iCACHE: An Importance-Sampling-Informed Cache for Accelerating I/O-Bound DNN Model Training

Weijian Chen*, Shuibing He*, Yaowen Xu*, Xuechen Zhang#, Siling Yang*, Shuang Hu*, Xian-He Sun§, Gang Chen*

* Zhejiang University # Washington State University § Illinois Tech
Deep Neural Network (DNN) Training

- DNN has been applied in a range of fields

DNN training pipeline

1st epoch

Data Loading

batch 1

batch 2

...

Data Preprocessing

2nd epoch

Forward and Backward Computation

...

...
Deep Neural Network (DNN) Training

- Characteristics of each stage
 - **Data Loading**
 - Poor temporal locality. (Access each data item only once in each epoch)
 - Poor spatial locality. (Fully random access)
 - **Data Preprocessing**
 - Operators are usually lightweight
 - **Forward and Backward Computation**
 - DL accelerators are getting faster: GPU V100, A100, TPU, ASIC...

- When memory is insufficient for growing dataset

 ![Graph showing cache hit rate vs. cache size/total data size](image)

 - LRU-based cache is not practice.
 - Data Loading is becoming the training bottleneck!
Deep Neural Network (DNN) Training

- Common techniques to accelerate DNN training
 - Data prefetching
 - Traditional data caching
 - Batch size adjustment
 - Multi-GPU training

These widely used techniques are inefficient for I/O-bound DNN tasks.
Related Work: DNN Cache Optimization

- Explore **data locality** in more depth.
 - between **epochs** → CoorDL [VLDB’ 21]: A static cache.
 - between **multiple jobs** → OneAccess [HotCloud’ 19], et al.: Sharing cached data.

- Exploit **data substitutability** of DNN training.
 - DeepIO [MASCOTS’ 18], Quiver[FAST’ 19]: Replace cache missed data with data in the cache

These techniques are not sufficient when data size is huge. DNN applications in all of these work need to fetch all data from cache/storage for each epoch training.
Opportunity from Importance Sampling

For each epoch training:

a. Default DNN training:

b. Importance sampling-based DNN training:

Original accuracy

Comparable accuracy
Opportunity from Importance Sampling

- However, existing IS algorithms are designed for computing-bound tasks (We name them CIS).

![Graph showing training time comparison]

a. Computing-bound training (cache size 100%)

- CIS Speed up training 1.3x

![Graph showing I/O-bound training time comparison]

b. I/O-bound training (cache size 20%)

- CIS Speed up training 1.02x
Inspired by CIS, we propose I/O-oriented importance sampling (IIS).

b. CIS DNN training:

CIS, DNN training:

H-samples

L-samples

Comparable accuracy

IIS, DNN training:

Comparable accuracy
The necessity of re-design cache optimization

- It seems promising to combine IIS and cache optimization...

<table>
<thead>
<tr>
<th>IIS</th>
<th>Reduce # of data items loaded</th>
<th>Mitigate I/O bottleneck of DNN training</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cache optimization</td>
<td>Reduce data loaded from storage</td>
<td></td>
</tr>
</tbody>
</table>

- IIS: select data items based on their impact on model accuracy
- OS cache Quiver CoorDL... Existing DNN cache system: cache replacement based on locality

- Unmatched

- It is necessary to re-design cache management considering importance sampling.
Challenges

- Intuitively, caching H-samples as many as possible. However...

1. Importance value of a specific data item fluctuates during training.
 - How to keep a maximum number of H-samples in the cache when the importance values changes to achieve high cache hit rate?

2. Cache capacity is limited and L-samples are likely to be cache missed.
 - How to deal with poor I/O efficiency when accessing L-samples?

3. Cache misses caused by no job coordination.
 - How to coordinate samples cached between multiple jobs?
Outline

- Background & Motivation
- Design of iCACHE: an cache system to accelerate DNN training
- Implementation & Evaluation
- Summary & Conclusion
iCACHE Architecture

Cache clients
- Maintains each data item’s importance value
- Requests data items based on Importance sampling algorithm

Cache server
- User-level cache
- H-cache: cache H-samples
- L-cache: cache L-samples

Cache Manager (Key ideas)
- Importance-informed cache replacement
- Dynamic packaging to serve L-sample requests
- Multi-job handling module
1. Importance-Informed Cache Algorithm

● Aims to serve H-sample requests and improve H-cache hit ratio.

