



# dLABEL:

# **A Label-Based** Data Representation & its Application on Big Data I/O Systems

#### Xian-He Sun Illinois Institute of Technology

Keynote Speech at HPBD&IS International Conference, May 23, 2020

### The Data Access Bottleneck

#### The Memory Wall & I/O Wall



- Super-parallel Computers, Accelerators, Big Data applications
- Many data requests
- Many different data requests
- Many small data requests





### System Complicity: Hierarchy, Concurrent, Remote,

Heterogeneity



| f<br>ts | Feature             | Data Requirement                                                                                                         | HPC                                    | Cloud/bigdata                        | Optimizations                                                                                             |
|---------|---------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------|
|         | Data<br>consistency | Data must be consistent between operations.                                                                              | Strong, POSIX                          | Eventual,<br>Immutable               | Tunable consistency                                                                                       |
|         | Data<br>access      | Multiple processes must be<br>able to operate on the<br>same data concurrently.                                          | Shared<br>concurrent                   | Multiple<br>replicas                 | Concurrent handlers,<br>Complex locks,<br>Collective access                                               |
|         | Global<br>namespace | Data identifiers must be<br>resolved and recognizable<br>in a global namespace that<br>can be accessed from<br>anywhere. | Hierarchical,<br>Directory,<br>Nesting | Flat                                 | Namespace<br>partitioning, Cache &<br>Client-side caching,<br>Decoupling data-<br>metadata,<br>Connectors |
|         | Fault<br>tolerance  | Data must be protected against faults and errors.                                                                        | Special<br>hardware,<br>check-pointing | Replication,<br>Data<br>partitioning | Erasure coding                                                                                            |
|         | Scale               | Support for extreme scale<br>and multi-tenancy                                                                           | Few large<br>jobs, Batch<br>processing | Many small<br>jobs, Iterative        | Job scheduling,<br>buffering, Scale-out                                                                   |
|         | Locality            | Jobs are spawned where<br>data reside.                                                                                   | Remote<br>memory &<br>storage          | Node local                           | Data aggregations                                                                                         |
| 4       | Ease of use         | Interface, user-friendliness                                                                                             | High-level                             | Simple data                          | Amazon S3,                                                                                                |

Diversity of Data Requirements

Slide 4

Challenges of a System Solution

1/11/2021

600

200

System Requirement

System Malleability

Asynchronous Request

Resource Heterogeneity

Data Provisioning

Storage Bridging



# A simple analogy of shopping

### • <u>Sending a gift (before)</u>

- Drive to three different retailers
- Purchase items independently
- Decide what package to use
- Decide which delivery provider
- Decide options (priority, etc)

### • <u>Accessing data (today)</u>

- Three different data sources
- Acquire data elements
- Data representation (file, object, etc)
- Storage device (SSD, HDD, etc)
- Storage semantics

# A simple analogy of online shopping

- <u>Sending a gift via an online retailer</u>
  - Add items to cart
  - Specify details (payment info, etc.)
  - Submit order
  - The gift is shipped from the warehouse

- Similar data management
  - Create labels for data
  - Define label attributes (feature, operation, etc.)
  - Push labels to queue
  - Data operation is carried at the data Wearhouse

### The Data Label Representation

- Location-independent abstraction expressing data intent.
- A tuple of one or more operations and a pointer to the physical data.
- Exclusive to each application.
- Immutable, independent of one another, and cannot be re-used.
- Data Label structure includes:
  - Type
  - Unique identifier
  - Source and destination
    - memory address, file path, server IP, network port
  - Function pointer (user-defined or pre-defined)
    - all functions are store in a shared program repository
  - Set of flags indicating label's state
    - queued, scheduled, pending, cached, invalidated, etc.,

A Logical Overview of Data Operation with Label

- Data requests are transformed into a configurable unit, called a (data) Label.
  - A label is a tuple of an operation and a pointer to the data.
  - Resembles a shipping label following a Post Office package.
- Labels are pushed to a distributed queue.
- Data or contents are pushed into a warehouse.
- A dispatcher distributes labels to the workers.
- Workers execute labels independently (i.e., fully decoupled).





