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Abstract—Improving energy efficiency is a primary concern
in high performance computing system design. Because I/O
accesses account for a large portion of the execution time
for data intensive applications, energy-aware parallel I/O
subsystems are critical for addressing challenges related to
HPC energy efficiency. In this paper, we present an energy-
conscious parallel I/O middleware approach that combines
runtime I/O access interception and Dynamic Voltage and
Frequency Scaling capability available on modern processors to
intelligently schedule the system’s power-performance mode for
energy savings. We implement this approach into SERA-IO, an
MPI-IO based middleware to enable energy consciousness for
I/O intensive applications. Experimental evaluations conducted
on real systems using multiple parallel I/O benchmarks show
that SERA-IO can reduce system energy by 9% to 28% without
decreasing application performance. With the emerging of
large-scale data intensive applications and ever larger and
more complex parallel computing systems, intelligent, energy
conscious software and runtime systems such as SERA-IO are
critical for the success of future high-end computing.

Keywords-parallel I/O, energy-aware computing, power man-
agement

I. INTRODUCTION

As large computing systems consume tens of megawatts

of power, improving energy efficiency becomes a primary

concern in high performance computing system design.

For example, without disruptive technology, an exascale

computer consisting of ∼100 million processor cores would

require close to 100 megawatts of power [15]. Such enor-

mous power consumption not only incurs high energy cost

but also limits system scalability and sustainability. To keep

the power budget of future HPC systems at a reasonable

level (e.g. ∼20MW for an exascale computer), in addition to

energy-efficient hardware, energy-conscious and intelligent

runtime system and software are also necessities.

Energy-conscious I/O subsystems are critical for devel-

oping energy efficient HPC for two main reasons. First,

the ever increasing gap between computation speed and I/O

speed is transforming traditional CPU intensive applications

into I/O-bound workloads. It is common that I/O access

time contributes a large portion of the total execution time

of applications, especially for those that routinely process

ever-growing, complex data set. Second, during I/O access

phases, the computing systems perform little computation

but consume disproportional, enormous power. As scientific

applications become increasingly data-intensive, the need

of energy-conscious I/O subsystems becomes even more

pressing.

In this work, we present a novel, energy-conscious parallel

I/O approach that complements existing work on energy

efficient I/O subsystems. This approach relies on the dy-

namic voltage and frequency scaling (DVFS) technology

available on today’s microprocessors, and integrates DVFS

control at the parallel I/O middleware layer to reduce energy

consumption of parallel computer systems. Particularly, this

approach exploits two facts in parallel applications: (1)

during I/O access phases, the full computation capability of

the compute nodes is not required, and thus processors can

run at low performance/power modes for energy savings; (2)

many parallel applications use parallel I/O middleware (e.g.,

MPI-IO ) for high performance data access and software

portability, and their I/O patterns can be accurately captured

by the parallel I/O library.

Numerous previous studies have used DVFS to save

energy for parallel system [13], [26], [16], [18]. Most of

them are tailored for communication and memory intensive

applications. A few DVFS schedulers [12], [8], [14] are

implemented at system level and therefore work for I/O

intensive applications. However, they normally don’t make

effective use of application information to achieve maximum

energy savings and best application performance. To our

best knowledge, this work is the first to explore energy-

conscious approach and parallel I/O technology for I/O

intensive parallel applications.

Here, we use the word energy-conscious to emphasize

energy savings without performance loss. Unlike existing

DVFS schedulers such as the on-demand governor included

in the Linux kernel, energy-conscious schedulers aim to

maximize energy savings with guaranteed performance.

