From Moore’s Law to
Pace-Matching Data Access:
Thoughts on data-centric
Computer Architectures

Xian-He Sun

Illinois Institute of Technology
sun(@iit.edu

CNCC2018 Award Winning Speech, Oct. 2018

Thought

u Is Moore’s Law (/K E) ending?

ed

= But,

Transistors
Per Die
1012,

1965 Actual Data
10° m MOS Arrays 4 MOS Logic 1975 Actual Data
108 1975 Projection

et Pe?ﬂum“'!&
entium® 111
Pentium®ll

Memory

1 07 i
108
108
104
10°
102
101
100
1960 1965 1970 1975 1980 1985 1990 1985 2000 2005 2010

A Microprocessor

“n
'h'." SV,
C

Thought

u Is Moore’s Law (/R E) ending?
Yeo

= But, 1t 1s not the transistors, 1t is Dennard
Scaling

= Dark Silicon

g
:,."l s¥s,
c

Thought

= So, 1s power consumption (Dennard Scaling) the

1ssue?
Yeo

= But, but

g
=|."" s¥s,
c

Thought

= So, 1s power consumption (Dennard Scaling) the

1ssue?
Yeo

= But, we have the many-core technologies

= Computing power still can increase

ﬁ;}' ¥
Thought

= Is many-core technologies a solution?

Yeo

= But, but, but

E
174]
‘ﬁ Many-core
s —
5 Multi-core
E. Dual-core
S o —— >
: L
5 __Ed
=
LIz,
¥ 4
Time y

e
=|."" s¥s,
c

Thought

= Is many-core technologies a solution?

Yeo

= But, it is not scalable

Why not Scale up the Number of Cores?

Perception/technology?

I told you
It is memory

With a Staggering Potential

Stupid!

1000

g

AN

Humber of UF per Square Cantimeter
2
.

3 fl A
il S
AP 7 | A N

= | - £ 1iip
| !
] L
1 A o

1970 4975 150 99BS 1200 1595 2000 2005 2040 25 220
Assume we scale entire current single core chip & replicate to fill 280 sq mm di
- T

LALN S

. XN ITVYERLEITY LI
B NOTRE DAME

m

Peter KDggEE[}[]T

Sun & Ni1’s Law

T 52 PR
Memory Bounded Speedup
Xian-He Sun Lionel M. Ni
o
(1-a)G(p)
a l-a ‘ time
Speedup,, = Work(p)/ Time(p) _a+ (1-a)G(p)

Work(l)/ Time(1) a+(—-a)G(p)/p

X.H. Sun, and L. Ni, "Scalable Problems and Memory-Bounded Speedup," Journal of Parallel

The Memory-wall Problem

» Processor performance
increases rapidly

o Uni-processor: ~52% until Source: nte 60%

2004 /{/
. Multi-core/many-core processir.’."‘|—
o Aggregate multi-core/many- ®1°’000 e W 7 =
core processor performance : 100 20% | =
. . € 52%
even higher since 2004 £ 100 / /,// g
~ 25%
= Memory: ~9% per year 10 \ Vemory N
= Storage: ~6% per year 11980 1985 1980 1e95 2000 2005 2010 O
Year
m Processor-memory speed gap P

keeps increasing

Source: OCZ

Memory-bounded speedup (1990), Memory wall problem (1994) ’

o
=|.'.‘I s¥s,
C

Extension: Scalability of Manycore

= Based on Amdahl’s law Multicore 1s not scalable

'
C C

perf(r) | perf(r) perf(r) m-perf (r)

= Based on Gustafson and Sun-N1’s law, it scalable

'
w wp

perf (1) mperf(r) Wt mow,

it Yy it Yy = w,"'=mw
= p ~MWp

> =(1=f)+mf"
W, + p W, + Wy f' B W,
perf(r) ~ perf(r) T w,

= Based on Sun-Ni’s law

a Multicore is scalable, if data access time is fixed and does not
increase with the amount of work and the number of cores

o Implication: Data access is the bottleneck needs attention

X.-H. Sun and Y. Chen‘ "Reevaluatini Amdahl's Law in the Multicore Era‘ " Journal of

Ff
u sSYUS/
C

Solutions for Memory/Data Access

= New Architecture for Computing
o GPU: data streaming
o ASIC (Application Specific IC): not general, costly
o Intel CSA (Configurable Spatial Accelerator): Case study

= New Technology for Memory Devices

o 3D stacked DRAM (HBM), GDDR and multi-channel DRAM
(MCDRAM), byte addressable non-volatile storage class memories (SCM)

