
Vidya: Performing Code-Block I/O Characterization
for Data Access Optimization

Hariharan Devarajan, Anthony Kougkas, Prajwal Challa, Xian-He Sun
Illinois Institute of Technology, Department of Computer Science
{hdevarajan, akougkas, vchalla3}@hawk.iit.edu, sun@iit.edu

Abstract—Understanding, characterizing and tuning scientific
applications’ I/O behavior is an increasingly complicated process
in HPC systems. Existing tools use either offline profiling or
online analysis to get insights into the applications’ I/O patterns.
However, there is lack of a clear formula to characterize applica-
tions’ I/O. Moreover, these tools are application specific and do
not account for multi-tenant systems. This paper presents Vidya,
an I/O profiling framework which can predict application’s I/O
intensity using a new formula called Code-Block I/O Character-
ization (CIOC). Using CIOC, developers and system architects
can tune an application’s I/O behavior and better match the
underlying storage system to maximize performance. Evaluation
results show that Vidya can predict an application’s I/O intensity
with a variance of 0.05%. Vidya can profile applications with a
high accuracy of 98% while reducing profiling time by 9x. We
further show how Vidya can optimize an application’s I/O time
by 3.7x.

Keywords—I/O Systems, I/O profiling, I/O optimization, Code
Characterization, High Performance Computing Systems

I. INTRODUCTION

Modern applications are becoming incredibly sophisticated
and require extensive tuning for efficient use of computing
resources [1]. Understanding the behavior of applications’
code is necessary to optimize its performance effectively.
Additionally, to assess the impact of tuning efforts, developers
need to monitor applications’ behavior before and after they
make the changes. Performance analysis tools such as OPro-
filer [2], Jumpshot [3], TAU [4], and STAT [5] are utilized
to extract, model and tune the behavior of applications. These
profiling tools fall into two major categories [6]: a) monitor-
ing tools: expose performance measurements across hardware
(e.g., CPU counters, memory usage, etc.,) and visually map
them to an application’s execution timeline, and b) tracing
tools: interpret calls and individual events, displaying the
results in a structured way inside a log (i.e., trace file). These
tools facilitate application profiling and help identify potential
performance bottlenecks. However, application performance
tuning is burdensome involving a cyclic process of profiling the
application, gathering and analyzing collected data, identifying
code regions for improvement, and designing and applying
optimizations. While profiling memory and communication
patterns has been extensively explored [7], [8], the same cannot
be said for profiling I/O behavior and subsystems.

In the area of storage systems, researchers are mainly fo-
cused on the following methodologies to extract applications’
I/O behavior: static analysis tools, such as Darshan [9], which
transparently reflects application-level behavior by capturing
I/O calls in a per-process and per-file granularity; statistical
methods, such as hidden Markov models (HMM) [10], and

ARIMA models [11], which focus on spatial and/or temporal
I/O behaviors requiring a large number of observations to
accomplish good predictions [12]; dynamic pattern-based I/O
predictions, such as Omnisc’IO [13], which uses a grammar-
based model to predict when future I/O will occur. As I/O is
now the biggest challenge in achieving high performance [14],
I/O profiling is of the utmost importance in tuning applications
on parallel and distributed systems at scale.

Using existing I/O profiling tools imposes several chal-
lenges and limitations in characterizing an application’s I/O
behavior: a) Time: static analysis tools pose a significant
overhead in the tuning process as they require to execute
the application at least once to capture the application’s I/O
behavior (i.e., offline tracing). This process is expensive in time
and resources and can be prohibitive in larger scales. Moreover,
erroneous profiling might occur due to performance variability
in different scales [15] (i.e., profiled scale vs. actual execution
scale). b) Accuracy: statistical prediction models capture an
application’s I/O behavior based on discovered repetitive I/O
patterns. The sheer diversity of applications’ characteristics,
workloads, and complexity makes statistical methods less
accurate especially for applications with irregular I/O patterns.
c) Granularity: existing tools capture an application’s I/O
behavior in a procedural-level (i.e., which functions perform
I/O). This granularity increases user intervention, in the form
of manual code inspection, to further understand and analyze
the I/O behavior of a given code. d) Scope: existing tools
capture the I/O behavior on a “per-application” basis without
considering system characteristics (i.e., system load, storage
devices, networks, etc.), and cross-application I/O interference.
This limited scope of analysis leads to skewed I/O profiling
results as one application’s I/O behavior is affected by another
application and/or by the system itself. I/O profiling needs to
be fast, light on resources, prediction-accurate, and detailed
enough to guide I/O optimization techniques.

In this work, we present Vidya: an I/O profiling framework
that can be used to predict the I/O intensity of a given
application. Vidya performs source code analysis to extract
I/O features and identify blocks of code1 that are contributing
the most to the I/O intensity of the application. In the context
of this study, an application is I/O intensive when it spends
more than 50% of the CPU cycles in performing I/O [16].
Vidya takes into account both the system’s characteristics
and the application’s extracted I/O behavior to apply several
code optimizations such as prefetching, caching, buffering,
etc. Vidya uses several components to successfully profile an

1A code-block can be defined as either a file, a class, a function, a loop, or
even a line of code.

application: a Feature Extractor, to capture I/O features from
the source code, a Code-Block I/O Characterization (CIOC)
formula, that captures the I/O intensity of each code-block, and
a Code Optimizer, that can generate optimized code, inject it,
and re-compile the application. Vidya offers both developers
and system administrators a new, fast, and efficient mechanism
to detect possible I/O bottlenecks in finer detail. Vidya’s source
code analysis approach avoids expensive I/O tracing while
maintaining high accuracy in its predictions. Vidya can be used
as a guideline to apply optimizations in job scheduling [17],
I/O buffering [18], asynchronous I/O [19], and hybrid storage
integration [20], [21]. The contributions of this work are:

a) Identifying a wide range of parameters, within a block of
code, which contribute towards application’s I/O intensity (III).

b) Introducing CIOC, a novel formula that characterizes I/O
within and across applications (III-C2).

c) Presenting the design and implementation of Vidya, a
modular framework which provides the mechanisms to extract
the CIOC score and apply I/O optimizations (IV-A).

d) Evaluating Vidya with applications, improving profiling
process by 9x and an I/O time reduction of 3.7x (V).

II. BACKGROUND AND MOTIVATION

A. Modern HPC Applications

Growth in computational capabilities have led to the in-
crease in the resolution of simulation models leading to an
explosion in code length and complexity. As we move towards
exascale computing, the cost of recording, tuning, and code-
updating with advanced models will become ten times higher
than the cost of supercomputer hardware [22]. To contain these
costs, the exascale software ecosystem needs to address the
following challenges: a) software strategies to mitigate high
I/O latencies, b) automated fault tolerance, performance anal-
ysis, and verification, c) scalable I/O for mining of simulation
data. I/O is the primary limiting factor that determines the
performance of HPC applications. There is a growing need for
understanding complex parallel I/O operations. Applications
have become more multi-faceted as programmers and scientists
use a variety of languages, libraries, data structures, and algo-
rithms in a single environment. For instance, Montage [23],
a mosaic building tool, has 23 million lines of code spanned
over 2700 files along with 38 executables. Another example,
Cubed-Sphere-Finite-Volume (CSFV) [24], NASA’s climate
and numerical weather prediction application, has more than a
million lines of code in Fortran with 23 simulation kernels and
54 analysis kernels shared across 12 different teams.Moreover,
hyper-scalers such as Google deal with an unprecedented scale
of projects; Google has a code base of 2 billion lines spanning
across all their applications, which is written in more than 50
different languages and frameworks, and shared with more than
2500 engineers [25]. Growth in the complexity of applications
strangles the process of tuning. Hence, characterizing and I/O
profiling these applications, an already complicated process, is
crucial for avoiding performance bottlenecks.

