
Scalable Computing Software Lab, Illinois Institute of Technology 1

From Moore’s Law to
Pace-Matching Data Access:

Thoughts on data-centric
Computer Architectures

CNCC2018 Award Winning Speech, Oct. 2018

Xian-He Sun
Illinois Institute of Technology

sun@iit.edu

Thought

 Is Moore’s Law (摩尔定律) ending?

Yes

 But,

Scalable Computing Software Lab, Illinois Institute of Technology 2

Thought

 Is Moore’s Law (摩尔定律) ending?

Yes

 But, it is not the transistors, it is Dennard
Scaling

 Dark Silicon

Scalable Computing Software Lab, Illinois Institute of Technology 3

Thought

 So, is power consumption (Dennard Scaling) the
issue?

Yes

 But, but

Scalable Computing Software Lab, Illinois Institute of Technology 4

Thought

 So, is power consumption (Dennard Scaling) the
issue?

Yes

 But, we have the many-core technologies

 Computing power still can increase

Scalable Computing Software Lab, Illinois Institute of Technology 5

Thought

 Is many-core technologies a solution?

Yes

 But, but, but

Scalable Computing Software Lab, Illinois Institute of Technology 6

Thought

 Is many-core technologies a solution?

Yes

 But, it is not scalable

Scalable Computing Software Lab, Illinois Institute of Technology 7

12/29/2019 Scalable Computing Software Lab, Illinois Institute of Technology 8

Why not Scale up the Number of Cores?
Perception/technology?

I told you

It is memory

Stupid!

Sun & Ni’s Law

存储受限理论
Memory Bounded Speedup

a 1-a

p
(1-a)G(p)

time

Lionel M. NiXian-He Sun

ppG

pG

TimeWork

pTimepWork
SpeedupMB /)()1(

)()1(

)1(/)1(

)(/)(









1

X.H. Sun, and L. Ni , "Scalable Problems and Memory-Bounded Speedup," Journal of Parallel
and Distributed Computing, Vol. 19, pp.27-37, Sept. 1993 (SC90)

Scalable Computing Software Lab, Illinois Institute of Technology 10

1

10

100

1,000

10,000

100,000

1980 1985 1990 1995 2000 2005 2010

Year
P

er
fo

rm
an

ce

Memory

Uni-rocessor

Multi-core/many-core processor

The Memory-wall Problem

 Processor performance
increases rapidly
 Uni-processor: ~52% until

2004

 Aggregate multi-core/many-
core processor performance
even higher since 2004

 Memory: ~9% per year
 Storage: ~6% per year

 Processor-memory speed gap
keeps increasing

Source: Intel

Source: OCZ

25%

52%

20%

9%

60%

9%

Memory-bounded speedup (1990), Memory wall problem (1994)

11

Extension: Scalability of Manycore

 Based on Amdahl’s law Multicore is not scalable

 Based on Gustafson and Sun-Ni’s law, it scalable

 Based on Sun-Ni’s law
 Multicore is scalable, if data access time is fixed and does not

increase with the amount of work and the number of cores
 Implication: Data access is the bottleneck needs attention

'

() () () ()
p pc cw ww w

perf r perf r perf r m perf r
  


'p pw mw=>

'

() ()
(1 ') '

() ()

pc

c p

p c pc

ww
w m wperf r m perf r

f mf
w w ww

perf r perf r

      


 ' p

c p

w
f

w w




X.-H. Sun and Y. Chen, "Reevaluating Amdahl's Law in the Multicore Era," Journal of
Parallel and Distributed Computing, vol. 70, no. 2, pp. 183-188, Feb. 2010.

Solutions for Memory/Data Access

 New Architecture for Computing
 GPU: data streaming

 ASIC (Application Specific IC): not general, costly

 Intel CSA (Configurable Spatial Accelerator): Case study

 New Technology for Memory Devices
 3D stacked DRAM (HBM), GDDR and multi-channel DRAM

(MCDRAM), byte addressable non-volatile storage class memories (SCM)
(phase-change memory (PCM), resistive RAM (ReRAM), 3D Xpoint),
etc.: none can replace DRAM

 New Architecture for Memory Systems
 Memory pool/memory segregation: Case study

 Deep memory hierarchy: Under development

 Elastic/Pace Matching data transfer: Case study

Scalable Computing Software Lab, Illinois Institute of Technology 12

Configurable Spatial Accelerator (CSA)

12/29/2019 Scalable Computing Software Lab, Illinois Institute of Technology 13

 Designed for the first US Exascale
supercomputer, A21

 A grid of compute, switching,
interconnect, storage elements on a
die

 Dataflow Engines: take the
dataflow graph of a program,
which is created by a compiler, and
map that dataflow graph on an
array of compute elements and
interconnects

