
Scalable Computing Software Lab, Illinois Institute of  Technology 1

From Moore’s Law  to
Pace-Matching Data Access:

Thoughts on data-centric 
Computer Architectures

CNCC2018 Award Winning Speech, Oct. 2018

Xian-He Sun
Illinois Institute of Technology

sun@iit.edu



Thought

 Is Moore’s Law (摩尔定律) ending?

Yes

 But, 
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Thought

 Is Moore’s Law (摩尔定律) ending?

Yes

 But, it is not the transistors, it is Dennard 
Scaling 

 Dark Silicon
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Thought

 So, is power consumption (Dennard Scaling) the 
issue?

Yes

 But, but
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Thought

 So, is power consumption (Dennard Scaling) the 
issue?

Yes

 But, we have the many-core technologies

 Computing power still can increase
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Thought

 Is many-core technologies a solution? 

Yes

 But, but, but

Scalable Computing Software Lab, Illinois Institute of  Technology 6



Thought

 Is many-core technologies a solution? 

Yes

 But, it is not scalable
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Why not Scale up the Number of Cores?
Perception/technology?                   

I told you

It is memory

Stupid! 



Sun & Ni’s Law

存储受限理论
Memory Bounded Speedup 
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X.H. Sun, and L. Ni , "Scalable Problems and Memory-Bounded Speedup,"  Journal of Parallel 
and Distributed Computing, Vol. 19, pp.27-37, Sept. 1993 (SC90)
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The Memory-wall Problem

 Processor performance 
increases rapidly
 Uni-processor: ~52% until 

2004

 Aggregate multi-core/many-
core processor performance 
even higher since 2004

 Memory: ~9% per year
 Storage: ~6% per year

 Processor-memory speed gap 
keeps increasing

Source: Intel

Source: OCZ
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Extension: Scalability of Manycore

 Based on Amdahl’s law Multicore is not scalable

 Based on Gustafson and Sun-Ni’s law, it scalable

 Based on Sun-Ni’s law
 Multicore is scalable, if data access time is fixed and does not 

increase with the amount of work and the number of cores
 Implication: Data access is the bottleneck needs attention
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X.-H. Sun and Y. Chen, "Reevaluating Amdahl's Law in the Multicore Era," Journal of 
Parallel and Distributed Computing, vol. 70, no. 2, pp. 183-188, Feb. 2010.



Solutions for Memory/Data Access

 New Architecture for Computing
 GPU: data streaming

 ASIC (Application Specific IC): not general, costly

 Intel CSA (Configurable Spatial Accelerator): Case study

 New Technology for Memory Devices
 3D stacked DRAM (HBM), GDDR and multi-channel DRAM 

(MCDRAM), byte addressable non-volatile storage class memories (SCM) 
(phase-change memory (PCM), resistive RAM (ReRAM), 3D Xpoint), 
etc.: none can replace DRAM

 New Architecture for Memory Systems
 Memory pool/memory segregation: Case study

 Deep memory hierarchy: Under development

 Elastic/Pace Matching data transfer: Case study
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Configurable Spatial Accelerator (CSA)
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 Designed for the first US Exascale
supercomputer, A21

 A grid of compute, switching,  
interconnect, storage elements on a 
die

 Dataflow Engines: take the 
dataflow graph of a program, 
which is created by a compiler, and 
map that dataflow graph on an 
array of compute elements and 
interconnects

 Region of code to be accelerated
Intel CSA

Basic Feature

1



Configurable Spatial Accelerator (CSA)
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 Only mapped elements active (dark 
silicon)

 Build application specific CSAs

 Grab explicitly the parallelism in 
the code (the dataflow graph)

 Treat memory operations as other 
dataflow operations

 It is a system on chip

 as a co-processor, heterogeneous 
processor, or in group

 Not FPGA

Multiple Layers with Buffers

Basic Idea

2



Configurable Spatial Accelerator (CSA)
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 A dataflow machine on chip
o But, historically dataflow concept only had very limited success

o That is why it is called Accelerator (work for some part of the code)

 Build application specific CSAs
o Must specific enough to be effective and general enough to keep cost low

 Grab explicitly the parallelism in the code for dataflow
o Hard to achieve in general

 Accelerate what?
o For compute-intensive application, GPU probably is a better accelerator

 So, they are (semi-)specific dataflow accelerators for some 
targeted non-compute-intensive application

Discussion
3



HP: The Machine (universal memory)

 Have a massive universal memory, available for every node

 Supported by photonic networks, for fast data transfer 

Basic Feature
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HP: The Machine (universal memory)

 Have a massive universal memory, available for every node
 Supported by photonic networks, for fast data transfer 

Basic Structure

Basic Idea

 Fast network is 
available

 NVRAM are 
available

 With a lower 
software cost

 Quicker access 
for massive data

2



The Machine (universal memory)

 Each node still have its local memory and caches
o Fast network does not solve the memory-wall problem

 There is a pool of global memory after local memory
o For large data and data sharing

o Higher bandwidth, higher latency

 Converging the global memory with storage (NVRAM)
o Manage NVRAM as extended memory

o Selective in accessing global memory or storage file system

 The effective of the global pool concept needs to be verified 

 It does not address how to access local memory fast

Discussion
3



Pace Matching Data Access（搏动数据获取）

 Build an elastic memory hierarchy to dynamically match the data 
supply with the data request 

 A methodology is developed to perform the match to remove 
memory-wall effect

Basic Feature
1



Pace Matching Data Access（搏动数据获取）

 Build an elastic memory hierarchy to dynamically match the data supply with the 
data request 

 A methodology is developed to perform the match to remove memory-wall effect

Basic Feature
2

 If a memory system 
matches data request, 
there is not data access 
delay

 The match can be 
measured and 
controlled dynamically

Basic Idea



Pace Matching Data Access（搏动数据获取）

 The C-AMAT model and LPM algorithm are developed to 
support Pace Matching

 Analysis and experimental results show the Pace Matching 
approach is correct and feasible

 Matching can be achieve through
o Reduce request: Improve locality,  in memory computing, etc
o Improve data access: memory concurrency , memory technology, etc
o Mask the difference: Overlapping computing with data access delay (pure 

miss), prefetch, etc.

 Like Intel CSA, HP the machine, it requests the support of
o Hardware technology, compiler technology, application algorithm design, 

system scheduling

Discussion
3



Conclusion

 Intel CSA’s dataflow engine is only effective for certain code 
regions and needs to be specified to reduce dark silicon

 HP The Machine is designed for handling huge data, not designed 
for solving the memory-wall problem

 Pace Matching removes the memory-wall effect via matching 
data supply with data request. It is mathematically sound.

 The combined solution: use CSA to support Pace Matching, 
including using memory concurrency, memory hierarchy, and 
dataflow; the matching ends at the HP memory pool.

 The combined solution: The matching can help on designing 
effective CSA and managing the HP memory pool effectively
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o X.-H. Sun and Y.-H. Liu, "Utilizing Concurrency Data Access: A New Theory," in 

Proc. of the 29th International Workshop on Languages and Compilers for 
Parallel Computing (LCPC2016) (a position paper), Sept, 2016, New York, USA.

o Yu-Hang Liu and Xian-He Sun, "LPM: Concurrency-driven Layered Performance 
Matching," in Proc. of the 44th International Conference on Parallel Processing 
(ICPP'15), Beijing, China, Sept. 2015