Due to the increasing gap between storage and compute
resources [26], researchers perform I/O optimizations by em-
ploying several techniques [22]. Dynamic runtime optimiza-
tion [27] aims at detecting I/O bottlenecks during runtime and
redirecting the application from the original to dynamically

optimized code. Compiler-directed restructuring [28] aims
to reduce the number of disk accesses by using the “disk
reuse maximization” technique, a process that restructures
the code at compile time. Profiling scientific workflows [29]
characterizes workloads using representative benchmarks, and
thus, guides researchers and developers as to how to design
and build their applications. Lastly, Auto-Tuning [30], an
area of self-tuning systems, utilizes a genetic algorithm to
search through a large space of tunable parameters to identify
effective settings at all layers of the parallel I/O stack. The
parameter settings are applied transparently by the auto-tuning
system via dynamically intercepted I/O calls.

B. Motivation

Monitoring and profiling an application to understand its
I/O behavior is a strenuous process. It involves several ex-
pensive steps: a) Understanding how the application works:
in order to even start the profiling process, we need to know
how to execute the application, what is the expected input and
output, in what scale, what parameters to use, etc., b) Choosing
the appropriate profiler: each profiler extracts certain features
with constraints on type of language, detail of extraction,
and accuracy of profiling, making it difficult to make the
best choice. Additionally, for applications which have several
smaller kernels with different languages, finding one profiling
tool, which could handle all these kernels together, is not
currently feasible. c) Performing the actual I/O profiling: all
offline profiling tools require users to first link their application
with the tool itself and then execute it to capture the I/O
behavior. The execution of most scientific workloads can be a
costly task. On the other hand, online profiling tools bind with
the application’s runtime and predict its I/O behavior based on
past observations. Such methods are faster but are typically less
accurate, especially for applications with irregular patterns. d)
Analyzing the collected profiling data: this stage consists of
multiple complex tasks like collecting several logs, analyzing
the data, identifying possible bottlenecks, and manually apply-
ing potential fixes. It is clear that the above process requires
expertise, time, and multiple iterations. We are strongly moti-
vated to address these challenges by introducing Vidya which:
a) automatically understands code through parsing without
requiring user intervention, b) can capture I/O behavior across
multiple source files, executables, and projects, c) does not
require additional application execution (i.e., offline) to collect
logs, traces, etc., and d) automatically pinpoints which parts of
the code can be optimized to avoid performance bottlenecks.

III. MODELING I/O INTENSITY

A. Application Profiling

To characterize the I/O behavior from source code, we first
need to extract and analyze the application’s code base. Finding
what contributes the most to the I/O intensity of a certain
code block can lead to optimization opportunities. The goal
of this study is to formally model the set of parameters in a
source code that can lead to accurate I/O intensity predictions.
To achieve this, we examine a scientific application using
existing profiling tools. Specifically, we profile Montage [23],
an astronomical image mosaic engine using IOSIG [31], an I/O
signature tracing tool, and PAT [32], a flexible performance
analysis framework designed for the Linux OS. Using these
two tools on the Montage application, we managed to gather

2

0

20

30

40

50

60

70

80

90

100

10

Time
(sec)

U
til

iz
at

io
n

in
 p

er
ce

nt
ag

e
(%

)

CPU Memory DiskCPU Wait

100 200 300 400

Im
gt
bl

Pr
oj
Ex

ec

Ad
d

Im
gt
bl

Hd
rW

W
T

Ex
ec

Bg
Ex

ec

Di
ff

Di
ffE

xe
c

Ba
ck

gr
nd

Bg
M
od

el

Pr
oj
ec

tQ
L

Vi
ew

er

Fig. 1: Montage Analysis

system-level performance metrics including CPU, memory,
disk, and network as well as a complete trace of all function
calls, I/O calls, and execution timestamps. Lastly, we per-
formed all profiling and analysis on Chameleon systems [33].

Montage workflow description: In our analysis, Montage
creates a mosaic with ten astronomy images using 11 analysis
executables (i.e., kernels), composed of 36 tasks. The workflow
consists of several interdependent phases. In the first phase
input files are used to generate multiple intermediate files
which are then converted into a mosaic. Montage kernels are
then used to compute the list of overlapping images which are
analyzed for image-to-image difference in parameters and to
generate multiple intermediate files. Lastly, a PNG image is
created by combining these intermediate files.

Montage profiling and analysis: Figure 1 shows the behavior
of the entire workflow from both system perspective and
operations in Montage kernels. The mapping of the system
behavior to the application execution timeline, based on I/O
tracing, is crucial in understanding which part of the code
contributes to the I/O intensity of the entire application. It
can be seen that, mImgtbl spends most time in compute,
mProjExec shows that I/O wait time is reduced when data
is in memory, mAdd depicts a drop in memory after I/O is
performed due to flushing of data to disk and finally, kernels
such as mViewer, and mProjectQL show a lot of repetitive I/O
patterns with negligible compute. After analyzing all gathered
information regarding the execution of Montage on our testbed
machine, we can broadly categorize Montage kernels into three
groups: 1) Compute-intensive: execution time consists mostly
of computation (mImgtbl, mProjExec, and mDiff). 2)
Data-intensive: execution time consists mostly of I/O oper-
ations (mHdrWWTExec, mProjectQL, and mViewer). 3)
Balanced: execution time including both computation and I/O
operations, approximately running for the same period of time
(mAdd, mFitExec, and mDiffExec). The data-intensive
kernels are of the most relevance to our study as we aim
to understand and identify parameters in source code that
dictate the I/O behavior of the entire application. Therefore, we
manually inspect the source code line by line while referencing
the system status, execution, and I/O traces.

B. Parameters Affecting I/O Intensity

Performing source code analysis is a cumbersome process,
but it can lead to useful insights as to what code characteristics
contribute to an application’s I/O behavior. There are some
parameters which could be identified easily. These include: the
number of I/O operations, the total size of all I/O operations
combined, and the number of data sources (i.e., both input

and output). These parameters are directly related to a kernel’s
I/O intensity. We analyzed all the data-intensive and balanced
Montage kernels and found the above statement to be true.
For instance, in mHdrWWTExec, the total amount of I/O was
more than 288 MB performed in more than 982 I/O calls in
file-per-process fashion. In contrast, mDiff only did a few
MB in limited I/O calls in a shared file. This adds to our
previous kernel categorization (i.e., mHdrWWTExec is data-
intensive whereas mDiff is not).

