
iCACHE: An Importance-Sampling-Informed Cache for

Accelerating I/O-Bound DNN Model Training

Weijian Chen*, Shuibing He*, Yaowen Xu*, Xuechen Zhang#,
Siling Yang*, Shuang Hu*, Xian-He Sun$, Gang Chen*

* # $

Deep Neural Network (DNN) Training

Ø DNN has been applied in a range of fields

ØDNN training pipeline

1

Data
Loading

Data
Preprocessing

Forward and Backward
Computation

batch 1

1st epoch

batch 2

… …

2ed epoch

… …

Deep Neural Network (DNN) Training

Ø Characteristics of each stage

Ø When memory is insufficient for growing dataset

2

Data
Loading

Data
Preprocessing

Forward and Backward
Computation

l Poor temporal locality. (Access each data
item only once in each epoch)

l Poor spatial locality. (Fully random access)

l Operators are
usually lightweight

l DL accelerators are
getting faster: GPU
V100, A100, TPU, ASIC…

Data Loading is becoming the
training bottleneck !

0

20

40

60

80

100

1 0.8 0.6 0.4 0.2

ca
ch
e
hi
tr
at
e
(%

)

cache size / total data size

LRU-based cache is
not practice. L

2%

Deep Neural Network (DNN) Training

Ø Common techniques to accelerate DNN training

3

These widely used techniques are inefficient for I/O-bound DNN tasks.

MobileNet ResNet18 ShuffleNet EfficientNet
0

20
40
60
80

100

Ti
m

e
br

ea
kd

ow
n

(%
)

2565121024
2048

2565121024
2048

2565121024
2048

2565121024
2048

Others I/O time

l Data prefetching
l Traditional data caching
l Batch size adjustment
l Multi-GPU training

31%

90%

Related Work: DNN Cache Optimization

Ø Explore data locality in more depth.
• between epochs→ CoorDL [VLDB’ 21]: A static cache.
• between multiple jobs→ OneAccess [HotCloud’ 19], et al.: Sharing cached data.

Ø Exploit data substitutability of DNN training.
• DeepIO [MASCOTS’ 18], Quiver[FAST’ 19]: Replace cache missed data with data

in the cache

4

These techniques are not sufficient when data size is huge.
DNN applications in all of these work need to

fetch all data from cache/storage for each epoch training.

Opportunity from Importance Sampling

5

Ø For each epoch training:

H-samples L-samples

a. Default DNN training:

b. Importance sampling-based DNN training:

Original
accuracy

Comparable
accuracy

Opportunity from Importance Sampling

ØHowever, existing IS algorithms are designed for computing-bound
tasks (We name them CIS).

6

a. Computing-bound training (cache size 100%) b. I/O-bound training (cache size 20%)

CIS Speed up training 1.3x CIS Speed up training 1.02x

MobileNet
ResNet18

ShuffleNet
EfficientNet

0

1000

2000

3000

Tr
ai

ni
ng

 ti
m

e
(s

ec
)

ORI CIS ORI CIS ORI CIS ORI CIS

Other time I/O time

MobileNet
ResNet18

ShuffleNet
EfficientNet

0

500

1000

1500

2000

Tr
ai

ni
ng

 ti
m

e
(s

ec
)

ORI CIS ORI CIS ORI CIS ORI CIS

Other time I/O time

J L

I/O-oriented Importance Sampling Algorithm

7

Ø Inspired by CIS, we propose I/O-oriented importance sampling (IIS).

b. CIS DNN training:

c. IIS DNN training:

H-samples L-samples

Comparable
accuracy

Comparable
accuracy

The necessity of re-design cache optimization

ØIt seems promising to combine IIS and cache optimization…

8

Cache optimization

IIS Reduce # of data items loaded

Reduce data loaded from storage

Mitigate I/O
bottleneck of
DNN training

select data items based
on their impact on model

accuracy

OS cache
Quiver

CoorDL…
Existing DNN
cache system

Unmatched
cache replacement
based on locality

IIS It is necessary to re-
design cache
management
considering

importance sampling.

Challenges

9

How to keep a maximum number of H-samples in the
cache when the importance values changes to achieve
high cache hit rate ?

How to deal with poor I/O efficiency when accessing L-samples ?

How to coordinate samples cached between multiple jobs ?

1. Importance value of a specific data item fluctuates during
training.

2. Cache capacity is limited and L-samples are likely to be cache missed.

3. Cache misses caused by no job coordination.

Ø Intuitively, caching H-samples as many as possible. However…

Outline

Ø Background & Motivation

Ø Design of iCACHE: an cache system to accelerate DNN training

Ø Implementation & Evaluation

Ø Summary & Conclusion

10

iCACHE Architecture

Cache clients
Ø Maintains each data item’s importance value
Ø Requests data items based on Importance

sampling algorithm

Cache server
Ø User-level cache
Ø H-cache: cache H-samples
Ø L-cache: cache L-samples

Cache Manager (Key ideas)
Ø Importance-informed cache replacement
Ø Dynamic packaging to serve L-sample requests
Ø Multi-job handling module

11

Training dataset

Cache clientDL
Framework

Cache
Manager

Cache client

Multi-job
handling

H-cache

L-cache

Cache client

Importance-informed
replacement

Dynamic
packaging

Storage
System

Deep learning applications

Control flow Data flow

Server

1. Importance-Informed Cache Algorithm

l Aims to serve H-sample requests and improve
H-cache hit ratio.

