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Abstract—Data analytics becomes increasingly important in
big data applications. Adaptively subsetting large amounts of
data to extract the interesting events such as the centers of
hurricane or thunderstorm, statistically analyzing and visualizing
the subset data, is an effective way to analyze ever-growing data.
This is particularly crucial for analyzing Earth Science data,
such as extreme weather. The Hadoop ecosystem (i.e., HDFS,
MapReduce, Hive) provides a cost-efficient big data management
environment and is being explored for analyzing big Earth
Science data.

Our study investigates the potential of a MapReduce-like
paradigm to perform statistical calculations, and utilizes the
calculated results to subset as well as visualize data in a scalable
and efficient way. RHadoop and SparkR are deployed to enable
R to access and process data in parallel with Hadoop and
Spark, respectively. The regular R libraries and tools are utilized
to create and manipulate images. Statistical calculations, such
as maximum and average variable values, are carried with R
or SQL. We have developed a strategy to conduct query and
visualization within one phase, and thus significantly improve the
overall performance in a scalable way. The technical challenges
and limitations of both Hadoop and Spark platforms for R are
also discussed.
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I. INTRODUCTION

Ever-increasing High-Performance Computing (HPC) capa-

bilities greatly accelerate scientific discovery. For example,

higher-resolution Earth Science (e.g., climate and weather)

simulation can be performed with a longer period of time.

Consequently, simulation output data can be easily over Tera-

Bytes, which poses a significant challenge for conventional

data analysis (e.g., visualization, diagnosis, and subsetting)

tools based on a single node computer [1].
Earth Science researchers typically use visualization of

whole simulation domain to identify the interested events such

as the centers of hurricanes or thunderstorms. However, those

events are dynamic. Hence, an efficient and scalable analysis

platform for adaptively subsetting data out of a huge amount

of data is highly desirable.
In the past few years, MapReduce [2] has been successful

in dealing with big data problems and Hadoop MapReduce

framework [3] is the most popular big data ecosystem. It

features easy programming, transparent parallelism, and fault

tolerance on commodity machines. The in-memory computa-

tional engine, Spark [4] [5], alleviates expensive disk I/O for

storing intermediates result, significantly improves the perfor-

mance, especially for interactive and iterative computations.

Spark provides rich APIs, including MapReduce, for efficient

programming. Nowadays, in the so-called ‘post-Hadoop’ era,

the Hadoop Distributed File System (HDFS) [6] [7] is still very

powerful to support big data processing in a cost-efficient way,

managing massive data in the Hadoop data lake, and is the

most popular storage solution to the Apache Big Data Stack

(ABDS) [8]. Furthermore, the MapReduce paradigm is also

developed and applied to HPC [9] [10] and interactive and

real time problems. It has been widely adopted in scientific

researches, such as data mining, graphic processing, and

genetic analysis.
There are several researches exploring MapReduce

paradigm on image plotting [11] and animation generation.

Moreover, to address the big data challenges, a hybrid

programming model was proposed to potentially exploits the

merits of multiple programming models [12].
The current implementation of MapReduce is tightly-

coupled with key-value pair processing in terms of program-

ming APIs, transparent parallelism support, and optimized I/O

system. Consequently, it cannot be directly and efficiently

applied for image plotting. Earth science researchers often

use R [13] for data analysis and visualization. However, R

is not designed to exploit parallelism and data locality. The

extended R interfaces of the Hadoop ecosystem, RHadoop [14]

and SparkR [15], lack efficient strategies to parallelize the R

analytic workloads, especially for adaptively subsetting.
This paper investigates how R can utilize a MapReduce-like

strategy to analyze data in a scalable way, especially for Earth

Science data. It identifies and addresses several challenges in

utilizing MapReduce for data diagnosis and visualization. The

contributions include:

• We demonstrate how to encapsulate R image plotting

function into MapReduce paradigm and transparently and

adequately align tasks to data.
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• We identify and prevent both inefficient I/O and re-

dundant computation for R visualization. Moreover, we

integrate data query and visualization within the same

procedure to improve the efficiency of diagnosis and data

subsetting.

• Our data analytics solutions are built on top of Hadoop

and Spark frameworks. They have been tested and eval-

uated with the NASA cloud-resolving model simulation

data [1]. The experimental results show the effectiveness

and efficiency of our solution.