On the contrary, there were some parameters which could
not be identified easily. These include: I/O calls enclosed in a
loop (i.e., count of iterative I/O calls in loop structures such
as for or while), the size of data source (i.e., small or large
files), and even the I/O interface (i.e., POSIX, MPI-IO, HDF5,
etc.,). For example, mProjectQL stressed the I/O system
even though it performed few MB of I/O. This was counter-
intuitive from our previous observations. The explanation for
this phenomenon is that the I/O call was enclosed within a
loop of hundreds of iterations creating a repetitive I/O pattern.
Another example is mHdrWWTExec, in which significant time
difference was observed when opening a newly created or
a large existing file. Lastly, mViewer randomly read small
portions of multiple files to project the final image which is a
known pain point in PFS caused by random small accesses.

Finally, throughout our Montage analysis, we found some
code characteristics that can alleviate, to some extent, the I/O
intensity of a code-block. These include: asynchronous I/O
calls which can be overlapped with computation (i.e., hidden
behind compute), and conditional I/O calls caused by code
branching (i.e., I/O might not happen based on if or switch
statements). For example, mAdd showed less I/O intensity
due to certain I/O calls being skipped by an if statement.
Executing mAdd with different input might result in an in-
crease/decrease in the I/O intensity based on the evaluations
of conditional statements. Moreover, several code-blocks in
mAdd had little to no contribution to the I/O intensity due
to the asynchronous nature of its I/O calls. Lastly, accessing
data from memory (i.e., cached I/O calls) can decrease the
percentage of CPU I/O wait time and thus decrease the I/O
intensity of the code-block.

In general, applications might demonstrate performance
variability based on the input configuration (i.e., number of
processes, input files, etc.) and the underlying system spec-
ifications (i.e., number of PFS servers, storage device type
such as HDD or SSD, etc.). Therefore, besides the application
source code parameters, we have also identified system-based
parameters that might affect the I/O intensity of a given code-
block. We ran some of the Montage kernels several times
on top of different storage mediums such as HDD, SSD,
and NVMe, and found that the I/O intensity of each kernel
slightly changed between runs. The main reason leading to
this change is the storage medium characteristics such as
bandwidth, latency, and sensitivity to concurrent accesses [18].
We list all parameters identified by our analysis of Montage
into a comprehensive set shown in Table I.

C. Dataset and Regression Model

Understanding and analyzing Montage, a scientific simula-
tion consisting of several kernels, each with different behavior,
was an experience that motivated us to express all those

3

TABLE I: Parameters Affecting I/O Intensity

Parameter Description
P1 loop count containing I/O calls (i.e., number of iterations)
P2 number of I/O operations (i.e., count of calls)
P3 amount of I/O (i.e., size in bytes)
P4 number of synchronous I/O operations
P5 number of I/O operations enclosed by a conditional statement
P6 number of I/O operations that use binary data format
P7 number of flush operations
P8 size of file opened
P9 number of sources/destination files used
P10 space-complexity of code
P11 function stack size of the code
P12 number of random file accesses
P13 number of small file accesses
P14 size of application (i.e. number of processes)
P15 storage device characteristics (i.e. access concurrency, latency and bandwidth)

parameters as a model that can predict the I/O intensity of
a given code-block for a certain system. To achieve this, we
first collected data from several source codes, spanning a wide
variety of applications’ classes, devised a regression model,
and defined a new formula that encapsulates the I/O intensity
in a score. This score can be used to express how I/O intensive
a code-block is (i.e., 0 - only compute, 1 - only I/O).

1) Data and Variables: We model all parameters identified
in Section III-B into 16 variables. Each variable expresses
the parameter’s relative contribution to the I/O intensity. The
first variable is defined as X1 = P1

maxP1
. For variables X2-

X13, we define Xi =
Pi∑
Pi

(i.e., each parameter value within
a code block over the total value of all code-blocks). We

also define X14 =

[
1 P14 = P15

|P14−P15|
max(P14,P15)

else

]
, which matches

the application’s size to the concurrency of the underlying
storage device. Finally, for variables 15 and 16, we define

Xi =

[
1, Pj > 0
0,otherwise

]
where Pj is P12 and P13 respec-

tively. Furthermore, each variable’s value is within [0,1] and
measurements are normalized to avoid model skewness due
to a variable’s scale. Our dataset consists of data collected
from a variety of applications: graph exploration kernels [34],
sorting programs [35], machine learning kernels [36], I/O and
CPU benchmarks [37]. The above variety describes in better
detail different families of applications and their respective
I/O behavior (i.e., different I/O access patterns, compute to I/O
time ratios, number of data sources, etc). For instance, external
sort applications access data sequentially whereas breadth-
first search demonstrates a random access pattern. Moreover,
algorithmic style and complexity differ among different appli-
cations. For example, graph algorithms are typically recursive
whereas numerical analysis is iterative. Hence, extracting I/O
behavior from a diverse set of applications leads to more
accurate modeling of I/O intensity.

We divide each source code into blocks. Each code-block
can be either a file, a class, a function, a loop, or even a
line. We treat every block of code within each application
as a record. Each record includes the values of all variables
and the I/O intensity of the code-block. Note that we define
I/O intensity as the ratio of I/O time to the overall execution
time of the code-block. We run ten different applications from
the above categories collecting measurements for each code-
block. Our final dataset consists of 4200 records. Initially, we
ran some descriptive statistics to check whether our dataset
was in good shape for the model. We tried some simple
descriptive statistics which revealed several observations. The

TABLE II: Linear Regression Model
Name Coefficient Std. Error t-ratio
const −1.99 0.16 −11.92
X1 0.17 0.33 2.53
X2 278.80 44.18 6.30
X3 3706.47 196.81 18.83
X4 −42612.30 14540.90 −2.93
X5 Excluded
X6 Excluded
X7 −10487.80 2511.20 −4.17
X8 Excluded
X9 809.04 93.55 8.64
X10 183996.00 5843.16 31.49
X11 Excluded
X12 227.98 18.43 12.36
X13 6456.39 2257.85 2.86
X14 0.78 0.10 7.24
X15 Excluded
X16 Excluded

Metric Value
Mean dependent −6.78
S.D. dep. var 1.69
Sum2 resid 2675.76
S.E. of reg. 0.79
R2 0.92
Adjusted R2 0.91
F (16, 4183) 785.13
P-value(F) 0.00

distribution of variables X1−5, X10, X15, and X16 is normal,
and variables X6−9 and X11−14, have a Gamma distribution.
Also, to investigate the co-linearity between variables, we
calculated the covariance matrix for all the variables. The
Pearson correlation (p-values) for all variables was less than
0.05, and therefore, all variables have a small correlation
coefficient but not significant enough to skew the final model.
After this preliminary dataset analysis, we move to the linear
regression model. The dataset is representative of a variety of
applications and algorithms, and the variables we chose can
capture the factors that affect the I/O intensity.

