Table

Both Redirector and Rebuilder need to get application data
access information from DMT. DMT is a key structure to
store the mapping relationship between the data cached on
SServers and HServers.

We use Berkeley DB [24] to implement the DMT table.
DMT is a database file which has a standalone space on
SServers. The Berkeley DB is configured as a hash table, and
each record is a key-value pair. We generate a mapID by
encoding the original file name (including its full path).
Each record in the Berkeley DB hash table is a key-value
pair; the key is the mapID and the value contains the data
access information listed in Fig. 6. By leveraging the light-
weighted database, the lock contention is addressed and
metadata operations are performed efficiently. Addition-
ally, we also use a list to maintain the most frequently
accessed mapping entries which further reduces the in-
memory mapping table size.

4.2 I/O Redirection Module in MPI-IO

The I/O redirection module redirects data accesses on the
original files to the cache files. Usually an application issues
a data request with three parameters: the identifier of the
original file, the data offset, and the request size. The redi-
rection module translates the filename and offset between
the original file and the cache file and serves the request
using the cache file. We have made the following modifica-
tions to the standard MPI-IO functions.

MPI_File_open: While opening a file, in addition to open
the original file, the method also opens three corresponding
cache files, each with a different layout.

MPI_File_read: For each I/O read, this method first
checks whether the opened cache files contains the
requested content by looking up DMT. If it is true, the mod-
ule calculates the correct data offset, and issues the data
request using the new offset and the cache file handle. Oth-
erwise, the module gets the data using the original file han-
dle and offset. At the same time, this module uses the input
parameters to calculate the performance benefits with Equa-
tion (13) to Equation (15). If the request is critical and not in
CDT, the method adds it to CDT with a new entry, and sets
the C_flag that will be used by Rebuilder later.

MPI_File_write: For each I/O write, this module checks
whether the opened cache files contains the requested con-
tent by initiating a lookup in DMT. If this is true, one cache
file will be found, and the module calculates the correct
data offset, and issues the data request using the new offset
and cache file handle. Otherwise, the module determines
whether the access data belongs to CDT. If so, the method
tries to allocate available space from the cache file with the
optimal data layout for the critical write request, updates
the DMT entry, and issues a data request with the new off-
set and cache file handle. Otherwise, the module writes the
data using the original file handle and offset.

MPI_File_close: In addition to the original file, it also
closes the opened cache files.

MPI_File_seek: It calculates the offset and conducts the
seek operation in the cache files.

When the requested data does not belong to any cache
file and is not performance-critical, this system will act the
same as the default MPI-IO implementation.

4.3 Data Movement Implementation Issues

In order to avoid interfering with the normalMPI I/O opera-
tions,Rebuilder creates a new I/O helper thread in each pro-
cess to handle the background data movement. This I/O
thread is created when the process opens the first file by call-
ing MPI_File_open and destroyed after the last file is closed
with MPI_File_close. Each process can have multiple files
opened, but only one thread is created. Once the I/O thread
is created, it enters an infinite loop to perform the data move-
ment operation until it is signaled for termination. It commu-
nicates with the main thread through shared variables that
store file access information, such as file handler, offset, etc.

5 PERFORMANCE EVALUATION

5.1 Experimental Setup

The experiments are conducted on a 65-node SUN Fire
Linux cluster. Each computing node has two AMD Opteron
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processors, 8 GB memory and a 250 GB HDD (SEAGATE
ST32502NSSUN250G). The operating system is Ubuntu 9.04
and the parallel file system is PVFS2 version 2.8.2. All nodes
are equipped with Gigabit Ethernet interconnection, and
eight nodes are equipped with an additional PCI-E X4
100 GB SSD (OCZ-REVODRIVE X2). Although a more high-
end SSD would certainly improve cache performance, this
entry-level SSD well demonstrates the effectiveness and
potential of SLA-Cache.