There are several inherent challenges in designing energy-

conscious schedulers for real systems. First, power mode

transitions incur overhead because processors can’t compute

but still consume energy during the transitions. Frequent

transitions for short periods of time hurt performance or

even consume more energy. Second, scheduling must be

done timely and properly. Switching processors to a wrong

mode or at a wrong time misses energy saving opportunities

or hurts performance, or both.
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Our contributions: In this work, we introduce SERA-
IO, a System Energy Reduction Agent for parallel I/O

workload, which integrates energy consciousness into the

middleware layer of parallel I/O subsystems. Combining

runtime I/O access interception and accurate knowledge of

the energy requirement of the I/O accesses, SERA-IO opti-

mally schedules the processors’s power/performance modes

(e.g., frequency) in time, and transparently and automatically

saves energy without impacting application performance. We

compare SERA-IO with several DVFS scheduling strategies.

The experimental results with typical I/O intensive parallel

applications on real clusters show that SERA-IO achieves

up to 28% total system energy savings and still main-

tains best performance for these applications. This finding

demonstrates energy-conscious software is a promising path

to improving the energy efficiency of high performance

computing systems.

We organize this paper as follows. After reviewing related

work in section II, we describe the design of SERA-IO in

section III, followed by experimental setup IV and results

analysis V. Finally, we provide a summary in section VI.

II. RELATED WORK

Improving energy efficiency of HPC systems has been an

active research topic in the past several years. Recognizing

that I/O access is a leading performance bottleneck in HPC,

this work mainly focuses on parallel I/O energy efficiency.

As a basic building block, energy efficient storage is

critical for the overall system energy efficiency. In the past,

researchers study using multi-speed disks [5], [10], [27],

disk accesses coalescing [5], [10], [27], and write buffer

disks [19] to reduce disk energy consumption. Recently,

using low power non-volatile flash memory to improve

energy efficiency of parallel disk systems is also investi-

gated [17]. In general, these technologies reduce the energy

consumption at the storage system side. Most of them don’t

consider energy saving opportunities in compute nodes,

which are the dominant power consumers in HPC systems.

Optimizing parallel I/O performance also results in im-

proved I/O energy efficiency. Commonly used techniques

include caching, prefetching [24], collective I/O, data siev-

ing [23], and file system optimization [4]. These techniques

either overlap the I/O access with computation, trade more

network communications for less I/O requests, or provide

concurrent I/O accesses and high bandwidth for I/O re-

quests. Due to algorithm complexity and hardware capacity,

completely hiding the I/O access latency is a nontrivial or

impossible mission, especially for applications that routinely

access large amounts of data.

The energy-aware parallel I/O approach described in this

paper is complementary to I/O performance optimization.

It can be applied to both un-optimized and optimized I/O

accesses. This approach explores energy saving potentials

on compute nodes with certain power-aware components.

Energy-aware parallel I/O also augments existing power-

aware HPC research that improves system energy efficiency

using power-aware components including processors [8],

[18], memory modules [6], hard drive [27], and network

devices [22].

Numerous DVFS scheduling methods have been devel-

oped for HPC systems. Though these methods can be imple-

mented at different software levels, most of them explore the

CPU slackness existing in communication or memory bound

applications. For example, several researchers have studied

compiler approach for detecting memory bound regions and

inserting DVFS control into these regions [13], [26]. Previ-

ous work also investigate intercepting the MPI calls to locate

CPU slackness for communication bound applications [16],

[18]. Several DVFS schedulers can exploit all possible

energy saving opportunities at system level [8], [14] for all

types of applications. However, without application-specific

knowledge of boundaries of CPU intensive phases and non-

CPU intensive phases, it is difficult for the system-level

schedulers to maximize energy savings. Different from ex-

isting work, this work focuses on parallel I/O workload and

explicitly uses application information for scheduling deci-

sions. Shang el at [20] also study data intensive programs.

However, their algorithm is for sequential applications. It

depends on local disk I/O activities for DVFS scheduling

decisions and is not applicable to parallel applications using

parallel I/O.