Don't have good ideas if you aren't willing to be responsible for them.

Alan Perlis

**Our Solution** 

LABIOS: A Label-Based I/O System

### LABIOS: Label-Based I/O System



- Distributed, scalable, and adaptive storage solution
- Fully decoupled architecture
- Software defined storage (SDS)
- Energy-aware enabling powercapped I/O
- Reactive storage with tunable I/O performance
- Flexible API
- Intersection of HPC and BigData



1/11/2021

Slide 12



### Software Stack

#### • Can be used as:

- Middleware I/O library
  - via LABIOS API
- Full-stack storage solution
  - via I/O call interception
- LABIOS can unify multiple namespaces by connecting to external storage systems. (storage bridging)



1/11/2021



#### High-level Architecture

#### • Two main ideas:

- Split the data, metadata, and instruction paths.
- 2. Decouple storage servers from the application.



#### LABIOS Client

#### • Objectives:

- Performs system initialization perapplication.
- 2. Accepts application's I/O requests.
- **3.** Builds labels based on the incoming I/O.

#### • Modules:

- 1. Label manager
- 2. Content manager
- 3. Catalog manager



#### LABIOS Core

- Manages the instruction, data, and metadata flow separately.
- Distributed data structures:
  - Label queue
  - Warehouse
- Modules:
  - Administrator
  - Label Dispatcher

Optimization and scheduling



#### LABIOS Server

- Manages workers (i.e., storage servers)
- Modules:
  - Worker
  - Logical entity who carries the work
  - Worker manager



- The storage server in LABIOS
- Responsibilities:
  - service its own queue
  - execute labels
  - calculate its own worker score and send it to the worker manager periodically
  - auto-suspend itself if there are no labels in its queue for a given time window
  - connect to external storage sources
- Weighting system expresses the scheduling policy
- Final score is a double precision between 0 and 1
  - Higher score -> better worker

| Variable     | Value                                       | Example |
|--------------|---------------------------------------------|---------|
| Availability | vailability 1-active, 0-suspended           |         |
| Capacity     | Double [0,1] (ratio remaining/total)        | 0.75    |
| Load         | Double [0,1] (ratio current/max queue size) | 0.50    |
| Speed        | Integer [1,5] (grouping)                    | 4       |
| Energy       | Integer [1,5] (grouping)                    | 3       |

$$Score(workerID) = \sum_{n=1}^{5} Weight_j \times Variable_j$$

| Priority       | Availability | Capacity | Load | Speed | Energy |
|----------------|--------------|----------|------|-------|--------|
| Low latency    | 0.5          | 0        | 0.35 | 0.15  | 0      |
| Energy savings | 0            | 0.15     | 0.2  | 0.15  | 0.5    |
| High bandwidth | 0            | 0.15     | 0.15 | 0.70  | 0      |

Worker



- Label Scheduling
  - Deployment Models
  - LABIOS API example

### LABIOS in depth

### SCHEDULE





### **Deployment Model**

#### • LABIOS can:

- replace existing distributed storage solutions
- 2. be used as I/O accelerator to one or more underlying storage subsystems
- Machine model in use (motivated by the recent machines Summit in ORNL or Cori on LBNL):
  - Compute nodes equipped with a large amount of RAM
  - Local NVMe devices in each compute node
  - An I/O forwarding layer
  - A shared burst buffer installation based on SSD equipped nodes, and
  - A remote PFS installation based on HDDs



Hadoop workloads with node local I/O



- Pros
  - Asynchronous I/O
    - Non-blocking data movement
  - Connect to external storage

- Cons
  - Subject to I/O forwarding layer
  - Limited scalability



- Pros
  - Fast scratch space
  - Data sharing between applications
  - In-situ visualization and analysis

- Cons
  - Requires additional resources (e.g., buffers)
    - Storage
    - Network



