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Deep Neural Network (DNN) Training

Ø DNN has been applied in a range of fields

ØDNN training pipeline
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Deep Neural Network (DNN) Training

Ø Characteristics of each stage

Ø When memory is insufficient for growing dataset
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Data
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Forward and Backward
Computation

l Poor temporal locality. (Access each data
item only once in each epoch)

l Poor spatial locality. (Fully random access)

l Operators are
usually lightweight

l DL accelerators are
getting faster: GPU
V100, A100, TPU, ASIC…

Data Loading is becoming the
training bottleneck !
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Deep Neural Network (DNN) Training

Ø Common techniques to accelerate DNN training
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These widely used techniques are inefficient for I/O-bound DNN tasks.
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Related Work: DNN Cache Optimization

Ø Explore data locality in more depth.
• between epochs→ CoorDL [VLDB’ 21]: A static cache.
• between multiple jobs→ OneAccess [HotCloud’ 19], et al.: Sharing cached data.

Ø Exploit data substitutability of DNN training.
• DeepIO [MASCOTS’ 18], Quiver[FAST’ 19]: Replace cache missed data with data

in the cache
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These techniques are not sufficient when data size is huge.
DNN applications in all of these work need to

fetch all data from cache/storage for each epoch training.



Opportunity from Importance Sampling
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Ø For each epoch training:

H-samples L-samples

a. Default DNN training:

b. Importance sampling-based DNN training:

Original
accuracy

Comparable
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Opportunity from Importance Sampling

ØHowever, existing IS  algorithms are designed for computing-bound
tasks (We name them CIS).
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a. Computing-bound training (cache size 100%) b. I/O-bound training (cache size 20%)

CIS Speed up training 1.3x CIS Speed up training 1.02x
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I/O-oriented Importance Sampling Algorithm
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Ø Inspired by CIS, we propose I/O-oriented importance sampling (IIS).

b. CIS DNN training:

c. IIS DNN training:

H-samples L-samples

Comparable
accuracy

Comparable
accuracy



The necessity of re-design cache optimization

ØIt seems promising to combine IIS and cache optimization…
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Cache optimization

IIS Reduce # of data items loaded

Reduce data loaded from storage

Mitigate I/O
bottleneck of
DNN training

select data items based 
on their impact on model 

accuracy

OS cache
Quiver

CoorDL…
Existing DNN 
cache system

Unmatched
cache replacement
based on locality 

IIS It is necessary to re-
design cache 
management 
considering

importance sampling.



Challenges
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How to keep a maximum number of H-samples in the
cache when the importance values changes to achieve
high cache hit rate ?

How to deal with poor I/O efficiency when accessing L-samples ?

How to coordinate samples cached between multiple jobs ?

1. Importance value of a specific data item fluctuates during
training.

2. Cache capacity is limited and L-samples are likely to be cache missed.

3. Cache misses caused by no job coordination. 

Ø Intuitively, caching H-samples as many as possible. However…



Outline

Ø Background & Motivation

Ø Design of iCACHE: an cache system to accelerate DNN training

Ø Implementation & Evaluation

Ø Summary & Conclusion
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iCACHE Architecture

Cache clients
Ø Maintains each data item’s importance value
Ø Requests data items based on Importance

sampling algorithm

Cache server
Ø User-level cache
Ø H-cache: cache H-samples
Ø L-cache: cache L-samples

Cache Manager (Key ideas)
Ø Importance-informed cache replacement
Ø Dynamic packaging to serve L-sample requests
Ø Multi-job handling module
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1. Importance-Informed Cache Algorithm

l Aims to serve H-sample requests and improve
H-cache hit ratio.

Ø Use a small-top-heap for cache replacement.
• O(1) to find the data item with smallest

importance value.

Ø Tracks samples‘ importance value and refresh.

Ø Build shadow-heap to asynchronously update
importance value.
• The additional space overhead is less than 0.5%

of the cache size.
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2. Dynamic Packaging
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L-cache

Memory

Storage

Packaging

H-cache Loading

Existing packages

* The white area represents L-samples; the blue 
area denotes H-samples.

l Aims to serve L-sample requests.

Ø Key idea:
• apply substitutability on L-samples

has minor impact on model accuracy
while reducing data fetch time.

Ø Two asynchronous concurrent threads,
packing and loading thread, to reduce the 
time cost of loading L-samples.



3. Multi-Job Handling
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l One data item may receive different import-
ance value

1. Evaluate the cost-effectiveness of caching for
each job by profiling

2. Adjust importance value:
• use relative importance value
• calculate aggregated importance value



Implementation

Ø Cache client (2000 LOC)
• New Dataset interface of PyTorch

Ø Cache server (3500 LOC)
• Key-value structure in Golang
• dynamic packaging & multi-job handling

Ø Easy to deploy iCACHE.

Ø We also extend iCACHE to the distributed version.
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Experimental Setup

Ø System configuration

Ø Compared systems
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Default PyTorch + LRU user-level cache

Base CIS + LRU user-level cache

Quiver [FAST’20] Uses sample substitutability & Coordinated eviction

CoorDL [VLDB’21] Does not evict already cached data

iLFU IIS + LFU to compare different cache strategies

CPU 2× AMD EPYC 7742 CPUs

GPU 8× NVIDIA A100 

Dataset store OrangeFS (Remote PFS),
10Gbps Ethernet.

Ø Workloads and datasets
Datasets CIFAR10, ImageNet-1k

DNN
Models

ShuffleNet, ResNet18, MobileNet, 
ResNet50, VGG11, MnasNet, 

SqueezeNet, and DenseNet121.

Ø Default cache size: 20% of total training dataset as Quiver does.

State-of-the-art



Accuracy
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Comparable accuracy is achieved on different models and datasets
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Overall Performance
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iCACHE speeds up the overall training time by 1.7x compared to SOTA, and 2.3x to
Base. Compared to Default, iCACHE reduces the I/O time by 2.4x on average.
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Multi-job Training Performance
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iCACHE speeds up the jobs completion time
in multi-job scenario by up to 1.2x.

INDA: Manage cache simply based on importance value given by ShuffleNet.
INDB: Manage cache simply based on importance value given by ResNet50.

Default INDA INDB iCache0
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Multi-GPU and multi-node training

20More evaluations: checkout our paper. 

iCACHE always performs better than Default on Multi-GPU training.
iCACHE speeds up at least 8.6x and 7.6x under 2-server and 4-server configurations.
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Summary & Conclusion

Ø Problem
• I/O is becoming the bottleneck in DNN training

Ø Key idea
• Introduce I/O-oriented importance sampling (IIS) and optimize cache

management considering importance values.
Ø Techniques in iCACHE
• Importance-Informed Cache Algorithm
• Dynamic Packaging
• Multi-Job Handling

Ø Results
• iCACHE alleviates I/O bottleneck of DNN training in various training scenarios.
• iCACHE outperforms state-of-the-arts while maintaining comparable accuracy.
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Thanks & QA
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iCACHE: An Importance-Sampling-Informed Cache for 
Accelerating I/O-Bound DNN Model Training 

Contact Information: weijianchen@zju.edu.cn
Code: https://github.com/ISCS-ZJU/iCache. 