The organization of this paper is as below. The related work

is discussed in Section II and the motivation for this study is

presented in Section III. The challenges in utilizing R and

MapReduce for visualization are addressed in Section IV. Our

proposed methods are evaluated in Section V and summary is

in Section VI.

II. RELATED WORK

Big Earth Science data stored in HDFS desires a scalable

distributed visualization tool. R [13] is a powerful visual-

ization and statistical analysis tool. Although IDL [16] is a

powerful commercial visualization tool, it is not easy to be

parallellized. In our previous study, we visualize the HDFS

data in the formats of both CSV and NetCDF with IDL on a

single node [1]. Opass [17] enables a MPI-based visualization

application, ParaView [18], to access and visualize scientific

data resided in HDFS. It optimizes workload balance and

data locality. On the contrast, MapReduce application, greedily

pursuing data locality and parallelism, is an alternative and

promising solution, particularly for multi-tenant Hadoop en-

vironment that highly tolerates embarrassingly data accesses,

and transparently alleviates the common speculative tasks [19].

MapReduce has been widely adopted in distributed big data

analytics and applicable to parallel visualization. However,

users have to implement complex and dedicated visualization

algorithms integrated to a MapReduce model. For example,

there is a study [20] that utilize MapReduce to conduct

display algorithms including mesh rendering and isosurface

extraction. In this study, we accomplished parallel distributed

visualization in RHadoop [14] and SparkR [15], R interfaces

of two open-source MapReduce implementations Hadoop and

Spark, respectively. RHadoop is a collection of multiple R

packages that allow users to manage and analyze data in R

language with Hadoop. The recently released SparkR package

supports programming in R on top of the Spark framework.

Hadoop-GIS [21] and SpatialHadoop [22] provide indexing

to efficiently process spatial data in HDFS. Hadoop-GIS is a

high-performance spatial data warehousing system to address

spatial queries and high computational complex queries. Spa-

tialHadoop uses SpatialRecordReader to read multiple records

for further processing, whereas our approach bypasses the

RecordReader and directly reads and processes the data.

HadoopViz [11] is a Hadoop-based visualization platform

for visualizing spatial data. It processes spatial data via its

Mapper to read the data logically grouped for visualization

on the indexed data. However, it cannot be integrated with

R programming on Hadoop and Spark platforms at this time.

Our approach combines query and image plotting within one

MapReduce-like procedure and implements the strategy in

both Hadoop and Spark platforms.

III. MOTIVATION

R is a popular programming language for statistical data

analysis and visualization. Image plotting in R often requires

loading the entire dataset into memory. This is because image

plotting is a two-phase procedure, data loading and processing.

Though the capacity of memory has been increasing, it is still

challenging to cache all the input data for creating images.

Using a fat node, which has a large size of memory and a large

number of cores, seems to be a good solution to overcome the

memory capacity issue. However, this approach may result in

considerable data movement in the cluster as the centralized

visualization node needs to aggregate all the target data

distributed across the storage nodes. Furthermore, it does not

fully explore the parallelism of image plotting in a distributed

environment. For a large amount of data stored in HDFS

environment, it is more efficient to move computation than

data to avoid network traffic and latency. Therefore, visualizing

a large amount of data requires a solution efficiently utilizing

both a memory and computation. The MapReduce paradigm

divides data into sub-datasets and conducts independent tasks

on those sub-datasets in parallel in the Map phase and further

processes the intermediate results in the Reduce phase. This

could be a good solution for visualizing a large amount of

data.

Our study investigates how to use R for visualization and

adaptive subsetting in Hadoop and Spark platforms. In particu-

lar, we explore how to use RHadoop and SparkR to efficiently

visualize and adaptively subset Earth Science data. This is due

to the fact that in Earth Science data analysis, especially for

extreme weather events such as hurricanes and thunderstorms,

only the areas near the extreme events such as the centers of

hurricanes and thunderstorms are more important for detailed

analysis. Therefore, it is highly desirable to develop a system

for visualizing and adaptively subsetting data in an efficient

as well as scalable way.