2) Regression Model: In our model, the variable we want
to predict is I/O intensity. We chose to run a linear regression
model since it is simple enough, allows us to determine the
overall fit of the model, and to quantify the relative contribution
of each of the independent variables (i.e., X1−16) to the
dependent variable. During the preliminary analysis of our
dataset, we made sure that all assumptions that are required
by linear regression held. We do not list all eight assumptions
here, but we will mention some. One assumption is that
the dependent variable should be measured on a continuous
scale, which holds for our I/O intensity variable. Another
assumption is that two or more independent variables are either
continuous or categorical, which is also true in our case. After
checking those assumptions we run the linear regression with
the stepwise method on this initial model:

Ym(a, s) = β0 +
a∑

i=1

βi ∗Xi +
s∑

i=1

βi ∗Xi (1)

where Y is the dependent variable I/O intensity, m is the mth

code block, a are the application-based variables, s are the
system-based variables, β are the coefficients of the regression
and Xi is the value of the ith variable. The model summary
is shown in Table II.

As it can be seen, variables X5, X6, X8, X11, X15, and
X16 were excluded from the model. This is because they
have a low t-ratio (i.e., the absolute value of t-stat is less
than 2). A low t-ratio means higher probability of having
zero values as their coefficients. The more significant a t-
stat value is, the lower the std error for each predictor is,
and a tighter confidence interval for the variable’s value will
result. Furthermore, out of the included variables, X4, X7,
and X10 are the most significant variables for the model. This
is due to their high absolute value of β coefficients. After
this analysis, we define the Code-Block I/O Characterization

4

Extractor

Code Parser

I/O Decorator

PDG Builder

Analyzer Optimizer

.

.

.

Vidya Framework

Code-block
Classifier

PDG Aggregator

CIOC calculator

Bottleneck
Identifier

Code Injector

Code Compiler

CPU

Memory

I/O System

System Application

Fig. 2: Vidya framework architecture

(CIOC) formula as the I/O intensity of a code-block relative
to that of the applications in the system; it is given by the final
model as:
CIOCb = β0 + β1 ∗X1 + β2 ∗X2 + β3 ∗X3 + β4 ∗X4 + β7 ∗X7+

β9 ∗X9 + β10 ∗X10 + β12 ∗X12 + β13 ∗X13 + β14 ∗X14

(2)

3) Model Analysis: There were a few important findings
of the linear regression model output: first, the model shows
a good model fit with the adjusted R2 value at 92% and a
high f-statistic score of 785.13. Additionally, the probability
F statistic of 0.00 shows that the model has a reasonable
level of confidence that the coefficients of the linear regression
model will not range to zero. A high f-stat value also shows
that at least one of the variables has the predictive power for
determining the I/O intensity. Moreover, the QQ plots of the
residual values are normally distributed for our model which
shows a good predictive capability of our model.

IV. VIDYA DESIGN

A. Overview

Vidya is an I/O profiling framework that can be used to
predict the I/O intensity of a given application. Vidya’s design
is inspired by the challenges mentioned in Section II-B. The
Vidya framework consists of several tools and modules whose
main responsibility is to capture CIOC from the source code
and the underlying system. The framework is written in C++
and several scripts are written in Python and Bash. Using
Vidya is a simple process: users are expected to provide
access to their source code, and Vidya outputs the optimized
executables. Our goal when designing Vidya was to build a
system that can profile the I/O behavior fast, accurately, and
in finer detail. Vidya does not require offline execution of the
application to collect profiling data but rather a comprehensive
source code analysis to predict the I/O intensity of every
code-block and thus of the application. The Vidya framework
facilitates the extraction of modeled variables, calculation
of CIOC score, and optimization of code. Our prototype
framework support C, C++, and Fortran source code. The
architecture is presented in Figure 2. There are three main
modules in the Vidya framework: Extractor, Analyzer, and
Optimizer. All modules work together in harmony to achieve
Vidya’s objective: profile the I/O of an application, identify
optimization opportunities, and apply fixes to the code.

B. Vidya Extractor

Vidya’s Extractor derives characteristics from both the
system and the application’s source code. Its objective is to
produce a program dependency graph (PDG) which is a rep-
resentation of the program’s runtime behavior. The algorithm
to produce this graph is given in Procedure 1. The extractor
collects the following system characteristics: CPU family,

instruction length for common operations, number of cores,
clock frequency, and cache size. Also, RAM architecture,
number of memory banks, frequency, and memory capacity
are collected. Lastly, mounting points, file system version, and
controller concurrent lanes, bus bandwidth, type of storage
device, cache size, device bandwidth, and access latency for a
detailed view of the I/O subsystem. The extractor uses a collec-
tion of system tools and our scripts to collect the above infor-
mation. Specifically, the extractor uses the following tools for
the respective system component benchmarking: cpuinfo,
cpuid, meminfo, lshw, sar, mount, iostat, and IOR
benchmark [38]. The system specification is important to the
profiling of an application since different systems will execute
the application differently in terms of performance. Running
the same code on a personal computer stresses the subsystems
in a different volume than running it on a supercomputer.
By knowing the target system, Vidya maps the source code
instructions in a predicted execution plan and timeline. For
instance, knowing the type of the storage device (i.e., HDD or
SSD) can help predict the impact of interference when multiple
processes perform I/O simultaneously [39]. Also, it helps to
estimate the effect of random access pattern on the overall
I/O time (i.e., SSDs are less sensitive to random access than
HDDs).

Procedure 1 Program Dependency Graph Builder algorithm
Input: cpp file
1: Parse the file to generate list of nodes
2: for each node in list of nodes do
3: if node is function or variable declaration or call then
4: update function and variable maps
5: for each node in list of nodes do
6: for all childnode in node do
7: calculate childnode’s compute
8: if childnode is loop node then
9: calculate loop variables

10: else if childnode is function node then
11: calculate function parameters
12: if childnode is IO function then
13: extract node IO attributes
14: pass I/O information to System Profiler
15: enrich node with I/O and system features
16: add virtual node as root node

Code Parser: This module utilizes LLVM’s abstract syntax
tree (AST) object to parse the code line by line and build
a function map. This module extracts several code structures
to output the control flow, variable scope and value, and
inter-function dependencies. For instance, Figure 3 shows a
sample code and its respective parsed output. In this case, the
code parser highlights several pieces of structural information
from the code such as functions (highlighted in blue), loops
and branch statements (highlighted in pink), and I/O calls
(highlighted in green).

PDG Builder: This module builds the procedural dependency
graph (PDG) using several structures given from the code
parser. Specifically, it traverses the function map line by
line starting from the entry point (e.g., main function) while
maintaining the variables’ scopes and values. It uses a bottom-
up recursion to build the code dependencies and, finally, output
a graph that provides a more accurate view of the application.
Figure 3 shows an example of the output produced by the PDG
Builder. Each function, branch, and loop is represented by a
node in the graph with their parent and children relationships.

5

Additionally, each node holds the information of the lines it
contains as attributes.