III. SERA-IO DESIGN AND IMPLEMENTATION

A. System Design

We design SERA-IO to meet three objectives. First, it

improves the energy efficiency for I/O and data intensive

parallel applications without losing performance. Second,

it is portable across different platforms. And third, it con-

serves energy transparently to application developers without

requiring any code change in application programs. To

achieve these goals, we choose to implement SERA-IO at

the middleware layer on the parallel I/O software stack and

Figure 1. The system diagram of SERA-IO. It consists of three main
components (in green): SERA-IO wrapper, SERA-IO engine, and target
frequency table. The yellow blocks are parallel I/O software layers, and the
white blocks are native OS system and hardware on the compute nodes.
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leverage DVFS technology to reduce energy consumption of

parallel I/O phases during applications’ execution.

As shown in Figure 1, SERA-IO resides on the compute

nodes of clustered HPC systems. It consists of three main

components: a SERA-IO wrapper, a SERA-IO engine, and

a target frequency table. Both the wrapper and engine

are packaged into the libSERAIO.a module. The target

frequency table is provided as a configuration file.

SERA-IO works as follows. During its installation, the

target frequency table is constructed by profiling the per-

formance and energy consumption of a set of parallel I/O

micro benchmarks with available processor frequencies on

the compute nodes. Once the table is available, SERA-IO is

ready for use. To make a parallel program SERA-IO enabled,

users only need to link the program to libSERAIO.a
during its compilation. At runtime, the SERA-IO wrapper

intercepts the parallel I/O function calls and invokes SERA-
IO engine before and after parallel I/O accesses. SERA-
IO engine analyzes the I/O access pattern, looks up the

target frequency for the intercepted I/O access in the table,

and applies DVFS control via the ACPI/CPUFREQ interface

provided by the Linux kernel.

1) SERA-IO Wrapper: The wrapper is integrated into

the parallel I/O middleware layer on the parallel I/O software

stack. Currently, SERA-IO is based on MPI-IO, which is

defined as part of the MPI-2 standard and is a de facto

standard for writing parallel I/O libraries and applications.

The wrapper intercepts the MPI-IO calls initiated by the

MPI processes. By interception, the wrapper knows exactly

when a parallel I/O phase starts and ends. Meanwhile, the

wrapper passes the information about I/O access to the

SERA-IO engine. With the timing and I/O access pattern

information, SERA-IO can power down the processors just

at the start of I/O operations and restore to the default (the

highest) power mode for computation right after the I/O

accesses finish.

The wrapper uses MPI profiling interface (PMPI) to

intercept MPI-IO function calls and wraps them within

SERA-IO functions. All SERA-IO wrapper functions share

a common structure. Take MPI File read at all as an ex-

ample, its corresponding wrapper function is as follows:

int MPI_File_read_at_all(...)
{

int ret_val;
SERA_Io_begin(...);
ret_val = PMPI_File_read_at_all(...);
SERA_Io_end(...);
return ret_val;

}

Here, PMPI File read at all invokes the actual MPI-

IO implementation for collective file reading. Both

SERA Io begin and SERA Io end are implemented in the

SERA-IO engine. The former informs the start of an I/O

phase and its access pattern, and the latter signals the end

of the current I/O operation.

2) SERA-IO Engine: SERA-IO engine decides how to

schedule the power/performance modes for the processors

with which the MPI processes are associated. The engine

can be implemented in multiple ways. In this work, we

choose a table lookup approach. After receiving a parallel

I/O function name and parameters in the SERA Io begin
function call, the engine parses the information to determine

the access pattern, looks up the target frequency table for

the target frequency, and then applies a DVFS schedule

command through the CPUFREQ interface. One exception

is: if the returned target frequency by looking up the table

is the highest frequency available on the processors, SERA-
IO skips the last step and doesn’t perform DVFS schedule

since the current mode and the target mode are the same.

Because SERA-IO schedules the power/performance

modes of processors that execute the MPI processes, it is

important to ensure that the scheduling decisions always

apply to the correct physical cores. In this work, we enforce

hard CPU affinity for both SERA-IO enabled applications

and normal applications to bind each MPI process to a fixed

core during MPI initialization. We observed that hard CPU

affinity normally leads to better performance than the natural

CPU affinity included in Linux kernel 2.6 as the default

process scheduler. The natural affinity attempts to keep a

process on the same core during the execution. However, it

does’t prevent process migrating from one core to another.