(phase-change memory (PCM), resistive RAM (ReRAM), 3D Xpoint),
etc.: none can replace DRAM

= New Architecture for Memory Systems

o Memory pool/memory segregation: Case study
o Deep memory hierarchy: Under development

o Elastic/Pace Matching data transfer: Case study

v
Configurable Spatial Accelerator (CSA)

Basic Feature

u DeSigned for the first US Exascale s MEMORY INTERFACE 102

PROCESSING
ELEMENT

Sllp Cc1rc Omplltel', A2 1 FE) INTERCONNECT NETWORK 104
== INTEGER | [INTEGER| [INTEGER| [INTEGER] [INTEGER
l | | PE. | | PE. | PE. || PE. || PE. P”(L}%“TT:;‘S

INTEGERl ||NTEGERI |INYEGER| ||NTEGER| IINTEGER[|INTEGER|

= A grid of compute, switching,

FLOATING

. COMMUHICATION INTEGER INTEGER INTEGER TNTEGER]| [PONTPE
interconnect, storage elements ona "= = [[

die INTEGERl I'SNTZQ%'EI N | IN-FABRIC STORAGE ;IE}I;:\TTES
PE

FLOATING

= Dataflow Engines: take the
dataflow graph of a program,
which is created by a compiler, and
map that dataflow graph on an =] |J e e

|NTEGER| IINTEGERI |IN!EGER| |INTEGER| |INTEGERI IINTEGERI FONTEE,

INTEGERl IINTEGERI [IN!EGER| [INTEGERI |INTEGER| IINTEGER| FLOATING
POINT P.E.

INTEGER| |INTEGERI |INTEGER| ||NTEGER| ||NTEGER| IINTEGERl

FLOATING
POINTP.E.

IINTEGERl I INTEGERl | INTEGERI IINTEGERI

INTEGERl IINEGERI |INTEGER| ||NTEGEH| |INTEGERI IINTEGERI

CIRCUITRY PE. POINTP.E.

array of compute elements and == | | wersacsronae
ll’lfel"COI’ll’leC'tS IINTEGERl IINTEGERI |INTEGER| I@' =

IINTEGERl IINTEGERI |INTEGER| ||NTEGER| |INTEGERI |INTEGER| PORTPE

STORAGE

= Region of code to be accelerated
Intel CSA

v
Configurable Spatial Accelerator (CSA)

BaSic Idea MEMORY/CACHE HIERARCHY INTERFACE 802 ‘
: et e by
» Only mapped elements active (dark ﬁh_ql i | Py | Py
14 * |l
Slllcon) 604 | [BUFFeER | | surrer |
= Build application specific CSAs G o || | ey
= Grab explicitly the parallelism in e | wlﬁi; |'gsw|¢|3; ﬁljmfl |
the code (the dataflow graph) il 11N
IR [surrer |
= Treat memory operations as other ot | | o

dataflow operations I I_q”'bl ”"'|~I H"'kl

» It is a system on chip 11111]

[

IEGEE [ouFrer |
m as a CO-pI’OCCSSOI’, heterogeneous INTEGER PE INTEGER PE FMA PE
. [BuFFeR | [Tsurrer |
Processor, or in group o e e
= Not FPGA 00 U0 00 i

Multiple Layers with Buffers

v
Configurable Spatial Accelerator (CSA)

Discussion

» A dataflow machine on chip
- But, historically dataflow concept only had very limited success
- That is why it is called Accelerator (work for some part of the code)
» Build application specific CSAs
- Must specific enough to be effective and general enough to keep cost low
= Grab explicitly the parallelism in the code for dataflow
- Hard to achieve in general
= Accelerate what?

- For compute-intensive application, GPU probably is a better accelerator

= So, they are (semi-)specific dataflow accelerators for some
targeted non-compute-intensive application

g
=|.'." s¥s,
c

HP: The Machine (universal memory)

Basic Feature

= Have a massive universal memory, available for every node
= Supported by photonic networks, for fast data transfer

UNIVERSAL MEMORY

Massive memory pool
A drastic reduction of the memory stack complexity and cost

Butrequires a complete software stack redesign to leverage the full potentiality of the new architecture

““”

cache .
DRAM - Memristor RAM

every byte available

tdos
0
—
L

(=8
—
73]
(=]
o

Mass * Flash
storage = Hard disk

- Cepaciy

Memristors change how and where data are stored @

-
-

HP: The Machine (universal memory)