IV. DESIGN AND IMPLEMENTATION

A. Solution Overview

Figure 1 presents the proposed parallel visualization strategy

in MapReduce paradigm. A visualization job consists of

multiple visualization tasks running in parallel. An existing

visualization function is wrapped into a Map task such that

each task processes a file and generates a visualized frame. The

timestamp and the generated image compose a key-value pair.

Moreover, the statistical information can be collected from

each data frame, and encapsulated together with the plotted

image in the same phase. Visualized frames with the same

timestamp rather than the original data are shuffled onto one

node for further manipulation such as combination. In a cloud

resolving model simulation, for instance, a surface layer data

(e.g., rainfall) as an input file has about 3 GB in the CSV
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Fig. 1: Illustration of parallel visualization strategy. A visual-

ization job consists of multiple visualization tasks. Each task

processes a file and generates a visualized frame. Frames in

one job will be shuffled onto one node. After sorting and

combining, the frames will be output in a continuous stream.

Fig. 2: Visualizing and statistically analyzing data with the

MapReduce paradigm.

format, and the corresponding plotted frame is only about

6 MB with the 1200×1200 resolution, which is significantly

smaller than the original data size. Thus, the network traffic is

greatly reduced as it greedily takes advantage of data locality.

After sorting and combining at the Reduce phase, the frames

are output in a continuous stream.

Figure 2 presents the pseudo code for visualization and

statistical analysis. Line 2 reads and parses the split reference

in order to learn the data range that the current task needs to

process. Next, line 3 is to directly read from HDFS and line 4

is to conduct a query on the data frame. The result is converted

into a matrix for image plotting. Each generated frame has a

unique id, which is parsed from line 2. The mechanism of

such split parsing will be discussed in next subsection. All

sorted key-value pairs within a group of keys are shuffled onto

a Reducer for a further combination according to their keys.

Reduce function combines frames for every certain number

of frames as the expected data layout. The Reduce phase

starts after the internal sort phase is completed. Thus, the ids

generated in the Map phase have an alphabetically ascending

order. For example, all the images generated from file 1, such

as 1-1, 1-2, 1-3, 1-4, are reduced by one Reduce task. Thus,

there is no need to implement a customized partitioner (e.g.,

hash function in MapReduce to assign related intermediate

results to Reducer).

Figure 3 shows the partial results of visualizing the NASA

cloud-resolving weather simulation output. As shown in Fig-

ure 3(a), image frames are collected and merged into a collage

image. An animation of those images can also be created.

In the same procedure, the statistic information such as the

maximum and average rainfall can be obtained and used in

the subsequent adaptively subsetting. Figure 3(b) shows a red

square centered at the maximum rainfall value.

In short, we firstly use Hadoop MapReduce for distributed

computing (e.g., find the maximum value of rainfall) on the

target data in HDFS, and then use R for image plotting on

each node to achieve parallelism. Table I lists the main R

packages that we used for visualization in both Hadoop and

Spark. In the later section, we will apply such a visualization

strategy onto Spark platform in order to enhance performance

and overcome the limitation of reading data from Hive tables.

In addition, we will integrate simple SQL query, diagnosis and

visualization within one procedure to achieve efficiency.
TABLE I: Main Packages

Package Version Description

R 3.2.2
rhdfs 1.0.8 Connect with HDFS
rmr2 3.3.1 R in Hadoop MapReduce
rhive 2.0-2.0 Connect with Hive
Cairo 1.5-9 Graphics library for creating bitmap
doParallel 1.0.10 Provides a parallel backend method
SparkR 1.6.1 Integrated package in Spark1.6
sqldf 0.4.10 SQL on data frame

B. Input Format

A Comma Separated Values (CSV) [23] file stores data in

plain text. Usually, records are separated as lines in CSV file.

It is a popular format for scientific data. It can be recognized

by Hive [24] or Impala [25], for query operations and other

scientific data processing tasks. RHadoop provides a read func-

tion hdfs.line.reader() for reading CSV data in HDFS

line by line. Due to the inefficient read method, the latency

is considerably long. Besides the poor I/O performance, the

major cost for processing CSV data is the preprocessing phase

that converts a CSV file into a matrix for image plotting

record by record. Alternatively, Our solution is to first read

all the target CSV data into memory as it is in a large I/O

request, and then converts CSV data to a matrix. Such an

I/O efficient approach significantly reduces the overhead in

processing CSV files. The scientific simulation data in a CSV

file often have a regular and predictable pattern in size. For

example, a group of 1.56 million records (lines) is used for

one image in our current test data sets. Hence, an application

can deploy multiple concurrent tasks to plot different aligned

images in parallel with the knowledge of target data sizes and

ranges. As a result, an image with a large number of pixels

can be created in a fine-grained and memory-efficient manner.