3) Target Frequency Table: SERA-IO relies on the target

frequency table to store the target frequencies for various I/O

access patterns. Currently the table is constructed offline and

can be expanded gradually. In the future, we will consider

online learning approaches to refine the table.

The table implements a map function M : A �→ F ,

mapping an I/O access pattern a ∈ A to a frequency f ∈ F .

Here A is a set of possible I/O access patterns and F is the

set of frequencies available on the processors on the compute

nodes in the platform. This table is looked up by the SERA-
IO engine at runtime. If an I/O access is not found in the

table, then the highest available frequency is chosen for the

target frequency.

B. Table Construction

Given a specific I/O access, its target frequency should

maximize energy savings with zero or minimum perfor-

mance loss. Two major factors must be taken into consid-

eration in the table construction to avoid performance loss

and energy waste. The first factor is the performance penalty

of running at a lower frequency for CPU activities involved

in the I/O accesses. The second factor is mode transition

overhead, especially when frequent transitions undertake in

a short period of time.

1) I/O Access Pattern: Our earlier studies [7] showed

that for scientific computing, I/O access times are strongly
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correlated with I/O access patterns. Currently, we character-

ize access patterns with 5 attributes listed in Table I: op-

eration type, data size, locality, collective/indvidual, block-

ing/nonblocking. All these attributes can be extracted from

the MPI-IO function name and parameters. For example,

from the function MPI_File_read_all( fh, buf,
size, MPI_INT, &status ), we can extract its I/O

access pattern as follows.

Operation Type = Read
Data Size = sizeof(MPI_INT) * size
Spatial locality = Contiguous
Collective? = YES
Blocking? = YES

Table I
THE ATTRIBUTES OF I/O ACCESS PATTERNS.

Attribute Value Extraction
Operation Type Read|Write|Seek|Open|Close Function Name

Data Size Number of bytes Data Type, Count
Spatial Locality Contiguous|Strided Data Type

Collective? YES|NO Function Name
Blocking? YES|NO Function Name

2) Table Fields: The target frequency table is organized

as a list of entries, each comprising an access pattern and

a target frequency. The first fields of the entry match the

attributes of an I/O access pattern and the last field is the

target frequency for the pattern. Table II provides a simple

example of the target frequency table. In this table, the field

Data Size is coded as a range with a lower bound and an

upper bound, instead of a single value.

When SERA-IO looks up the table for a given pattern,

the engine first lists all entries matching the attributes for the

given pattern except data size. Then it finds the entry whose

data size field contains the data size of given pattern. If one

table entry is found, the recorded frequency in the entry is

returned as the target scheduling frequency. Otherwise, the

default high frequency will be returned.

Table II
A SAMPLE TARGET FREQUENCY TABLE

OpType DataSize Locality Coll? Block? Freq.
read (1MB, 2MB) contig NO YES 1.8GHZ
read (64MB, 128GB) noncontig YES YES 1.3GHZ
write (1MB, 2MB) contig NO NO 2.5GHZ

3) Target Frequency Identification: Currently, we identify

the target frequencies of various I/O access patterns using a

profiling-based approach. Specifically, we run a set of micro

benchmarks to enumerate a set of I/O access patterns of

interest, collect the time, power and energy profiles of these

patterns for each available frequency on the compute nodes,

and then choose the most efficient frequency satisfying the

performance constraint as the target frequency. In this study,

we use PIO-Bench [21] to generate the parallel I/O access

patterns. We instrument the PIO-Bench code to integrate

with the PowerPack [9] toolkit for power-energy profiling.

Table III shows the profiles of two example patterns. For

each access pattern, we identify its target frequency with two

steps. In the first step, we filter short accesses that last less

than a time threshold. We take this step because for short I/O

accesses (type I), using a low frequency won’t save much

energy but incur extra transition overhead. Therefore, we

use the highest available processor frequency for the target

frequency for these types of patterns. The second step only

applies to long I/O accesses (type II). For those accesses, we

evaluate the bandwidth and average power for all available

frequencies, and identify the frequency that results in the

smallest EDP value as the target frequency. For the type II

example shown in Table III, the target frequency is set as

1.3GHz as it gives the smallest EDP value.