 Region of code to be accelerated
Intel CSA

Basic Feature

1

Configurable Spatial Accelerator (CSA)

12/29/2019 Scalable Computing Software Lab, Illinois Institute of Technology 14

 Only mapped elements active (dark
silicon)

 Build application specific CSAs

 Grab explicitly the parallelism in
the code (the dataflow graph)

 Treat memory operations as other
dataflow operations

 It is a system on chip

 as a co-processor, heterogeneous
processor, or in group

 Not FPGA

Multiple Layers with Buffers

Basic Idea

2

Configurable Spatial Accelerator (CSA)

12/29/2019 Scalable Computing Software Lab, Illinois Institute of Technology 15

 A dataflow machine on chip
o But, historically dataflow concept only had very limited success

o That is why it is called Accelerator (work for some part of the code)

 Build application specific CSAs
o Must specific enough to be effective and general enough to keep cost low

 Grab explicitly the parallelism in the code for dataflow
o Hard to achieve in general

 Accelerate what?
o For compute-intensive application, GPU probably is a better accelerator

 So, they are (semi-)specific dataflow accelerators for some
targeted non-compute-intensive application

Discussion
3

HP: The Machine (universal memory)

 Have a massive universal memory, available for every node

 Supported by photonic networks, for fast data transfer

Basic Feature

1

HP: The Machine (universal memory)

 Have a massive universal memory, available for every node
 Supported by photonic networks, for fast data transfer

Basic Structure

Basic Idea

 Fast network is
available

 NVRAM are
available

 With a lower
software cost

 Quicker access
for massive data

2

The Machine (universal memory)

 Each node still have its local memory and caches
o Fast network does not solve the memory-wall problem

 There is a pool of global memory after local memory
o For large data and data sharing

o Higher bandwidth, higher latency

 Converging the global memory with storage (NVRAM)
o Manage NVRAM as extended memory

o Selective in accessing global memory or storage file system

 The effective of the global pool concept needs to be verified

 It does not address how to access local memory fast

Discussion
3

Pace Matching Data Access（搏动数据获取）

 Build an elastic memory hierarchy to dynamically match the data
supply with the data request

 A methodology is developed to perform the match to remove
memory-wall effect

Basic Feature
1

Pace Matching Data Access（搏动数据获取）

 Build an elastic memory hierarchy to dynamically match the data supply with the
data request

 A methodology is developed to perform the match to remove memory-wall effect

Basic Feature
2

 If a memory system
matches data request,
there is not data access
delay

 The match can be
measured and
controlled dynamically

Basic Idea

Pace Matching Data Access（搏动数据获取）

 The C-AMAT model and LPM algorithm are developed to
support Pace Matching

 Analysis and experimental results show the Pace Matching
approach is correct and feasible

 Matching can be achieve through
o Reduce request: Improve locality, in memory computing, etc
o Improve data access: memory concurrency , memory technology, etc
o Mask the difference: Overlapping computing with data access delay (pure

miss), prefetch, etc.

 Like Intel CSA, HP the machine, it requests the support of
o Hardware technology, compiler technology, application algorithm design,

system scheduling

Discussion
3

Conclusion

 Intel CSA’s dataflow engine is only effective for certain code
regions and needs to be specified to reduce dark silicon

 HP The Machine is designed for handling huge data, not designed
for solving the memory-wall problem

 Pace Matching removes the memory-wall effect via matching
data supply with data request. It is mathematically sound.

 The combined solution: use CSA to support Pace Matching,
including using memory concurrency, memory hierarchy, and
dataflow; the matching ends at the HP memory pool.

 The combined solution: The matching can help on designing
effective CSA and managing the HP memory pool effectively

Background Literature
 Intel CSA

https://www.nextplatform.com/2018/08/30/intels-exascale-dataflow-
engine-drops-x86-and-von-neuman/amp/?__twitter_impression=true

 HP The Machine

https://www.youtube.com/watch?v=S--Kgseuy0Q

 Pace Matching Data Transfer

o http://www.cs.iit.edu/~scs/psfiles/hpc-china-2015-2.pdf

o http://www.cs.iit.edu/~scs/psfiles/Sluice_CCCF.pdf
o X.-H. Sun and Y.-H. Liu, "Utilizing Concurrency Data Access: A New Theory," in

Proc. of the 29th International Workshop on Languages and Compilers for
Parallel Computing (LCPC2016) (a position paper), Sept, 2016, New York, USA.

o Yu-Hang Liu and Xian-He Sun, "LPM: Concurrency-driven Layered Performance
Matching," in Proc. of the 44th International Conference on Parallel Processing
(ICPP'15), Beijing, China, Sept. 2015