Among the available nodes, 32 nodes are used as com-
puting nodes, eight are HServers, and four are SServers.
Each HServer uses one HDD as the storage device and each
SServer uses one SSD. HServers and SServers are separately
accessed with two PVFS2 parallel file system. MPICH2 [23]
compiled with ROMIO is used to generate the executable.
When SLA-Cache is enabled, the cache capacity is set to 30
percent of the application’s data size. SLA-Cache does not
benefit read performance if the requested data have not
been cached on SServers. However, many MPI programs
are executed several times and present consistent data
access patterns [18], [25]. The critical data identified and
cached by SLA-Cache in the first run can improve read per-
formance in the later runs. Therefore, the read performance
improvement of SLA-Cache for the program with a second
run is shown in this paper.

We use the popular parallel file system benchmark
IOR [20], HPIO [26], and MPI-Tile-IO [27] to conduct the
experiments. In our experiments, each data point is an aver-
age of five trials.

5.2 Evaluation on Selective Cache Admission

We first show the effectiveness of the selective cache admis-
sion policy of SLA-Cache in improving the original I/O sys-
tem (i.e., the stock I/O system) performance. To ensure that
the improvements only come from applying SCA, we make
data caching decisions based on the value of B1h instead of
B as in [8], and disable the layout-aware cache placement.

Therefore, the system only uses 1-DH layout to distribute
cache data on SServers with a stripe size of 64 KB.

5.2.1 The IOR Benchmark

IOR is a parallel file system benchmark developed at Law-
rence Livermore National Laboratory [20]. It provides three
APIs: MPI-IO, POSIX, and HDF5, we only use MPI-IO in the
tests. During these benchmarks, 32 processes are used and
the request size is kept to 512 KB unless otherwise specified.

We first run IOR with varying request size from 8 KB
to 4 MB. Each process issues random I/O requests and
accesses 512 MB of data. As shown in Fig. 8a, SCA can
improve the stock I/O system throughput by 92.1, 82.5,
and 25.4 percent for writes with the request size of 8, 64,
and 512 KB respectively. With smaller request sizes, the I/O
throughput improvement is more significant because SSer-
vers can lead to more benefits for small random requests.
We also note that, for request size of 4 MB, SCA nearly has
the same I/O throughput as the stock I/O system. As HSer-
vers have higher I/O parallelism and the performance gap
between SServer and HServer is reduced for large requests,
placing them on SServers incurs less or no performance ben-
efits. Thus, SCA can bring less performance improvement.
The read test yields similar results, as shown in Fig. 8b. We
can see that, the overall throughput is increased by up to
178.5 percent with the request size of 8 KB. Compared to
write requests, SCA has larger read performance improve-
ments because SSD performs better for reads than writes.

To verify the effectiveness of the selective policy, we also
test the system write performance with a non-selective coun-
terpart (NSCA), where all requests are admitted to SServers
indiscriminately. Table 3 shows the performance compari-
son of SCA and NSCA. We can see NSCA has lower perfor-
mance than SCA. Especially, for request size of 4 MB, NSCA
is even worse than the original stock system, meaning that
admitting all requests into SServers non-selectively can sig-
nificantly degrade the system performance. As opposed to
NSCA, SCA can effectively identify the performance-critical
data and redirect them to SServers for better performance.

Next, to examine the impact of the number of processes,
we run IOR with 8, 32, and 128 processes. Fig. 9a gives the
results of write requests. Similar to the previous test, SCA
improves the overall I/O throughput by 23.9 to 31.7 percent.
With the increase of process number, IOR’s throughput gets
lower because each HServer and SServer needs to serve
more requests and the competition among processes gets
more severe. This result also shows SCA has a good scal-
ability in terms of the number of processes. The perfor-
mance trend is similar for reads, as shown in Fig. 9b.

Then we vary the capacity of each SServer to examine
the sensitivity of the system to the available caching space.
In general, the overall capacity of SServers is much smaller

Fig. 8. I/O throughputs of IOR with varied request sizes.

TABLE 3
Performance Comparison of SCA and NSCA

Req Size SCA (MB/s) NSCA(MB/s)

8 KB 60.6 56.1
64 KB 136.1 127.3
512 KB 230.9 218.4
4 MB 325.2 293.5
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than that of HServers and could be even smaller than the
I/O working set size for the application. According to the
algorithm, SCA could elastically replace the cached data to
increase the utilization of the SServer space. Table 4 shows
the write throughputs when the capacity is varied from 0
to 6 GB. Here 0 GB means that SCA is disabled. It is
observed that I/O throughput improves by increasing the
capacity of SServers, which is because more performance-
critical I/O requests can benefit from SServers. However,
when most these requests are already cached, continu-
ously enlarging SServers will only bring limited perfor-
mance improvement.