Basic Structure

» Have a massive universal memory, available for every node
= Supported by photonic networks, for fast data transfer

Basic ldea

Fast network 1s
available

NVRAM are
available

With a lower
software cost

Quicker access
for massive data

Essential characteristics of The Machine

Physical
Server

Physical
Server

SoC

So0C

S0C

SoC

Local DRAM

Local DRAM

Local DRAM

Local DRAM

Converging memory and storage

» Byte-addressable non-volatile memory (NVM)
replaces hard drives and SSDs

Shared memory pool

» NVMpoolis accessible by all compute
resources

+ Optical networking advances provide near-
uniform low latency

» Local memory provides lower latency, high
performance tier

Memory Pool Heterogeneous compute resources

distributed closer to data

o
=.'." s¥s/
C

The Machine (universal memory)

Discussion

= Each node still have its local memory and caches

- Fast network does not solve the memory-wall problem

= There is a pool of global memory after local memory
- For large data and data sharing

- Higher bandwidth, higher latency

m Converging the global memory with storage (NVRAM)
- Manage NVRAM as extended memory

- Selective in accessing global memory or storage file system
= The effective of the global pool concept needs to be verified

u It does not address how to access local memory fast

-
b s¥s
c

Pace Matching Data Access (FzhZHEIRED

Basic Feature

» Build an elastic memory hierarchy to dynamically match the data
supply with the data request

= A methodology 1s developed to perform the match to remove
memory-wall effect

Request rates ALU&FPU

Tomponene. N\ 44 bbb R TN

components

Supply rates

of Ly cache APC

L1 cache

Request rates
of L1 cache

Supply rates of

Last level cache APC2

Last level cache
Request rates of

Last level cache

Supply rates of

main memory APCs —L

Main memory

o
=|.'." s¥s,
C

Pace Matching Data Access (EI%ERRED

Basic Feature

» Build an elastic memory hierarchy to dynamically match the data supply with the
data request

= A methodology is developed to perform the match to remove memory-wall effect

Basic ldea

» If a memory system

matches data request,
there 1s not data access
delay

o
. The matCh C an b e Reduce i'uz'rdwa.re Optimize both Li and Lz Optimize only Li layer to

overprovision, and layer to reduce LPMR:and reduce LPMR1, a""d
update all metrics LPMR:, and update all update all metrics

measured and
controlled dynamically L

Pace Matching Data Access (HEIEIEIRED

Discussion

3

u The C-AMAT model and LPM algorithm are developed to
support Pace Matching

= Analysis and experimental results show the Pace Matching
approach is correct and feasible

» Matching can be achieve through
O Reduce request: Improve locality, in memory computing, etc
O Improve data access: memory concurrency , memory technology, etc
O Mask the difference: Overlapping computing with data access delay (pure
miss), prefetch, etc.

= Like Intel CSA, HP the machine, it requests the support of

- Hardware technology, compiler technology, application algorithm design,
system scheduling

Conclusion

= Intel CSA’s dataflow engine is only effective for certain code
regions and needs to be specified to reduce dark silicon

= HP The Machine 1s designed for handling huge data, not designed
for solving the memory-wall problem

= Pace Matching removes the memory-wall effect via matching
data supply with data request. It 1s mathematically sound.

u The combined solution: use CSA to support Pace Matching,
including using memory concurrency, memory hierarchy, and
dataflow; the matching ends at the HP memory pool.

» The combined solution: The matching can help on designing
effective CSA and managing the HP memory pool effectively

-
iy s¥s
c

Background Literature

= Intel CSA
https://www.nextplatform.com/2018/08/30/intels-exascale-dataflow-
engine-drops-x86-and-von-neuman/amp/? twitter impression=true

= HP The Machine
https://www.youtube.com/watch?v=S--Kgseuy0Q

= Pace Matching Data Transfer
o http://www.cs.iit.edu/~scs/psfiles/hpc-china-2015-2.pdf
o http://www.cs.iit.edu/~scs/psfiles/Sluice CCCF.pdf

- X.-H. Sun and Y.-H. Liu, "Utilizing Concurrency Data Access: A New Theory," in
Proc. of the 29th International Workshop on Languages and Compilers for
Parallel Computing (LCPC2016) (a position paper), Sept, 2016, New York, USA.

- Yu-Hang Liu and Xian-He Sun, "LPM: Concurrency-driven Layered Performance

Matching," in Proc. of the 44th International Conference on Parallel Processing
(ICPP'15), Beijing, China, Sept. 2015