Hence, both our RHadoop and SparkR implementations adopt

such a strategy.
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(a) Collage images (From 9 AM, 2014-04-28 to 12
AM, 2014-04-29)

(b) An image with a highlighted area for an interested
event (the heaviest rainfall)

Fig. 3: Visualization of rainfall in a cloud resolving model simulation with R and MapReduce. (a) 16 images are combined

into one frame. (b) The interested event, the heaviest rainfall, is identified and highlighted.

C. RHadoop Implementation

1) I/O and Computation Optimization: We firstly utilize

Hadoop MapReduce for the visualization applications. A con-

ventional MapReduce application processes data records in

key-value pairs. Hadoop MapReduce optimizes I/O by reading

key-value pairs in a dedicated and consecutive loop. Hence,

computation in Map function and I/O can be overlapped [26].

However, visualization applications in R require to load all the

needed data before plotting images. In this case, computation

and I/O can hardly overlap. Furthermore, RecordReader reads

input in key-value pairs which generates frequent seek or scan

operations to determine the boundary of input units. Such a

procedure introduces numerous expensive memory copy and

redundant I/O operations. Therefore, we have to customize

this visualization procedure to improve performance. The task

reads the target data directly from HDFS rather than from the

embodied RecordReader in the Map function. Consequently,

I/O efficiency could increase as a result of those two opera-

tions: 1) avoid frequent scan operations for sync-markers and

2) use one large read request rather than many small read

requests issued by RecordReader. To realize these operations,

the visualization task is required to know the target data

through the specification of the path and the offset range of

dataset.

2) Alignment: The conventional Hadoop MapReduce aligns

the input data and ensures data integrity by RecordReader’s

predefined sync-markers. However, in a visualization appli-

cations, multiple continuous lines or a specific range of data

are the input for a single frame. That means such an atomic

input unit is determined by the logical data range rather than

arbitrary sync-markers (such as ‘new-liner’ or ‘tab’). Hence,

there is a lack of a valid sync-markers to align the input units.

As RHadoop is tightly-coupled with Hadoop implementation,

we bypass RecordReader to read the target data. The split

alignment depends on predetermined data range. In short,

the loaded data are exactly the input for plotting a single

image frame. This requires to rebuild the mapping between

the logical view and the physical data since the conventional

MapReduce assigns Map tasks based on splits, the size of

which is the same as the size of blocks of an input file by

default. We adopt a similar strategy in Spark platform to align

input for tasks.

D. SparkR Implementation

Hadoop naturally supports the MapReduce paradigm. How-

ever, the recently released SparkR (Spark version 1.6.1),

which is built on top of Spark, emphasizes high-level user

interfaces to provide integrated data computation method.

SparkR discards low-level interfaces (i.e., the public interfaces

such as Map and Reduce). Therefore, we cannot apply the

above approach on a visualization application that improves

performance through I/O and data alignment. Spark is based

on Resilient Distributed Dataset [27] (RDD) to achieve mem-

ory based fault tolerance, and recently introduced DataFrame

for better integration with data frame based computations.

Data within the Spark ecosystem are represented as RDD or

DataFrame, flowing from one job or component to the other.

A data flow efficiently within the ecosystem. However, only

after conducting the collect operation, DataFrames will be

collected and decoded into a non-Spark-specific data format,

on which other programming models, such as R data frame,

can operate. Furthermore, the collect operation will only

be performed by the centralized driver on the hosting node,

which greatly sacrifices parallelism and introduces tremendous

network traffic for later non-typical Spark tasks.