Table III
SAMPLE PROFILING RESULTS USING PIOBENCH AND POWERPACK.

(a) A type I example: collective, noncontiguous, blocking read
with data size 1KB

Freq Time Bandwidth Average Nodal Power
1.3GHz 0.11ms 9.41MB/s 159W
2.5GHz 0.10ms 9.76MB/s 200W

(b) A type II example: collective, noncontiguous, blocking read
with data size 2MB

Freq Time Bandwidth Average Nodal Power
0.8GHz 17.1ms 125.43MB/s 141W
1.3GHz 16.4ms 127.88MB/s 152W
2.5GHz 16.7ms 126.13MB/s 183W

IV. EXPERIMENTAL SETUP

A. Experimental Environment

The experiments are conducted on a 9-node power-aware

cluster with Gigabit Ethernet. Each node in the cluster

has dual AMD Opteron quad-core 2380 processors running

Linux. Each core in a node can be independently scheduled

among four frequencies: 0.8GHz, 1.3GHz, 1.8GHz, and

2.5GHz. Each core has a 64KB L1 instruction cache, a 64KB

L1 data cache, and a unified 512KB L2 cache. The four cores

on the same chip share one 6MB L3 cache.

Two file systems, NFS and PVFS2, are examined on this

cluster. When NFS is used, the head node is used as the

NFS server to provide a 1.4TB storage using three directly

attached RAID disks configured with RAID-5. Each individ-

ual RAID disk is a WD7500AYPS Raid Edition 7200rpm

SATA hard drive, which has 750GB capacity and 16MB

data cache, and supports a maximum 3GB/s buffer to host

transfer speed. When PVFS2 is used, unless explicitly stated,

the storage is distributed over two IO nodes on the cluster,

each with one 160GB Western Digital WD1600AYPS Raid

Edition 7200rpm SATA hard drive.

The reported energy numbers in the results section are the

total energy over all participating compute nodes for each
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test. For tests (e.g., NP = 36) that do not use all the cores

on one node, the power consumption of that node is prorated

to the number of cores being used. For each compute node,

we use a Wattsup meter to measure its system power, which

is the total power consumed by CPUs, memory modules,

disks, fans, and other components on the node. The power

measurement is synchronized with the performance timing

using PowerPack [9]. The energy consumption of a single

node is calculated as the integral of the measured system

power over the entire application execution time.

B. Parallel Benchmarks

In our experiments, we use four parallel I/O benchmarks:

BT-IO [25], MADBench [3], FLASH-IO [1], and Tile-

IO [2]. The first two benchmarks consist of interleaved

computation and I/O phases, representing typical scientific

workload. The other two involve only I/O phases. Both BT-

IO and FLASH-IO are implemented in Fortran, and the other

two are written in C. Among the four benchmarks, FLASH-

IO relies on the high level I/O library HDF5 for parallel file

write, while the others directly invokes MPI-IO functions.

V. RESULTS AND ANALYSIS

To evaluate the performance of SERA-IO, we compare

the performance and energy of each benchmark under three

scheduling strategies as shown in table IV.

Table IV
THE THREE SCHEDULING STRATEGIES AND THE CORRESPONDING

SETTINGS OF POWER/PERFORMANCE MODES ON COMPUTER NODES.

Scheduling Strategy Processor Frequency
High Performance (2500) Fixed at 2.5 GHz
Low Power (800) Fixed at 800 MHz
SERA-IO(SERA-IO) Dynamic

The High Performance strategy fixes the frequency at

2500MHz, while the Low Power strategy fixes the frequency

at 800MHz. These two strategies reflect system’s default

high performance setting and low power setting respectively.

To enable SERA-IO strategy, we link the applications to the

SERA-IO library libSERAIO.a.