Finally we run IOR with different number of SServers.
We set the number from zero to six. Zero means the stock
I/O system is used. We keep the cache size to 30 percent
of the application’s data size. Fig. 10a shows the results for
write operations. The overall write throughput is
improved by 9.7 to 34.2 percent. As the number of SServers
increases, the I/O throughput improves because more
SServers provides higher I/O parallelism and thus can
serve the redirected requests with better I/O performance.
However, the improvement reduces when continuously
adding more nodes to SServers. This is because only a
portion of the I/O workload is redirected to SServers and
the improvement is bounded to these requests. Hence,
choosing a reasonable number of file servers based on
the characteristic of the I/O workload is critical to make
full use of SServers. For reads, SCA has a higher I/O

throughput than writes due to the better read perfor-
mance of SSD in each SServer, as shown in Fig. 10b.

5.2.2 The HPIO Benchmark

HPIO is a program designed by Northwestern University
and Sandia National Laboratories to systematically evaluate
I/O [26]. This benchmark can generate various data access
patterns by changing three parameters: region count, region
spacing, and region size. The region spacing is used to gen-
erate noncontiguous data access patterns. In our experi-
ment, the number of process is 32, the region count is 4,096,
the region size is 16 KB, and the region spacing is varied
from 0 to 4 KB (0 KB indicates sequential access).

Fig. 11a shows the results of write requests. SCA can
increase the I/O throughput by 16.9, 23.7, 24.2, and 30.3 per-
cent respectively. It means that SCA is effective with respect
to HPIO benchmark. We also note that, as the region spacing
increases, the performance speedup gets more obvious. This
is because noncontiguous I/O requests can benefit more
from SServers than HServers. However, though the I/O
access of each process is noncontiguous, it is not as random
as the IOR benchmark, thus the improvements for HPIO are
not as significant as those for IOR. This also confirms the
adaptability of SCA; when the application’s I/O accesses
have a poorer throughput (due to the poorer data sequential
locality among consecutive accesses), more benefit is gained
by using SCA. For read operations, the performance has sim-
ilar trend as presented in Fig. 11b.

5.2.3 The MPI-Tile-IO Benchmark

MPI-Tile-IO is a test application from the Parallel I/O
Benchmarking Consortium [27]. It treats the entire data file
as a two-dimensional dense dataset and tests the perfor-
mance of noncontiguous data access patterns. Each process
accesses a chunk of data based on the size of each tile and
the size of each element. In the tests, the number of elements

Fig. 9. I/O throughputs of IOR with varied numbers of processes.

TABLE 4
I/O Throughputs of IOR with Varied Space of SServers

Space Throughput (MB/s) Speedup (%)

0 GB 184.1 0
2 GB 211.3 14.7
4 GB 227.4 23.5
6 GB 242.5 31.6

Fig. 10. I/O throughputs for the IOR benchmark with varied numbers
of SServers.
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in the X and Y directions are set to 20 and 20, the size of each
element is set to 64 KB, and the number of processes is var-
ied between 100 and 400.

Fig. 12 shows the aggregated I/O throughputs. The
aggregated throughput increases by 21.7 to 37.6 percent for
writes, and 26.2 to 39.3 percent for reads. As mentioned
above, the data access patterns of MPI-Tile-IO are nested-
stride. This means, each process has a fixed-stride access
pattern and yields better data locality than that of the IOR
tests. As a result, the performance improvement of this
benchmark is not as large as that of IOR, but is still signifi-
cant. This further confirms that SCA brings additional bene-
fits when data requests are more random in nature.

5.3 Evaluation on Layout-Aware Cache Placement

We conduct experiments to show that the layout-aware
cache placement policy can further improve I/O system per-
formance, which verifies the need to optimize the data layout
of the cache data. We store the cache data in two different
ways, one set of them are stored in PVFS’s default data lay-
out (1-DH) as in SCA, and the other set of data are stored in
the optimal data layout determined by the cost model pre-
sented in Section 3.2. These two sets of data are logically
identical with each other, so all the performance differences
are owing to the differences of the physical data layouts.