For example, a user can easily and efficiently obtain the

SQL results, however, the subsequent operations afterward on

that resultant dataset will trigger the collect operation at

the driver of the hosting node. That causes data shuffling and

limits parallelism. It is commonly recognized that collecting a

large amount of data is a bad practice and should be avoided.
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Hence, we distribute the references to tasks rather than

directly input data. The application follows the same procedure

as Hadoop implementation: reads data directly from HDFS us-

ing the hint which indicates the data range processed by a spe-

cific task. Thus, the input data will be read as a regular R data

frame rather than loaded into RDD or Spark DataFrame. In

this way, the subsequent image plotting operates on those data

items. We implement MapReduce in Spark for image plotting.

It consists of three stages: (1) SparkR:::parallelize
to distribute input references, (2) SparkR:::lapply to

conduct Map phase, and (3) collect results from Map phases.

E. Image Combination

The image combination phase of visualization performs in

the Reduce phase of Hadoop MapReduce. Before the Reduce

function starts, all key-value pairs are sorted according to

specific keys. The intermediate images for a combined image

are loaded into memory before the combination procedure with

Montage [28], a popular image combining tool.

1) Collage: Image collage can help a user to view the dif-

ferences among multiple images and find the interested events.

For a large image (e.g., ultra-high resolution), it is efficient

to first create sub-images and then combine them into one.

Since the PNG format supports image combination, we use

the PNG format in our image processing. All values (images)

associate with the same key are grouped and combined into

one image. In the combination phase, relevant sub-images are

merged. Since the keys are already sorted, sub-images are

stored consecutively and can be merged as specified.

2) Animation: An animation or movie helps to visualize

time series events such as thunderstorms. Our implementation

generates images in either gif or HTML format.

3) Combine image in parallel: We find that the image

combination phase can be time-consuming with Montage. The

total image combination time is proportional to the number of

images. Therefore, we develop two parallel image combination

methods to improve the performance.

The first method is a MapReduce-like scale-out strategy,

utilizing parallel computing power in a distributed environ-

ment. It first stores the image into its target directory in HDFS

according to a certain attribute such as the layer id. After that,

a wave of tasks is launched. Each task reads multiple images

from its corresponding directory, and combines images. For

example, all images of one layer with different timestamps

are stored in a directory with respect to that layer. In this way,

we can efficiently create an animation or collage image for

each specific layer in parallel. Finally all the processed images

are collected onto one node. The intermediate images are

temporarily dumped into HDFS so that the following image

combination can retrieve the data. This approach introduces

disk I/O overhead. Since the image combination phase is

a computing intensive operation, overall performance could

gain through parallelism if one node does not have sufficient

computer resource.

The second method is a multi-threaded solution that adopts

‘for-each’ function provided by ‘doParallel’ R package [29]

to parallelize workload. It exploits multi-core computing re-

source at the node with the driver. It collects all the plotted

images onto that node (the driver resided node) for the final

image combination so as to avoid extra I/O and across-node

communication.

F. Hive Tables

Hive table provides a user-friendly way of accessing and

processing data through SQL-like query. However, we find

that it is not effective to use R to create images with Hive

query.

1) Plotting images from the query results with RHive: The

RHive package connects R instance with Hive and enables

Hive query in R language. However, we find that the perfor-

mance of obtaining the data, which can be plotted with R, via

Hive query for a large dataset is very poor. If the resultant

dataset is larger than 2 MB, the data will be stored back into

HDFS as indicated in its source code. Even though we force

to store the data into memory, the performance is still very

poor. This is due to the fact that the R code needs to parse

Hive resultant object in the manner of attribute by attribute

and line by line. In addition, the Hive resultant object cannot

be exported to a local file system because the create-table-as-

select (CTAS) operation for an external table is forbidden in

Hive [30]. Hence, plotting image from the query results via

RHive is not effective.

2) Plotting images from the query results with SparkR:
SparkR in the version of Spark-1.6 integrated SparkSQL [31],

which provides interaction with Hive and conducts query onto

Hive tables in R language. The recently introduced Spark

DataFrame APIs [5] provide efficient and user-friendly opera-

tions on the tabular datasets. We find that the query results are

in a Spark DataFrame. As discussed above, converting such a

DataFrame to an R data frame needs the ‘collect’ operation at

the driver hosting node. However, R image plotting function

needs to operate on such a matrix format at the executor host-

ing node, which can be different from the driver hosting node.

As a result, this data conversion procedure could significantly

degrade parallel performance of image plotting.