I/O Decorator: This module enriches the PDG with the node’s
I/O features. Specifically, it derives information such as size of
I/O, count of I/O calls, number of flush calls, etc. It supports
various I/O interfaces as it interprets each API and extracts I/O
features based on each implementation (i.e., POSIX, MPI-IO,
and HDF5). Figure 3, shows the I/O information at the leaves
of the tree. As shown in the figure, we have four I/O functions
in the sample code. These are decorated as light blue on the
PDG. These nodes contain I/O information such as amount of
I/O, source, and, offset.

The extractor faces a significant challenge: several code
constructs can be expressed in a different way depending
on the language. For instance, for loops in C++ can be
written in three different ways, or variables can be defined and
declared in two different ways, etc. These choices increase the
complexity of understanding the code accurately. However, the
design of this component is modular and can be extended to
other compiled programming languages. In summary, Vidya
Extractor’s mission is to parse the source code and understand
its structure. Other languages, such as Java, offer capabilities
to extract an abstract syntax tree (i.e., JavaParser.org, Oracle
Java Tools - Parser, etc.), and thus one can similarly build a
procedural dependency graph.

C. Vidya Analyzer

Vidya utilizes the enriched PDG from the Extractor to
further perform code analysis. The analysis process starts
by first classifying code as I/O, propagating all I/O features
from the children to parents, and lastly performing CIOC
calculations. The analysis is presented in Procedure 2.

Code-block Classifier: This module traverses the PDG pro-
duced by the extractor’s PDG builder, and classifies the nodes
of the graph (i.e., code-blocks) into two categories: compute or
I/O blocks. This module marks a code-block as an I/O block
when it sees that the block consumes, produces, or mutates
data (i.e., fread(), fwrite(), get(), put(), delete(), etc.). The
granularity of this process is at the node-level. The output is
the same PDG but with the block markers. For instance, in
Figure 3 node 3, 5, 8, and, 11 are marked as I/O nodes.

PDG Aggregator: Once the I/O blocks are identified, this
module performs an enrichment of the graph. When child
nodes are marked individually as I/O, this module will ag-
gregate all extracted I/O features into the parent node and
does so recursively. Practically, this module calculates the total
I/O amount, the total number of I/O operations, and other
summary statistics for the entire application. This aggregation
step provides a global view of the system as it aggregates the
parameters across several such PDGs (per-application). The
output is an enhanced PDG decorated with all aggregated
values. Figure 3 shows an example of aggregation, as each
node inherits its I/O features from its children and hence the
root of the PDG consists of all I/O features in all its leaf
nodes along with the effect of any branching and/or loop. The
process of aggregation can be seen in Procedure 2 at line 7
and 9 where a node inherits its I/O features from its children.

CIOC Calculator: Once the aggregation step is completed,
this module calculates CIOC score for all the nodes in the

(0)
Root

(1)
Loop

(2)
Branch

(4)
Branch

(6)
checkpoint

(7)
Loop

(9)
sort_temp

(10)
Branch

(11)
fwrite

(3)
fwrite

(5)
fread

(8)
fwrite

Size:100MB
Offset:1024
Source:
/src/file.dat

Size:100MB
Offset:1024
Source:
/src/file.dat

Size:100MB
Offset:1024
Source:
/src/file.dat

Size:50MB
Offset:2048
Source:
/src/file2.dat

Size:300MB
Offset:0
Source:
/src/file3.dat

count: 10

Size:500MB
Offset:2048
Source:
/src/file2.dat

Size:500MB
Offset:2048
Source:
/src/file2.dat

(3)

(5) (8)

(11)

Size:30MB
Offset:0
Source:
/src/file3.dat

Fig. 3: PDG example.

Procedure 2 Vidya Analysis Algorithm
1: procedure PDG ANALYSIS(node)
2: total node io← FALSE
3: for each childnode in node do
4: childnode← PDG Analysis(childnode)
5: if childnode has io then
6: total node io← TRUE
7: append vars from characteristics of childnode
8: if node has io then
9: append vars from characteristics of node

10: total node io← TRUE
11: if total node io = TRUE then
12: calculate CIOC score of node
13: else
14: node′s CIOC score← 0
15: return node

PDG. This CIOC calculation has two stages. First, calculation
of the variables using the I/O features extracted. Second,
prediction of the I/O intensity using CIOC score. The scoring
on the graph is done bottom up to encompass the data intensity
at all levels as seen in Procedure 2. For instance, in Figure 3 the
scoring is done from node 11 to 10 and then these features
are aggregated at 0. Once the scoring is done, this module
translates the CIOC score as metadata for each application,
which is then written out as profiling logs.

The major challenge that the analyzer addresses is the
granularity of the profiling analysis. Static analysis profilers
such as Darshan can only address I/O profiling in function level
(i.e., simply answer which functions perform I/O). In contrast,
Vidya’s analyzer module allows us to identify the I/O source
in finer granularity (i.e., line, function, class, file, etc.). This
granularity comes from the combination of code features that
CIOC score encapsulates and the PDG itself.

D. Vidya Optimizer

The central question this module faces is what optimiza-
tions need to be applied and when. Vidya includes strategies
which utilize the application’s metadata to apply optimizations
accurately. For instance, if an application’s CIOC score is high
due to read calls, Vidya identifies the event, and uses the
prefetcher to pro-actively fetch data before the read operation.
The prefetcher requires two pieces of metadata information
from the PDG: a) the details of the read operation within
the code-block (this is provided as the PDG keeps track of
offset and size of each I/O that occurs on a file), and b)
where to place data from the asynchronous prefetching call.
The PDG maintains the order of I/O and non-I/O calls, and
thus it can accurately predict the branch of code where this
prefetching should occur. Based on these information, the

6

(a) Before optimization (b) After optimization

Fig. 4: Vidya Optimizer - Automatic Code Injection

prefetcher sub-module injects prefetching calls (i.e. performing
I/O asynchronously and buffering the data), and modifies the
actual read call to use buffered I/O. Figure 4 demonstrates
snippets of code and their optimized counterparts.

Bottleneck Identifier: This module utilizes the profiling logs,
generated from the analyzer, to automatically understand the
I/O behavior of applications. The CIOC score represents the
I/O intensity of a code-block. Hence, the bottleneck identifier
can pinpoint which blocks of code have the highest CIOC
score, and by looking at the variables it can deduce the cause
of that score. Once the cause of the score is found, this module
marks the nodes with flags for what should be optimized. For
example, when variable X7 has a high score, it means that
excessive flushing is taking place, and thus an optimization
opportunity arises. This module will first check if fopen() was
executed with the synchronous mode flag on. If so, it marks
the code with a suggested optimization; in this case, it marks
the removal of flush operations.

Code Injector: This module takes as input PDG nodes marked
by the bottleneck identifier with potential optimizations. Based
on the markers, this module performs code injections or mod-
ifications to perform the required optimization. Following our
example from the previous module, if a node was flagged for
removal of flushing operations, it will remove the lines of code
that cause flushing. These updates in the code are done using
LLVM’s API (e.g., remove_line, write_line, etc.).

Code Compiler: Once the optimizations are injected, the
modified source code is submitted for compilation. It compiles
the given source code, along with its dependencies, using
LLVM and produces the object files for all the applications.