5.3.1 The IOR Benchmark

We vary the request size of IOR. We run IOR with request
sizes of 8, 64, 512 KB, and 4 MB. The process number is fixed
to 32. The corresponding results for writes are shown in
Fig. 13. We can see that LCP obtains 6.3-13.2 percent addi-
tional performance improvements based on the perfor-
mance that is already greatly boosted by SCA with the
request size of 8, 64 and 512 KB. When the request size is
4 MB, LCP achieves 5.8 percent improvement over the stock
I/O system while only SCA can not improve the stock I/O
system performance. This is because the optimal data layout
makes better I/O performance of SServers.

We also vary the number of processes. We run IOR with
8, 32, and 128 processes, and set the request size to 512 KB.
Fig. 14 describes the results of write requests. LCP obtains
11.5-18.8 percent extra performance improvements over the
system where only SCA is applied. SLA-Cache can improve
the stock I/O system performance by 38.2 to 56.6 percent by
applying both SCA and LCP.

As read tests show similar trends, we do not give the
results of read tests.

5.3.2 The HPIO Benchmark

We set the number of processes to 32, the region count to
4,096, and the region size to 16 KB. We vary the region

Fig. 11. I/O throughputs of HPIO with varied region spacings.

Fig. 12. I/O throughputs of MPI-Tile-IO with varied numbers of
processes.

Fig. 13. I/O throughputs of IOR with varied request sizes.

Fig. 14. I/O throughputs of IOR with varied numbers of processes.
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spacing from 0 to 4 KB. Fig. 15 shows the results. Because
the most used optimal layout is 1-DH, as adopted by SCA,
the additional improvements obtained by LCP are not very
large. However, LCP still can further improve SCA by 4.5,
5.6, 6.7, and 9.5 percent respectively. Compared to the stock
system, SLA-Cache that applying both SCA and LCP can
increase the overall I/O throughput by 22.3, 30.6, 32.2, and
42.6 percent respectively. It means that SLA-Cache is effec-
tive with respect to HPIO benchmark.

5.3.3 The MPI-Tile-IO Benchmark

In the tests, we configure the number of elements in the X
and Y directions as 20 and 20, the size of each element as
64 KB. We vary the number of processes between 100 and
400. Fig. 16 shows the aggregated I/O throughputs. With
LCP, the I/O performance can be further improved by 10.2,
11.4, 12.6, and 21.2 percent respectively. For larger number
of processes, the improvement is more significant because
1-DV, which is the commonly used optimal layout in LCP,
can bring more performance benefits for requests with high
concurrency (number of processes). Compared to the stock
system, SLA-Cache can increase the overall I/O throughput
by 34.2, 45.4, 46.8, and 66.7 percent respectively. This means
that the layout-aware cache placement is effective with
respect to MPI-Tile-IO benchmark.

5.4 System Overhead

5.4.1 Metadata Space Overhead

To track data cached on SServers and maintain data consis-
tency, SLA-Cache uses a file in SServers to store the DMT
Table, incurring additional storage space overhead.

The system has a maximal space overhead when all the
requests are of 4 KB. Assuming the available storage
space of SServers is S GB, each entry in our implementa-
tion occupies 6 � 4 B, then the maximal number of records

in DMT is S=4 � 106. Therefore, the maximal metadata

space overhead is 0.6 percent of the SServer space, which
is negligible.

5.4.2 Performance Overhead

As shown in Fig. 3, SLA-Cache has some additional mod-
ules which may generate performance overhead. SLA-
Cache is able to improve the I/O performance of applica-
tions with performance-critical requests. However, it may
degrade the I/O performance for some applications do not
have performance-critical requests. Thus it is necessary to
evaluate the following two possible sources of overhead
during runtime.

1) During file open operation, Data Identifier module
needs to initialize the DMT table in memory, and decide
whether to create a new cache file in SServers.

2) During file read/write operation, Data Identifier and
Redirector need to calculate the access cost, perform a lookup
in CDT and DMT, and decide whether to cache the
requested data. Since DMT has been loaded from SServers,
most of the operations can be done in memory.