In addition, we compare the performance of SERA-
IO with the ondemand governor included in the Linux kernel

as part of the cpufreq module. The ondemand governor is

a system wide DVFS scheduler which automatically scales

down the frequency of processors with low utilization.

System wide DVFS schedulers work best for system idle

or long I/O periods, but usually do not perform consistently.

For real scientific applications, a system level scheduler may

increase both execution time and energy consumption.

A. SERA-IO Performance for Typical Applications

BT-IO. BT-IO tests parallel writing a 3D matrix data

distributed among MPI processes. The code employs a

(a) Time and energy with NFS

(b) Time and energy with PVFS2

Figure 2. The execution time and energy consumption of BT-IO benchmark
(class C problem size and full MPI I/O subtype) with NFS and PVFS2.

complex diagonal multi-partitioning domain decomposition

and distributes its data set among MPI-processes. Each

process is responsible for multiple Cartesian subsets that

are noncontiguous in the entire data set. BT-IO writes the

entire solution periodically to a file. In our study, we use

BT-IO full or collective I/O subtype, which involves a single

I/O access pattern characterized by blocking collective write

with explicit offset.

Figures 2 show the execution time and energy consump-

tion of BT-IO with problem size of class C and full MPI I/O

subtype. Using the scheduling strategies described above,

we run the tests on both NFS and PVFS2 file systems and

vary the number of processes (NP) from 16 to 49. From the

experimental results, we make the following observations.

1) Comparing with the High Performance strategy, SERA-
IO reduces energy with nominal performance change for

all the test cases. With NFS, the observed energy savings

range from 11.3% to 14.0%. With PVFS2, the observed

energy savings range from 9.1% to 12.5%. For all cases,

the performance difference between SERA-IO strategy and

High Performance strategy is within ±2%.

2) Comparing with the Low Power strategy, SERA-IO al-

ways results in significantly higher performance. With NFS,

SERA-IO enabled execution runs 39.4% to 21.8% faster

when NP increases from 16 to 49. With PVFS2, the values

become 41.4% and 21.5% respectively. The energy results

are little complex. With NFS, SERA-IO enabled execution

consumes 14.2% less energy when NP = 16 but 12.6%

more energy when NP = 49. With PVFS2, the values are

15.5% and 16.2% respectively.

3) PVFS2 delivers better performance and consumes less

energy than NFS. With SERA-IO enabled, BT-IO runs 8%
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faster and consumes 6% less energy with PVFS2 than with

NFS. This is because PVFS2 provides multiple data streams

between storage devices to processes, and thus achieves a

higher I/O bandwidth. We find that the performance-NP

curve with each strategy doesn’t vary with the file system,

and so is the energy-NP curve. Because results with NFS

are usually poorer and don’t provide extra insights, in later

sections, we only analyze the effects of SERA-IO under

PVFS2 file system for other benchmarks.

SERA-IO versus ondemand scheduler: Because most re-

cent Linux distributions include an ondemand DVFS gov-

ernor that automatically reduces power and energy when

the computer system is either idle or under utilized, it is

necessary to compare SERA-IO with the ondemand governor

to justify why optimal DVFS scheduling requires application

specific information. In Table V, we compare the experi-

mental results of BT-IO benchmark under SERA-IO and on-

demand governor for varying numbers of processors. From

the results, we find that for all system sizes, both SERA-
IO and ondemand governor result similar execution time for

the benchmark. However, ondemand governor consistently

consumes about 10-14% more energy then SERA-IO.

Table V
THE PERFORMANCE OF SERA-IO VERSUS ONDEMAND GOVERNOR FOR

BT-IO BENCHMARK

Execution Time (Seconds) Energy (Joule)
NP ondemand SERA-IO ondemand SERA-IO
16 324.15 319.11 167543.86 147721.60
25 273.47 273.51 214863.98 194699.28
36 261.76 259.48 300870.57 263224.92
49 240.48 240.92 377922.92 338341.08

To understand why SERA-IO performs better than the

ondemand governor, we plot the power traces of BT.C.25

benchmark on a single compute node under each scheduler

in Figure 3. From this figure, we draw two observations.