API: Vidya offers a simple API. Vidya can be con-
figured to either apply optimizations automatically or
give some control to the user. Examples from Vidya’s
API include: vidya::buffer read(): reads data from buffer,
vidya::async prefetch(): prefetches requested data asyn-
chronously, vidya::cache to buffer() caches data into buffer,
vidya::evict cache line() removes passed cache line, etc.

E. Design Considerations

Application input arguments during runtime: Input
arguments can be passed to a program during execution.
These inputs can not only alter programs execution flow but
its behavior too. To solve this, Vidya maintains a heap of
global variables and a function-level stack of local-variables.
The program arguments are given as input to the Vidya
profiler along with the source code which are then treated as
inputs to the root function (e.g., main()) and used in the
analysis of the source code.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

Darsh
an

Omnisc
’IO

Vidya

Darsh
an

Omnisc
’IO

Vidya

Darsh
an

Omnisc
’IO

Vidya
 0

 20

 40

 60

 80

 100

P
ro

fi
lin

g
 t
im

e
 (

s
e
c
)

A
c
c
u
ra

c
y
 (

%
)

Complexity of code

Darshan
Omnisc’IO

Vidya

Parsing
Tracing

Prediction

Analysis

HighMediumLow

Fig. 5: Code Complexity

I/O on pre-existing files: Many applications’ I/O behavior is
determined by the dataset size (i.e., reading and writing to big
or small datasets). The dataset size can be dynamically used
in a program and determine the I/O behavior of the entire
application. Vidya uses its system profiler to not only collect
system information but also information about the files that the
application operates on. Specifically, based on the files opened,
Vidya performs file stat operations to determine the file size
during open(), and then based on application’s I/O operations
such as fwrite(), Vidya keeps track of file size in the PDG.

Code Branching: Most applications have conditional branch-
ing of code which leads to multiple execution paths. These
execution paths determine the different behavior of the ap-
plications based on execution parameters. Vidya treats each
branch as a possible path in the PDG. This allows Vidya to
treat each portion of code separately and predict I/O intensity
in all the possible branches of the application.

V. EVALUATION

A. Platform and applications

All experiments were conducted on Chameleon sys-
tems [33]. More specifically, we used the bare metal configu-
ration with 32 client nodes and 8 server nodes for Parallel File
System. Each node has a dual Intel(R) Xeon(R) CPU E5-2670
v3 @ 2.30GHz (i.e., a total of 48 cores per node), 128 GB
RAM, 10Gbit Ethernet, and a local 200GB HDD. The list of
applications used are CM1 [40], WRF [41] and Montage [23],
which are real-world codes representative of an application
running on current supercomputers. They have been used
for NCSI’s Kraken and NCSA’s Blue Waters for CM1 and
WRF ANL’s Intrepid and Mira for Montage. Additionally,
we use benchmarks such as IOR [38], which is designed
to measure I/O performance at both the POSIX and MPI-IO
level, and Graph500 [42]. Finally, we compare Vidya’s results
with Darshan [9], which analyzes applications based on their
runtime behavior, and Omnisc’IO [13], which uses grammar-
based models to predict future I/O.

B. Profiling Performance

In this series of tests, we evaluate the profiling performance
of Vidya and compare the results with Darshan and
Omnisc’IO.

1) Code complexity: In this first test, we use I/O benchmark
(Synthetic workload generator) to test the time taken by all
solutions to complete the profiling and analysis. The workload
generator can tune the level of code complexity, which is a key
factor in the speed of profiling. Specifically, the benchmark
performs 4 GB of I/O (i.e., 64 files of 64 MB). All oper-
ations are performed on an HDD (i.e., 125MB/s read-write

7

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

Dars
han

Om
nisc

io
Vidya

Dars
han

Om
nisc

io
Vidya

Dars
han

Om
nisc

io
Vidya

 0

 20

 40

 60

 80

 100
P

ro
fi
lin

g
 t
im

e
 (

s
e
c
)

A
c
c
u
ra

c
y
 (

%
)

Profiling scale (# processes)

Darshan
Omnisc'IO

Vidya

Parsing
Tracing

Prediction

Analysis

10241281

Fig. 6: Profiling Granularity

bandwidth). We divide the benchmark into three complexity
modes: Low, where each file is written serially one after
another by a for loop inside a function using POSIX interface,
Medium, where each file is written by separate functions using
MPI Independent I/O, and High, where each file is grouped
into categories and the I/O is performed by several classes
utilizing the HDF5 [43] data format. Darshan follows a tracing
approach whereas Omnisc’IO follows a predictive grammar-
based approach. In contrast, Vidya implements a novel way to
profile an application by parsing the source code and analyzing
the syntax trees. The more complex a source code is, the more
sensitive each tool can be regarding its profiling performance.
In Figure 5, we present the results of profiling our benchmark.
As it can be seen, Darshan first executes the benchmark while
collecting traces and then analyzes the logs. The complexity of
code does not affect Darshan’s profiling performance. More-
over, since Darshan is collecting execution traces, the accuracy
of profiling the I/O intensity is always 100%. Omnisc’IO
trades accuracy for performance. It completes the profiling
during runtime, adding only a small overhead. This results in
performance gains of 15x, 11x, and 9x for Low, Medium, and
High code complexity respectively. However, the accuracy of
its predictions is 94% for Low code complexity and drops
to only 70% for High, since the extent of the grammar it
builds is directly proportional to the code complexity. On the
other hand, Vidya’s source code analysis approach balances
profiling speed and profiling accuracy. In our test, Vidya
achieved a profiling performance of 3.77 seconds for Low,
7.38 seconds for Medium, and 15.24 seconds for High code
complexity, which is 8.9x, 4.8x, and 2.4x faster than Darshan
respectively. Furthermore, Vidya was 31% more accurate than
Omnisc’IO in its I/O intensity predictions, even though the
later was still faster while profiling the benchmark. Note that,
as the code complexity increases so does Vidya’s profiling cost
(i.e., parsing and analyzing). In summary, Vidya achieves high
prediction accuracy and profiling performance.

2) Profiling Granularity: Profiling tools provide an un-
derstanding of the I/O behavior of an application. However,
the scale with which we profile an application and the scale
with which we run it might be different which might, in turn,
lead to different profiling conclusions. There is a mismatch
between tracing results and the actual I/O behavior due to the
scale difference. Static analysis tools based on tracing, such
as Darshan, are very susceptible to this issue. In this next
test, let us assume that the actual execution scale is 1024.
We change the granularity of profiling of CM1 from a single
process, to 128, and 1024 processes, and we measure the
overall profiling cost, expressed in time, and profiling accuracy,

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Dars
han

Om
nisc

'IO
Vidya

Dars
han

Om
nisc

'IO
Vidya

Dars
han

Om
nisc

'IO
Vidya

 0

 20

 40

 60

 80

 100

P
ro

fi
lin

g
 t
im

e
 (

s
e
c
)

A
c
c
u
ra

c
y
 (

%
)

