
Scalable Computing Software Lab, Illinois Institute of Technology 1

From Moore’s Law to
Pace-Matching Data Access:

Thoughts on data-centric
Computer Architectures

CNCC2018 Award Winning Speech, Oct. 2018

Xian-He Sun
Illinois Institute of Technology

sun@iit.edu

Thought

 Is Moore’s Law (摩尔定律) ending?

Yes

 But,

Scalable Computing Software Lab, Illinois Institute of Technology 2

Thought

 Is Moore’s Law (摩尔定律) ending?

Yes

 But, it is not the transistors, it is Dennard
Scaling

 Dark Silicon

Scalable Computing Software Lab, Illinois Institute of Technology 3

Thought

 So, is power consumption (Dennard Scaling) the
issue?

Yes

 But, but

Scalable Computing Software Lab, Illinois Institute of Technology 4

Thought

 So, is power consumption (Dennard Scaling) the
issue?

Yes

 But, we have the many-core technologies

 Computing power still can increase

Scalable Computing Software Lab, Illinois Institute of Technology 5

Thought

 Is many-core technologies a solution?

Yes

 But, but, but

Scalable Computing Software Lab, Illinois Institute of Technology 6

Thought

 Is many-core technologies a solution?

Yes

 But, it is not scalable

Scalable Computing Software Lab, Illinois Institute of Technology 7

12/29/2019 Scalable Computing Software Lab, Illinois Institute of Technology 8

Why not Scale up the Number of Cores?
Perception/technology?

I told you

It is memory

Stupid!

Sun & Ni’s Law

存储受限理论
Memory Bounded Speedup

a 1-a

p
(1-a)G(p)

time

Lionel M. NiXian-He Sun

ppG

pG

TimeWork

pTimepWork
SpeedupMB /)()1(

)()1(

)1(/)1(

)(/)(

1

X.H. Sun, and L. Ni , "Scalable Problems and Memory-Bounded Speedup," Journal of Parallel
and Distributed Computing, Vol. 19, pp.27-37, Sept. 1993 (SC90)

Scalable Computing Software Lab, Illinois Institute of Technology 10

1

10

100

1,000

10,000

100,000

1980 1985 1990 1995 2000 2005 2010

Year
P

er
fo

rm
an

ce

Memory

Uni-rocessor

Multi-core/many-core processor

The Memory-wall Problem

 Processor performance
increases rapidly
 Uni-processor: ~52% until

2004

 Aggregate multi-core/many-
core processor performance
even higher since 2004

 Memory: ~9% per year
 Storage: ~6% per year

 Processor-memory speed gap
keeps increasing

Source: Intel

Source: OCZ

25%

52%

20%

9%

60%

9%

Memory-bounded speedup (1990), Memory wall problem (1994)

11

Extension: Scalability of Manycore

 Based on Amdahl’s law Multicore is not scalable

 Based on Gustafson and Sun-Ni’s law, it scalable

 Based on Sun-Ni’s law
 Multicore is scalable, if data access time is fixed and does not

increase with the amount of work and the number of cores
 Implication: Data access is the bottleneck needs attention

'

() () () ()
p pc cw ww w

perf r perf r perf r m perf r

'p pw mw=>

'

() ()
(1 ') '

() ()

pc

c p

p c pc

ww
w m wperf r m perf r

f mf
w w ww

perf r perf r

 ' p

c p

w
f

w w

X.-H. Sun and Y. Chen, "Reevaluating Amdahl's Law in the Multicore Era," Journal of
Parallel and Distributed Computing, vol. 70, no. 2, pp. 183-188, Feb. 2010.

Solutions for Memory/Data Access

 New Architecture for Computing
 GPU: data streaming

 ASIC (Application Specific IC): not general, costly

 Intel CSA (Configurable Spatial Accelerator): Case study

 New Technology for Memory Devices
 3D stacked DRAM (HBM), GDDR and multi-channel DRAM

(MCDRAM), byte addressable non-volatile storage class memories (SCM)
(phase-change memory (PCM), resistive RAM (ReRAM), 3D Xpoint),
etc.: none can replace DRAM

 New Architecture for Memory Systems
 Memory pool/memory segregation: Case study

 Deep memory hierarchy: Under development

 Elastic/Pace Matching data transfer: Case study

Scalable Computing Software Lab, Illinois Institute of Technology 12

Configurable Spatial Accelerator (CSA)

12/29/2019 Scalable Computing Software Lab, Illinois Institute of Technology 13

 Designed for the first US Exascale
supercomputer, A21

 A grid of compute, switching,
interconnect, storage elements on a
die

 Dataflow Engines: take the
dataflow graph of a program,
which is created by a compiler, and
map that dataflow graph on an
array of compute elements and
interconnects