First, SERA-IO can capture the I/O access phases and make

accurate and timely decisions on power/performance mode

transition. In contrast, ondemand normally delays setting

and restoring the processor frequency. Second, the power

drop under the ondemand governor is much smaller than the

power drop under SERA-IO. This is because the ondemand
governor makes DVFS decisions based on an average of

most recent history data and is unable to know what exactly

will happen at next time point. To conclude, we justify inte-

grating application specific information into DVFS scheduler

design, i.e., the approach represented by SERA-IO can lead

to more efficient energy-conscious systems.

MADBench. MADBench is a stripped-down version of

the Microwave Anisotropy Dataset Computational Analysis

Package used by Cosmic Microwave Background studies.

The main I/O pattern of MADBench is the concurrent con-

tiguous read/write of the local subsection of the dataset on all

processes with large buffer size. The IO mode MADBench

Figure 3. The power traces of BT.C.25 under ondemand and SERA-
IO scheduler on a single node. The figure only shows data for the first
100 seconds.

benchmark consists of three phases: S, W, and C. Each

phase has a different combination of computation and I/O

operations. S involves write, C involves read, and W involves

both read and write. In our study, all of these phases use

blocking collective MPI IO functions to access a set of 2D

matrices.

Figure 4. The execution time and energy consumption of MADBench on
PVFS2 with the three scheduling strategies. NP = 16 is used for this test.

Figure 4 shows the execution times of MADbench bench-

mark running on 16 processes using PVFS2. In the test,

each process accesses 0.5 GB of data in 16 iterations. At

IO mode, MADbench replaces the actual computation with

busy work and the users can adjust the total number of

computations using a parameter called busy work exponent.

In our experiments, this parameter is set to 1.2, indicating the

computation intensity is between level 2 and level 3 BLAS.

From this figure, we have the following observations:

1) Comparing with the High Performance strategy, SERA-
IO enabled execution consistently saves about 10% energy

without increasing execution time for all three phases. 2)

Comparing with the Low Power strategy, SERA-IO enabled

execution consistently runs faster: 4.0% for phase S, 11.6%

for phase W, and 19.3% for phase C. The higher performance

of SERA-IO enabled execution sometimes comes at the

expense of more energy.

These observations agree with the results of BT-IO bench-

mark. Both results demonstrate that for typical parallel

applications, High Performance strategy is far from optimal

in term of energy use, and Low Power strategy leads to

significantly poor performance. The energy-aware strategy
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is a promising solution which results in both optimal energy

use and good performance.

B. SERA-IO Performance for Benchmarks Using Libraries

Figure 5. The execution time and energy consumption of FLASH IO with
PVFS2 file systems. NP = 64 and block size = 800 in this test.

The FLASH-IO benchmark recreates the I/O pattern of the

FLASH application that simulates the evolution of multiple

physical quantities over time on a Cartesian, structured

mesh. It produces one checkpoint file and two plot files for

centered data and corner data respectively. The access pat-

tern of the FLASH code is noncontiguous both in memory

and in file. Compared with BT-IO and MADBench, FLASH-

IO uses HDF5 libraries to handle the complex data model

and doesn’t directly calling MPI-IO functions. In addition, it

has little computation. We use FLASH-IO to test the support

of SERA-IO for such applications. Here, we show the time

and energy of writing the checkpointing data (chkpt), the

centered data (nocnr), and the corner data (cnr) with PVFS2

and NP = 64 in Figure 5. From this figure, we have the

following observations.

1) Similar to previous benchmarks, SERA-IO enabled

execution saves 14.5% energy comparing with the High
Performance strategy for FLASH-IO. This confirms that

SERA-IO can improve the energy efficiency of MPI-IO based

IO library such as HDF5.