The performance overhead mentioned above is very
small compared with I/O access overhead. To show this,
we run IOR with request size from 8 to 32 KB. The process
number is 32, and each process writes a shared 10 GB file
in a random pattern where all the requests intentionally
miss SServers. This causes Redirector to redirect all requests
to HServers. Fig. 17 shows the results. As expected, the
performance overhead is negligible.

6 RELATED WORK

6.1 I/O Request Stream Optimization

A lot of efforts have focused on I/O request reorganiza-
tions to address small data access issue in I/O middle-
ware. For multiple noncontiguous smaller requests, Data
sieving [9] technique integrates them into a larger contig-
uous chunk including the additional data (hole) instead
of accessing them separately. Datatype I/O [28] and List
I/O [10] techniques allow users to merge multiple I/O
requests with different patterns within a single I/O rou-
tine. Collective I/O [9], [29] is another technique pro-
posed to rearrange concurrent I/O accesses among a
group of processes of a parallel program to a larger con-
tiguous request.

All these techniques succeed in exploiting regular group
relation for parallelism, but they are not designed to utilize
SSDs for random access. SLA-Cache can use not only these
techniques for its underlying parallel file systems but also
utilize SSDs’ characteristics.

Fig. 15. I/O throughputs of HPIO with varied region spacings.

Fig. 16. I/O throughputs ofMPI-Tile-IO with varied numbers of processes.

Fig. 17. Performance overhead result.
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6.2 Using System Memory as a Cache

Traditionally the problem of I/O accesses is addressed by
using system main memory as a cache. These schemes are
deployed on both client side and server side in a parallel
environment, including client-side file caching in GPFS [5]
and Lustre [4], cooperative caching [30], active buffering [12]
and collective caching [11].

In contrast to these memory-based methods, SLA-Cache
has larger cache capacity and is reliable due to its use of
non-volatile SSDs. SSDs are a complement of memory
cache and can be served as an extension of memory cache.
However, SLA-Cache has a totally different selection algo-
rithm and runtime system design. The integration of mem-
ory cache and SLA-Cache will be an interesting topic for
future study.

6.3 SSD-Based Storage System

Using SSDs as a cache of traditional HDDs is a widely used
strategy in I/O systems, such as FlashCache [15], Con-
quest [31], Burst Buffer [32], and LADS [33]. Tiered check-
pointing redirects all write data to the RAM disks or SSDs
in the computing nodes [34]. SSD-based hybrid storage is
another popular method to make full use of SSDs. This
method integrates an SSD and a hard disk as one block
device [35], [36]. I-CASH is a new hybrid storage architec-
ture based on data-delta pairs to improve I/O performance
for I/O-intensive workloads [17]. Hystor identifies critical
data blocks with strong temporal locality and redirects
them to SSD for fast future accesses [16].

These approaches succeed in exploiting data access infor-
mation within a single file server or a single computing node. But
unlike this work, SLA-Cache leverages the global data
access information in a parallel I/O system to improve perfor-
mance. Our previous work [37], [38], [39], [40], [41], [42]
similarly uses the global data information and SSDs in a
parallel I/O environment. However, the SSD-based servers
are used as persistent storage instead of a cache. With a
small set of SSD-based file servers and the selective cache
admission and layout-aware cache placement policy, SLA-
Cache provides a feasible and cost-effective solution for
large-scale data intensive applications.

7 CONCLUSIONS

In this study, we introduced a Selective and Layout-
Aware SSD Cache (SLA-Cache) system to improve the
performance of a parallel I/O system. SLA-Cache deploys
a small set of SSD-based file servers as a cache of conven-
tional HDD-based file servers. To make full utilization of
the limited space of SSD-based file servers, SLA only
admits performance-critical data which are identified by
a cost model. Furthermore, SLA-Cache stores data on
SSD-based file servers in a layout-aware style to further
improve I/O performance. We have implemented a pro-
totype of SLA-Cache under MPICH2. The performance of
SLA-Cache is evaluated with different benchmarks,
namely IOR, HPIO, and MPI-TILE-IO, on a SSD-equipped
computer cluster. Experimental results show that SLA-
Cache is feasible and effective in improving parallel I/O
performance.
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