G. An Integrated Strategy of Query and Image Plotting

Since plotting an image needs to load entire target data

frame and performing statistical calculation via query also

need to read and filter on those data items, we propose to

integrate these two operations in the same phase to minimize.

the cost of reading data.

We use R to perform the interested statistical calculations,

and use ‘sqldf’ [32] package to conduct simple SQL query

directly on R data frames. After that, the calculation results

and the generated images are encapsulated and shuffled to the

corresponding nodes for further processing. At the end of data

processing, the application collects global calculation results

and combines images. This approach can be used to efficiently

identify some interested events in the large data frame, such

as those areas with the temperature or the rainfall above a

predefined threshold and indicate them in the final image.
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Fig. 4: Performance of implementations with RHadoop and

SparkR. The first layer (surface) of a rainfall data file in the

CSV format is visualized on 8 nodes at HEC cluster. The

number of input files varies from 4 to 48.

Those areas are also able to subset for detailed analysis. We

list a few queries with typical statistical calculations in Table II

and will evaluate their performance in Section V.

We can also support tiled image plotting. Each task only

plots a tile of a frame and all tiles are stitched together after

aggregation. The universal coordinate mapped from longitude

and latitude in all tasks keeps the coordinates of highlighted

areas are consistent across all tiles.

V. EVALUATION

In this section, we will evaluate the performance of Hadoop

and Spark implementations. First, we evaluate the image plot-

ting, which consists of two phases: parallel image plotting and

combination. Secondly, we examine the performance of query

as well as that of integrated query and image plotting. Thirdly,

we evaluate scalability and discuss the implementation trade-

offs, including two scaling methods for image combination.

A. Environmental Setup

We conduct our experiments at Chameleon cluster of TACC

and HEC cluster at IIT, respectively. Each Chameleon node is

equipped with 48 2.67GHz Intel Xeon CPU cores, 128 GB

memory, and a 250 GB 7200 RPM ST9250610NS SATA hard

drive. Each HEC node is equipped with two 2.3GHz Opteron

quad-core processors, 8 GB memory, and a 250 GB 7200 RPM

ST32502NSSUN SATA hard drive. We use eight slave/worker

nodes by default.

We use the cloud-resolving weather simulation output from

a NU-WRF model with a 1250×1250×50 grid of 4km res-

olution and 48-hour simulation time. Its original output is in

NetCDF. Each file has a variable and a time stamp. Its data

format has five columns: timestamp, layer, latitude, longitude,

and variable. We transform one NetCDF file into one CSV

file, which has 3,299,293,700 bytes. In this paper, we will

report the experiment results with one variable, rain (QR), in

48 CSV files with about 147.5GB. We configure 1200×1200

as the default resolution for plotting images.

B. Hadoop and Spark Implementations

First, we evaluate the performance of implementation on

Hadoop and Spark platforms at HEC cluster. The first layer
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Fig. 5: Performance of implementation with SparkR. All 50

layers of a rainfall data file in the CSV format are visualized

on 8 nodes at Chameleon Cluster. The implementation consists

of two phases: distributed image plotting and centralized serial

image combination operation.

(surface) of rain files is visualized. As Figure 4 shows, both

implementations obtain good scalability as the total number

of input files increases. Although Hadoop implementation

keeps the plotted images in memory, the platform transparently

materializes those intermediate data into local file system

at both Map output phase and the end of shuffle phase of

Reduce phase. Since Spark implementation eliminates I/O of

intermediate data, overall performance is improved. On the

HEC platform, our Spark implementation is approximately

2× faster than the Hadoop one. Therefore, we focus on

evaluating Spark implementation in the following experiments.

Secondly, we evaluate the performance of image combination

phase for collaged images and animations. We found that their

performances are almost the same. Thus, we use animation

generation for the image combination phase function in the

subsequent performance evaluation. Because both Hadoop and

Spark combine images in memory using the same function,

they have almost the same elapsed time in this phase.

C. Image Plotting Phase

The two phases of the Spark implementation, parallel im-

age plotting and centralized serial image combination, are

evaluated and their performances are as shown in Figure 5.

The parallelized image plotting obtains linear scalability as

workloads increase. It takes 373 seconds to plot 2400 images

with 1200×1200 pixels from 147.5 GB HDFS-resident data.