2) During all three I/O phases, different DVFS strategies

do not make much difference on the execution time. This

is because parallel checkpointing and plot file writing don’t

require much processor resources. Since the I/O access time

is not strongly correlated with processor frequency, running

at a lower frequency is preferred. More interesting, SERA-
IO enabled FLASH-IO completes checkpointing operations

slightly faster than normal FLASH-IO with the High Perfor-
mance strategy. This result is counterintuitive but repeatable.

We speculate this could be related to contentions on shared

system resources but need further investigation.

In addition, these results provide hints for further im-

provement of SERA-IO. For FLASH-IO, the Low Power
strategy is more energy efficient than SERA-IO with roughly

the same performance. We identify two reasons for expla-

nation. Firstly, the target frequency table in SERA-IO is

conservatively built, meaning higher power modes than ideal

are often used to avoid performance penalty. Especially

for the I/O access patterns that are not included in the

table, the highest power mode is used. Secondly, when the

FLASH-IO benchmark runs with 64 processes, there are

some synchronization phases during which the Low Power
strategy saves energy, while SERA-IO doesn’t. As a part of

future work, we will enhance SERA-IO to explore energy

savings from both I/O accesses and synchronization.

C. SERA-IO Performance for Single I/O Phase Benchmarks

Tile-IO tests the performance of tiled data accesses that

exist in many visualization and scientific applications. It

partitions a big matrix into sub-matrices or blocks, and

assigns each process to access one block. In this way, the

spatial locality of I/O accesses is nested strided. Tile-IO

has a single I/O phase dominated by collective read with

minimal computation. Tile-IO maps a square matrix to a

square processes and each process accesses a submatrix. In

our experiments, we choose a data size that is sufficient large

so that the processes can not hold all the data in memory to

take advantage of prefetching and caching.

Figure 6. The execution time and total system energy of Tile IO with
PVFS2 file systems.

Because Title-IO only has a single I/O phase, it provides

a base case to measure the maximum energy saving that

SERA-IO can achieve. Figure 6 shows the execution time

and energy of Tile-IO running on 16 processors using

PVFS2. From the figure, we find that running Title-IO at

800 MHz consumes 37% less energy than running it at

2500MHz. This is the upper bound that SERA-IO could save

on our experimental cluster. In contrast, SERA-IO enabled

Title-IO execution results in 28% energy saving. This dif-

ference indicates a potential room to optimize SERA-IO.

On another perspective, for single I/O phased applications,

end users may be able to use Low Power strategy to

achieve highest energy efficiency. However, this requires the

users have a deep understanding of both applications and

systems, which usually involves performance profiling and

code analysis. SERA-IO alleviates such burden for users who

don’t care profiling performance or understanding details of

systems. They can link the programs to the SERA-IO library

and rely on SERA-IO to save energy.
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VI. SUMMARY

In addition to traditional data-intensive applications, sci-

entific applications also become increasingly data-intensive

due to new tools such as animation and data mining. In the

meantime, data input and output speed improvement is at

snail’s speed compared to the computing speed improve-

ment [11]. This leads to the I/O-wall problem. Intensive

efforts have been made recently to improve I/O performance

so that the CPU power can be utilized. In this study, however,

we take a different approach. Recognizing I/O is often the

performance bottleneck, we lower computing power during

application’s I/O intensive phases to save energy.

We design and evaluate SERA-IO as an energy-aware

middleware. SERA-IO automatically schedules processor

frequency based on I/O access patterns transparently to ap-

plications. It saves energy without impacting application per-

formance. Experimental results on parallel I/O benchmarks

and applications show a minimum of 9% and maximum

of 28% energy savings, depending on the application’s I/O

intensity. As modern high-end computing systems become

more power hungry and complex, and applications become

more data intensive, energy-conscious middleware such as

SERA-IO are becoming increasingly valuable, and will be a

necessity for tomorrow’s exascale computing systems.

An emerging trend in HPC is that data access has become

the leading performance bottleneck of modern computing

systems. I/O is only part of the data access hierarchy. In

the future we plan to extend SERA-IO to explore other

energy saving opportunities related to data access including

communication, memory access and I/O access.
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