Ø Use a small-top-heap for cache replacement.
• O(1) to find the data item with smallest

importance value.

Ø Tracks samples‘ importance value and refresh.

Ø Build shadow-heap to asynchronously update
importance value.
• The additional space overhead is less than 0.5%

of the cache size.
12

1 2 3
LRU-like cache

4

(b) iCACHE

iCACHE

1 2 3 4

evict

evict

(1.2, 2)

(1.5, 3) (2.6, 3)

(a) LRU-like algorithm

2. Dynamic Packaging

13

L-cache

Memory

Storage

Packaging

H-cache Loading

Existing packages

* The white area represents L-samples; the blue
area denotes H-samples.

l Aims to serve L-sample requests.

Ø Key idea:
• apply substitutability on L-samples

has minor impact on model accuracy
while reducing data fetch time.

Ø Two asynchronous concurrent threads,
packing and loading thread, to reduce the
time cost of loading L-samples.

3. Multi-Job Handling

14

J1

J3

J2

J4

item ID, r_imvp

i x1

… …

item ID, r_imvp

i x2

… …

item ID, r_imvp

i x4

… …

item ID, r_imvp

i x3

… …

H-cache

not cache-eligible

…
…

aggregate (x1, x3, x4)

(_, i)

l One data item may receive different import-
ance value

1. Evaluate the cost-effectiveness of caching for
each job by profiling

2. Adjust importance value:
• use relative importance value
• calculate aggregated importance value

Implementation

Ø Cache client (2000 LOC)
• New Dataset interface of PyTorch

Ø Cache server (3500 LOC)
• Key-value structure in Golang
• dynamic packaging & multi-job handling

Ø Easy to deploy iCACHE.

Ø We also extend iCACHE to the distributed version.

15

(1.8.0)

Experimental Setup

Ø System configuration

Ø Compared systems

16

Default PyTorch + LRU user-level cache

Base CIS + LRU user-level cache

Quiver [FAST’20] Uses sample substitutability & Coordinated eviction

CoorDL [VLDB’21] Does not evict already cached data

iLFU IIS + LFU to compare different cache strategies

CPU 2× AMD EPYC 7742 CPUs

GPU 8× NVIDIA A100

Dataset store OrangeFS (Remote PFS),
10Gbps Ethernet.

Ø Workloads and datasets
Datasets CIFAR10, ImageNet-1k

DNN
Models

ShuffleNet, ResNet18, MobileNet,
ResNet50, VGG11, MnasNet,

SqueezeNet, and DenseNet121.

Ø Default cache size: 20% of total training dataset as Quiver does.

State-of-the-art

Accuracy

17

Comparable accuracy is achieved on different models and datasets

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

Epoch

Ac
cu

ra
cy

 (%
)

Default iCache

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

Epoch

Ac
cu

ra
cy

 (%
)

Default iCache

ResNet18 on CIFAR10 SqueezeNet on ImageNet

Overall Performance

18

iCACHE speeds up the overall training time by 1.7x compared to SOTA, and 2.3x to
Base. Compared to Default, iCACHE reduces the I/O time by 2.4x on average.

ResNet18 ResNet50 ShuffleNet MobileNet
0

20

40

60

80

Tr
ai

ni
ng

 ti
m

e(
s)

Default Base Quiver CoorDL iLFU iCache

ResNet18 ResNet50 ShuffleNet MobileNet
0

20

40

60

80

I/O
 ti

m
e(

s)

Default Base Quiver CoorDL iLFU iCache

1.7x

2.3x

Multi-job Training Performance

19

iCACHE speeds up the jobs completion time
in multi-job scenario by up to 1.2x.

INDA: Manage cache simply based on importance value given by ShuffleNet.
INDB: Manage cache simply based on importance value given by ResNet50.

Default INDA INDB iCache0

20

40

H
it

ra
tio

 (%
)

ShuffleNet ResNet50

Default INDA INDB iCache0

20

40

60

80

Tr
ai

ni
ng

 ti
m

e
(s

)

ShuffleNet ResNet50

Multi-GPU and multi-node training

20More evaluations: checkout our paper.

iCACHE always performs better than Default on Multi-GPU training.
iCACHE speeds up at least 8.6x and 7.6x under 2-server and 4-server configurations.

(a) Multi-GPU training

1 2 3 40

20

40

60

80

of GPUs

Tr
ai

ni
ng

 ti
m

e
(s

)

Default iCache

2S-Res182S-Res504S-Res184S-Res500

100

200

300

400

500

600

700

800

Tr
ai

ni
ng

 ti
m

e
(s

)

Default iCache

(b) Multi-node training

Summary & Conclusion

Ø Problem
• I/O is becoming the bottleneck in DNN training

Ø Key idea
• Introduce I/O-oriented importance sampling (IIS) and optimize cache

management considering importance values.
Ø Techniques in iCACHE
• Importance-Informed Cache Algorithm
• Dynamic Packaging
• Multi-Job Handling

Ø Results
• iCACHE alleviates I/O bottleneck of DNN training in various training scenarios.
• iCACHE outperforms state-of-the-arts while maintaining comparable accuracy.

21

Thanks & QA

22

iCACHE: An Importance-Sampling-Informed Cache for
Accelerating I/O-Bound DNN Model Training

Contact Information: weijianchen@zju.edu.cn
Code: https://github.com/ISCS-ZJU/iCache.