 Region of code to be accelerated
Intel CSA

Basic Feature

1

Configurable Spatial Accelerator (CSA)

12/29/2019 Scalable Computing Software Lab, Illinois Institute of Technology 14

 Only mapped elements active (dark
silicon)

 Build application specific CSAs

 Grab explicitly the parallelism in
the code (the dataflow graph)

 Treat memory operations as other
dataflow operations

 It is a system on chip

 as a co-processor, heterogeneous
processor, or in group

 Not FPGA

Multiple Layers with Buffers

Basic Idea

2

Configurable Spatial Accelerator (CSA)

12/29/2019 Scalable Computing Software Lab, Illinois Institute of Technology 15

 A dataflow machine on chip
o But, historically dataflow concept only had very limited success

o That is why it is called Accelerator (work for some part of the code)

 Build application specific CSAs
o Must specific enough to be effective and general enough to keep cost low

 Grab explicitly the parallelism in the code for dataflow
o Hard to achieve in general

 Accelerate what?
o For compute-intensive application, GPU probably is a better accelerator

 So, they are (semi-)specific dataflow accelerators for some
targeted non-compute-intensive application

Discussion
3

HP: The Machine (universal memory)

 Have a massive universal memory, available for every node

 Supported by photonic networks, for fast data transfer

Basic Feature

1

HP: The Machine (universal memory)

 Have a massive universal memory, available for every node
 Supported by photonic networks, for fast data transfer

Basic Structure

Basic Idea

 Fast network is
available

 NVRAM are
available

 With a lower
software cost

 Quicker access
for massive data

2

The Machine (universal memory)

 Each node still have its local memory and caches
o Fast network does not solve the memory-wall problem

 There is a pool of global memory after local memory
o For large data and data sharing

o Higher bandwidth, higher latency

 Converging the global memory with storage (NVRAM)
o Manage NVRAM as extended memory

o Selective in accessing global memory or storage file system

 The effective of the global pool concept needs to be verified

 It does not address how to access local memory fast

Discussion
3

Pace Matching Data Access（搏动数据获取）

 Build an elastic memory hierarchy to dynamically match the data
supply with the data request

 A methodology is developed to perform the match to remove
memory-wall effect

Basic Feature
1

Pace Matching Data Access（搏动数据获取）

 Build an elastic memory hierarchy to dynamically match the data supply with the
data request

 A methodology is developed to perform the match to remove memory-wall effect

Basic Feature
2

 If a memory system
matches data request,
there is not data access
delay

 The match can be
measured and
controlled dynamically

Basic Idea

Pace Matching Data Access（搏动数据获取）

 The C-AMAT model and LPM algorithm are developed to
support Pace Matching

 Analysis and experimental results show the Pace Matching
approach is correct and feasible

 Matching can be achieve through
o Reduce request: Improve locality, in memory computing, etc
o Improve data access: memory concurrency , memory technology, etc
o Mask the difference: Overlapping computing with data access delay (pure

miss), prefetch, etc.

 Like Intel CSA, HP the machine, it requests the support of
o Hardware technology, compiler technology, application algorithm design,

system scheduling

Discussion
3

Conclusion

 Intel CSA’s dataflow engine is only effective for certain code
regions and needs to be specified to reduce dark silicon

 HP The Machine is designed for handling huge data, not designed
for solving the memory-wall problem

 Pace Matching removes the memory-wall effect via matching
data supply with data request. It is mathematically sound.

 The combined solution: use CSA to support Pace Matching,
including using memory concurrency, memory hierarchy, and
dataflow; the matching ends at the HP memory pool.

 The combined solution: The matching can help on designing
effective CSA and managing the HP memory pool effectively

Background Literature
 Intel CSA

https://www.nextplatform.com/2018/08/30/intels-exascale-dataflow-
engine-drops-x86-and-von-neuman/amp/?__twitter_impression=true

 HP The Machine

https://www.youtube.com/watch?v=S--Kgseuy0Q

 Pace Matching Data Transfer

o http://www.cs.iit.edu/~scs/psfiles/hpc-china-2015-2.pdf

o http://www.cs.iit.edu/~scs/psfiles/Sluice_CCCF.pdf
o X.-H. Sun and Y.-H. Liu, "Utilizing Concurrency Data Access: A New Theory," in

Proc. of the 29th International Workshop on Languages and Compilers for
Parallel Computing (LCPC2016) (a position paper), Sept, 2016, New York, USA.

o Yu-Hang Liu and Xian-He Sun, "LPM: Concurrency-driven Layered Performance
Matching," in Proc. of the 44th International Conference on Parallel Processing
(ICPP'15), Beijing, China, Sept. 2015