Input workload

Darshan
Omnisc'IO

Vidya

Parsing
Tracing

Prediction

Analysis

GMCBFSWRF

Fig. 7: Workflow Irregularity
expressed in percentage. Note that, CM1 performs file per
process hence this reflects a strong scaling test. As it can be
seen in Figure 6, when profiling CM1 with 1 process, Darshan
took 4.81 seconds, with 128 processes 22.48 seconds and with
1024 processes 41.809 seconds. The profiling result we got
from analyzing each case was different. When profiling CM1
with a single process, the predicted I/O behavior was different
from the actual behavior with an accuracy of only 78%. When
we profile the application with the same number of processes
compared to the actual execution (i.e., 1024 in this test),
then Darshan produced 100% accurate results. Online profiling
tools based on predictions, such as Omnisc’IO, do not suffer
from this limitation. In our test, Omnisc’IO showed a stable
profiling performance of 2.1 seconds with an accuracy of 88%.
Similarly, Vidya, which relies on the analysis of the source
code, takes into consideration the scale (i.e., the granularity of
the test) and produces more accurate results without executing
the application. It combines the speed of an online predictive
tool such as Omnisc’IO with the accuracy of a tracing tool. In
this test, Vidya demonstrated a profiling speed of 2.37 seconds,
on average, and an accuracy of 96%.

3) Workflow irregularity: In this test, we evaluate how
profiling performance is affected by the irregularity of I/O
patterns. Specifically, for our driver applications for this test we
use: a) WRF, which demonstrates a regular I/O access pattern,
b) Graph500’s breadth-first search (BFS), and c) Graph500’s
graph min cut (GMC) kernel, which both demonstrate a highly
irregular I/O pattern. In Figure 6, we present the results of
profiling of these applications. We execute all programs with
1024 MPI ranks, and we direct the I/O to our PFS of 8
servers. As it can be seen, Darshan takes a long time to profile
the applications but maintains an accurate picture of the I/O
behavior. Darshan is 100% accurate but is the slowest profiling
solution. On the other hand, Omnisc’IO does not require any
extra offline profiling processes; however, Omnisc’IO relies on
the predictive power of its grammar which is strong for regular
patterns but suffers on irregular applications. This behavior is
reflected in our results where we can observe that the accuracy
of Omnisc’IO drops to 66% for GMC which is known to have
irregular patterns. Vidya, on the other hand, does not suffer
by the irregularity of the input workload as it parses the code
to understand the I/O. The profiling speed is not affected by
this, and Vidya achieves similar numbers as Omnisc’IO. In
summary, Vidya aims to optimize both speed and accuracy.

C. I/O Optimization using Profiling

In this last set of tests, we aim to evaluate the potential of
an application profiler in optimizing I/O performance. Most of

8

the optimization techniques rely on understanding the behavior
of an application and thus correctly identifying optimization
opportunities. In the first test, in Figure 8 (a), we first profile
the application to identify when and how much to prefetch
data to help reading operations. More accurate and complete
the profiling improves our chances to prefetch data optimally
via active storage [44], [45]. Darshan is the most accurate
and optimized the I/O time by more than 4.3x. However,
Darshan requires significant time to first profile the application.
In contrast, Omnisc’IO only adds minor overheads in the
execution time while building the grammar which is then used
to predict when and what to prefetch. It optimizes the I/O
performance of WRF by 2x. However, for BFS, which has
irregular patterns, Omnisc’IO could not boost I/O time more
than 20%. On the other hand, Vidya successfully identifies
exactly what to prefetch and by adding slightly more time
in source code analysis, it can offer almost the optimization
boost of Darshan without the extra time to collect the traces.
Specifically, it achieved 3.7x performance gains and spent
only a couple of seconds profiling. A similar outcome can
be observed in the next and final test where we turn on or off
the write-cache. Effectively, an accurate profiler will tell the
optimization when to turn on the cache and avoid scenarios
where the cache is trashed. Vidya outperformed both Darshan,
by 2.7x, and Omnisc’IO, by 50%.

VI. DISCUSSION

1) Measurement Vs Prediction: Application profilers can
be classified based on their profiling approach: a) Measurement
based: these execute the application to measure the applica-
tion’s behavior, and, b) Prediction-based: these try to predict
the application’s behavior without executing it. Clearly, it is a
trade-off between accuracy and cost of profiling. Vidya aims
to balance these two by trying to estimate the application’s
I/O behavior through its source-code instead of waiting for
observations or performing online predictions. This trade-off
is evident throughout the evaluation section.

2) Source Code Analysis Limitations: Source-code analysis
is extremely powerful as shown in this work. But it suffers
from some limitations.

Dynamic runtime flows: Applications whose runtime depen-
dency is based on external files is hard to detect and handle.
These runtime flows can be handled in the PDG by simulating
the code’s execution. This is not only difficult to implement
but also costly as it requires actual running of pieces of code.

Applications with automatic code generation: Applications
which generate code dynamically during execution based on
branches are hard to detect and simulate. Such applications
form dynamic PDG on runtime, and therefore, any static
analysis approach would be extremely error prone.

These cases are extremely hard for any source-code analy-
sis approach to handle. We recommend solving these problems
in two stages. a) Identification: Code patterns like dynamic
code generations or branches dependent on data read from files
can be detected in the code, and, b) Simulation: such pieces
of code should be accurately simulated with extreme care.

VII. RELATED WORK

Static I/O characterization tools: Carns et al. used Dar-
shan [9] to analyze the production I/O activity on Intrepid.

 0

 10

 20

 30

 40

 50

 60

 70

No P
re

fetch
ing

Darsh
an

Omnisc
’IO

Vidya

No P
re

fetch
ing

Darsh
an

Omnisc
’IO

Vidya

P
ro

fi
lin

g
 t
im

e
 (

s
e

c
)

Input workload

Profiling
Execution

BFSWRF

(a) Prefetching On/Off

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

No C
ach

ing

Darsh
an

Omnisc
’IO

Vidya

No C
ach

ing

Darsh
an

Omnisc
’IO

Vidya

P
ro

fi
lin

g
 t
im

e
 (

s
e
c
)

Input workload

Profiling
Execution

GMCCM1

(b) Write-cache On/Off

Fig. 8: Optimization
Darshan captures application-level access pattern information
per-process and per-file granularity. Byna et al. have utilized
tracing and characterization of I/O patterns as a means to
improve MPI-IO prefetching [12]. Their method consists of
running an application job once to generate a complete MPI-IO
trace, post analyzing the trace to create an I/O signature, and
then using the signature to guide prefetching on subsequent
jobs. Both of these works suffer from these challenges: a)
applications need to be run to get their I/O behavior which
would not be possible for exascale systems, and, b) failure to
have a global view in a multi-tenant system

Prediction Modeling: Sequitur is designed to build a grammar
from a sequence of symbols and has been used mainly in the
area of text compression [46], natural language processing, and
macromolecular sequence modeling [47], which have repetitive
periodic I/O. Tran has investigated prediction of temporal
access pattern and Reed [11] using ARIMA time series to
model inter-arrival time between I/O requests. Such statistical
models need a large number of observations to converge to
proper representation and, thus, right predictions. Dorier et
al. [13] models the behavior of I/O in any HPC application
and using this model it predicts the future I/O operations.
These works cannot handle modern complex applications with
irregular patterns as they depend on repetitive I/O behavior.