➢ **Use a small-top-heap for cache replacement.**
 • $O(1)$ to find the data item with smallest importance value.

➢ **Tracks samples’ importance value and refresh.**

➢ **Build shadow-heap to asynchronously update importance value.**
 • The additional space overhead is less than 0.5% of the cache size.
2. Dynamic Packaging

- Aims to serve L-sample requests.

- Key idea:
 - apply substitutability on L-samples has minor impact on model accuracy while reducing data fetch time.

- Two asynchronous concurrent threads, packing and loading thread, to reduce the time cost of loading L-samples.

* The white area represents L-samples; the blue area denotes H-samples.
3. Multi-Job Handling

- One data item may receive different importance value

1. Evaluate the cost-effectiveness of caching for each job by profiling

2. Adjust importance value:
 - use relative importance value
 - calculate aggregated importance value
Implementation

- Cache client (2000 LOC)
 - New Dataset interface of PyTorch

- Cache server (3500 LOC)
 - Key-value structure in Golang
 - dynamic packaging & multi-job handling

- Easy to deploy iCACHE.

- We also extend iCACHE to the distributed version.
Experimental Setup

- **System configuration**
 - CPU: 2 × AMD EPYC 7742 CPUs
 - GPU: 8 × NVIDIA A100
 - Dataset store: OrangeFS (Remote PFS), 10Gbps Ethernet.

- **Workloads and datasets**
 - Datasets: CIFAR10, ImageNet-1k

- **Compared systems**
 - Default: PyTorch + LRU user-level cache
 - Base: CIS + LRU user-level cache
 - Quiver [FAST’20]: Uses sample substitutability & Coordinated eviction
 - CoorDL [VLDB’21]: Does not evict already cached data
 - iLFU: IIS + LFU to compare different cache strategies

- Default cache size: 20% of total training dataset as Quiver does.
TABLE I
MODEL ACCURACY ON CIFAR10.

<table>
<thead>
<tr>
<th>Models</th>
<th>Top-1 Acc. (%)</th>
<th>Top-5 Acc. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Default</td>
<td>iCACHE</td>
</tr>
<tr>
<td>ShuffleNet</td>
<td>87.76</td>
<td>86.96</td>
</tr>
<tr>
<td>ResNet18</td>
<td>92.70</td>
<td>92.14</td>
</tr>
<tr>
<td>MobileNet</td>
<td>92.37</td>
<td>92.01</td>
</tr>
<tr>
<td>ResNet50</td>
<td>89.91</td>
<td>89.36</td>
</tr>
</tbody>
</table>

Comparable accuracy is achieved on different models and datasets
Overall Performance

- iCACHE speeds up the overall training time by 1.7x compared to SOTA, and 2.3x to Base. Compared to Default, iCACHE reduces the I/O time by 2.4x on average.
Multi-job Training Performance

iCACHE speeds up the jobs completion time in multi-job scenario by up to 1.2x.

INDA: Manage cache simply based on importance value given by ShuffleNet.
INDB: Manage cache simply based on importance value given by ResNet50.
Multi-GPU and multi-node training

(a) Multi-GPU training

(b) Multi-node training

iCACHE always performs better than Default on Multi-GPU training. iCACHE speeds up at least 8.6x and 7.6x under 2-server and 4-server configurations.

More evaluations: checkout our paper.
Summary & Conclusion

Problem
• I/O is becoming the bottleneck in DNN training

Key idea
• Introduce I/O-oriented importance sampling (IIS) and optimize cache management considering importance values.

Techniques in iCACHE
• Importance-Informed Cache Algorithm
• Dynamic Packaging
• Multi-Job Handling

Results
• iCACHE alleviates I/O bottleneck of DNN training in various training scenarios.
• iCACHE outperforms state-of-the-arts while maintaining comparable accuracy.
Thanks & QA

iCACHE: An Importance-Sampling-Informed Cache for Accelerating I/O-Bound DNN Model Training

Contact Information: weijianchen@zju.edu.cn