The elapsed time of the serial image combination operation is

proportional to the number of images, which motivates us to

parallelize the image combination phase.

We evaluate the scalability in terms of scale up and scale

out at Chameleon cluster and at HEC cluster, respectively.

Figure 6 shows the scalability of the Spark implementation

through varying the number of executor cores on each node,

from 12 to 48 cores, as well as varying the number of input

files from 4 to 48. In particular, we observed a super linear

speedup as the number of files increases and the number of

cores increases. We believe that this is due to two facts: (1)

full utilization of computation power and (2) good balance of

workload. Figure 7 shows the linear scalability of the Spark
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Fig. 6: Performance of image plotting phase as a function

of the number of configured cores per node as well as the

number of files. The experiments were performed on 8-node

Spark platform at Chameleon cluster.
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Fig. 7: Performance of image plotting phase as a function of

the number of nodes on Spark platform at HEC cluster.

implementation in HEC cluster with varied the number of

nodes.

D. Image Combination Phase

Figure 8 presents the combination-phase performance im-

provement of both the distributed parallel method and the

single-node parallel method over the baseline of serial image

combination. Both parallel methods efficiently reduce the

elapsed time from 1200 seconds to 100 seconds. In this

set of experiments, the single node parallel method always

outperforms the distributed parallel method. It is because all

48 cores on the single node are utilized to explore parallelism

and data locality.

We also evaluate the impact of the resolution of plotted

images to overall performance. The number of cores is set to

12 and the total number of input files is set to 32. As Figure 9
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Fig. 8: Performance comparison among centralized serial

image combination method (distributed 8-node), and parallel

image combination method (single-node), at Chameleon clus-

ter.
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Fig. 9: The impact of image resolutions to the performances

of different phases at Chameleon cluster. The resolution varies

from 600×600 to 2400×2400.

shows, increasing the resolution of images has little impact on

the parallel plotting phase but significantly increases the time

of the image combination phase.

How to further improve performance is worth further ex-

ploring. Firstly, the performance would be enhanced by using

a scale-up fat node for the image combination phase. However,

contrary to the performance trends shown in Figure 8, the dis-

tributed method always outperforms the single node method.

This is because computation power is the bottleneck. Thus,

the performance could be improved by exploring parallelism

from distributed computing power at the image combination

phase. Secondly, such an image combination function can be

implemented in various alternative software tools. When such

elapsed time of such an image combination task is long, we

find that adopting a distributed parallel processing strategy can

improve the performance.

E. Query and Adaptively Subsetting

Figure 10 shows the performance of the query-only job, the

image-plotting-only job, and the integrated-query-and-image-

plotting job. As we vary the number of input files, the elapsed

time of the integrated method is a slightly higher than the

image plotting. The ‘Condition’ takes a longer time since it

collects more subset data. Overall, these experiments confirm

that integrating query with image plotting is an efficient

approach to improve I/O and computation efficiency.

VI. CONCLUSIONS

This paper proposes an efficient and scalable method to use

R and MapReduce on both Hadoop and Spark platforms to

visualize, diagnose, and subset data. We transparently paral-

lelize existing R visualization and diagnosis (e.g., statistical

calculations) codes and integrate them with SQL query in one

procedure, and consequently enable our method to be user-

friendly, scalable, and efficient. A user can utilize statistical

calculation results to find the interested events to visualize

and adaptively subset data and visualize within one job. In

addition, we discuss several technical challenges of using

RHadoop and SparkR to realize our method, especially in I/O,

accessing and manipulating data in Hive tables, and SparkR

data frame. The experimental results with Earth Science data

show our proposed method is scalable and efficient.
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TABLE II: Simple SQL query statements

Labels in Figure 10 SQL statements

Top 1 select * from dataframe where value == (select max(value) from dataframe) limit 1
Top 10 select * from dataframe desc order by value limit 10
Condition select * from dataframe where value > 0.005
Avg select avg(value) from dataframe
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Fig. 10: Elapsed time of query as a function of the number of

files at Chameleon cluster. Top 1 and Top 10 mean to collect

all the rows (records), with the maximum value and the top

10 values of each layer (frame) in each table, respectively.

Condition means to collect all the rows (records) above a

certain value (e.g., 0.005). Avg means to collect all the average

values from each layer (frame) in each table.
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