- Pros
  - Scalability
  - Better resource utilization
  - Higher flexibility

- Cons
  - Increased deployment complexity
  - Requires systems admins



### Testbed

- All experiments on bare metal on Chameleon:
  - 64 client nodes
  - 8 burst buffer nodes
  - 32 storage servers
- Cluster OS: CentOS 7.1
- PFS: OrangeFS 2.9.6
- Workloads:
  - CM1 simulation
  - HACC simulation
  - Montage application
  - K-means clustering



- Metric: Total I/O time in sec
- 4096 labels of 1MB each
- Vary the ratio of active suspended workers
- Worker activation in 3 sec on average
- Worker allocation techniques
  - Static: labels only on active workers
  - Elastic: labels to all workers (even on suspended paying the penalty of activation)
- When small % of workers are active, elastic boosts performance
- When enough workers are active, activation latency hurts performance



# I/O Asynchronicity



- Metric: Overall execution time in sec
- Support of both sync async modes
- Label paradigm fits (naturally) in async
- CM1 simulation scaled up to 3072 processes with 16 time steps
- Each process writes 32MB of I/O
  - 100GB per step for the 3072 case
- Sync mode competitive with PFS baseline
- Async mode overlaps label execution with computations
  - 16x boost in I/O performance
  - 40% reduction in execution time

### Resource Heterogeneity



- Metric: Overall execution time in sec
- HACC simulation scaled up to 3072 processes with 16 time steps
- Update-heavy workload
  - Each process updates 32MB of I/O
  - Checkpoint in burst buffers
  - Final flush of last checkpoint data to PFS
- **6x improvement** in I/O performance
- Flushing in the background from workers

### Data Provisioning



- Metric: Overall execution time in sec
- Montage application
  - Multiple executables that share data
- 50GB of intermediate results in temporary files in PFS
- LABIOS shares data via the warehouse (i.e., in-memory)
  - Label destination is analysis compute nodes
- Performance acceleration
  - No temporary files are created in remote storage
  - Simulation and analysis can be pipelined
- 17x boost in I/O performance
- 65% reduction in execution time

## Storage Bridging



- Metric: Overall execution time in sec
- Two modes for LABIOS:
  - Node-local I/O (similar to HDFS)
  - Remote external I/O (similar to HPC)
- Map processes read 32MB each and then write them back to storage
- Reduce processes read 32MB each
- Shuffle sends 32MB through network
- Hadoop-memory optimized version
  - No disk I/O for intermediate results
- LABIOS employs collective I/O to perform data aggregations
- LABIOS successfully integrates MapReduce with HPC

### Summary

LABIOS: A Successful Example of the Data Label Approach  LABIOS provides storage flexibility, versatility, and agility due to a new data model, the data labels and its decoupled data-centric architecture; provide a new way to support:

- Storage malleability
- Asynchronous I/O
- Resource Heterogeneity
- Data Provisioning
- Storage Bridging
- LABIOS can boost I/O performance on certain workloads by up to 17x and reduce overall execution time by 40-60%.

Its potential is not fully explored

### Take Home Questions:

- What is the next of LABIOS?
- What is the next of Data Label?



#### **The Key Contribution**

Data Label has separated the control flow with the data flow

#### **Future Work**

- Use LABIOS for data scheduling
  - HPC center
  - Data center
  - Cloud environment
- Establish a LABIOS compliant file system
- Extend LABIOS to a general software-defined IO system/storage
- Extend dLABEL to memory systems





### Thank you Any questions?

A. Kougkas, H. Devarajan, J. Lofstead, X.-H. Sun; "LABIOS: A Distributed Label-Based I/O System", in Proceedings of the 28th International Symposium on High-Performance Parallel and Distributed Computing (HPDC '19) (Best Paper Award)

Find more at: <u>www.cs.iit.edu/~scs</u> <u>www.akougkas.com/research/labios</u> We would like to thank

A Kougka, H. Devarajan, K. Bateman, J. Cernuda, F. Ku, L. Logan, ....