The HPC community has produced a wide variety of
modern tools for generating traces of individual I/O operations
including HPCT-IO [48], Jumpshot [3], [49], TAU [4], and
STAT [5]. However, these tools focus primarily on in-depth
analysis of individual application runs rather than long-running
workload characterization.

VIII. CONCLUSIONS

In this paper, we propose Vidya, an I/O profiling framework
that can be used to predict the I/O intensity of a given
application. Additionally, we present a code-block formula for
predicting I/O intensity of application called CIOC. We show
how different code-block level parameters can affect I/O and
how these parameters can be used to predict I/O intensity
without executing the application. Results show that Vidya
can make profiling of applications faster by 9x while having
a high accuracy of 98%. Furthermore, we show, Vidya can
be used to optimize applications up to 3.7x. To the best of
our knowledge, Vidya is the first work that leverages program
structure to predict I/O performance and optimize it. As a
future step, we can use this approach to perform automated
runtime I/O optimizations on applications at a system level.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grants no. CCF-1744317, CNS-
1526887, and CNS-0751200.

9

REFERENCES

[1] M. Dorier, G. Antoniu, R. Ross, D. Kimpe, and S. Ibrahim, “CALCioM:
Mitigating I/O interference in HPC systems through cross-application
coordination,” in 28th International Parallel and Distributed Processing
Symposium. IEEE, 2014, pp. 155–164.

[2] W. Cohen, “Multiple Architecture Characterization of the Build Process
with OProfile,” http://oprofile.sourceforge.net, 2003, [Online; accessed
April-2018].

[3] O. Zaki, E. Lusk, W. Gropp, and D. Swider, “Toward scalable per-
formance visualization with Jumpshot,” The International Journal of
High Performance Computing Applications, vol. 13, no. 3, pp. 277–
288, 1999.

[4] S. S. Shende and A. D. Malony, “The TAU parallel performance
system,” The International Journal of High Performance Computing
Applications, vol. 20, no. 2, pp. 287–311, 2006.

[5] D. C. Arnold, D. H. Ahn, B. R. De Supinski, G. L. Lee, B. P. Miller, and
M. Schulz, “Stack trace analysis for large scale debugging,” in Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 2007, pp.
1–10.

[6] S. Benkner, F. Franchetti, H. M. Gerndt, and J. K. Hollingsworth,
“Automatic Application Tuning for HPC Architectures (Dagstuhl Sem-
inar 13401),” in Dagstuhl Reports, vol. 3. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2014.

[7] Y. Jin, “Numatop: A tool for memory access locality characterization
and analysis,” http://oprofile.sourceforge.net, 2013, [Online; accessed
April-2018].

[8] N. Nethercote and J. Seward, “Valgrind: A Framework for Heavyweight
Dynamic Binary Instrumentation,” in Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’07. New York, NY, USA: ACM, 2007,
pp. 89–100. [Online]. Available: http://doi.acm.org/10.1145/1250734.
1250746

[9] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley,
“24/7 characterization of petascale I/O workloads,” in International
Conference on Cluster Computing and Workshops (CLUSTER). IEEE,
2009, pp. 1–10.

[10] J. Oly and D. A. Reed, “Markov model prediction of I/O requests
for scientific applications,” in Proceedings of the 16th international
conference on Supercomputing. ACM, 2002, pp. 147–155.

[11] N. Tran and D. A. Reed, “Automatic ARIMA time series modeling
for adaptive I/O prefetching,” IEEE Transactions on parallel and
distributed systems, vol. 15, no. 4, pp. 362–377, 2004.

[12] S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and W. Gropp, “Parallel I/O
prefetching using MPI file caching and I/O signatures,” in Proceedings
of the ACM/IEEE conference on Supercomputing. IEEE Press, 2008,
p. 44.

[13] M. Dorier, S. Ibrahim, G. Antoniu, and R. Ross, “Omnisc’IO: a
grammar-based approach to spatial and temporal I/O patterns pre-
diction,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE
Press, 2014, pp. 623–634.

[14] B. Dong, X. Li, L. Xiao, and L. Ruan, “A new file-specific stripe size
selection method for highly concurrent data access,” in ACM/IEEE 13th
International Conference on Grid Computing (GRID). IEEE, 2012, pp.
22–30.

[15] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock,
K. Schwan, and M. Wolf, “Managing variability in the IO performance
of petascale storage systems,” in International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC). IEEE,
2010, pp. 1–12.

[16] T. Hey, S. Tansley, K. M. Tolle et al., The fourth paradigm: data-
intensive scientific discovery. Redmond, WA: Microsoft Research,
2009, vol. 1.

[17] A. Kougkas, H. Devarajan, and X.-H. Sun, “Hermes: A Heterogeneous-
aware Multi-tiered Distributed I/O Buffering System,” in Proceedings
of the 27th International Symposium on High-Performance Parallel
and Distributed Computing, ser. HPDC ’18. New York, NY, USA:
ACM, 2018, pp. 219–230. [Online]. Available: http://doi.acm.org/10.
1145/3208040.3208059

[18] ——, “Hermes: A Heterogeneous-aware Multi-tiered Distributed I/O
Buffering System,” in Proceedings of the 27th International Symposium
on High-Performance Parallel and Distributed Computing, ser. HPDC
’18. New York, NY, USA: ACM, 2018, pp. 219–230. [Online].
Available: http://doi.acm.org/10.1145/3208040.3208059

[19] ——, “IRIS: I/O Redirection via Integrated Storage,” in Proceedings
of the 2018 International Conference on Supercomputing, ser. ICS ’18.
New York, NY, USA: ACM, 2018, pp. 33–42. [Online]. Available:
http://doi.acm.org/10.1145/3205289.3205322

[20] ——, “Enosis: Bridging the semantic gap between file-based and
object-based data models,” in Data-Intensive Computing in the
Clouds(Datacloud’17), 8th International Workshop on. Denver, CO:
ACM SIGHPC, 2017.

[21] ——, “Syndesis: Mapping objects to files for a unified data access
system,” in Many-Task Computing on Clouds, Grids, and Supercomput-
ers(MTAGS’17), 9th International Workshop on. Denver, CO: ACM
SIGHPC, 2017.

[22] A. Geist and R. Lucas, “Major computer science challenges at exascale,”
The International Journal of High Performance Computing Applica-
tions, vol. 23, no. 4, pp. 427–436, 2009.

[23] IRSA, “Montage - An Astronomical Image Mosaic Engine,” http:
//montage.ipac.caltech.edu/docs/m101tutorial.html, 2017, [Online; ac-
cessed April-2018].

[24] Rotman and GOCART, “Cubed-sphere finite-volume dynamic
core(fvcore),” https://www.gfdl.noaa.gov/fv3/, 2001, [Online; accessed
April-2018].

[25] C. Metz, “GOOGLE is 2 billion lines of code and
it’s all in one place,” https://www.wired.com/2015/09/
google-2-billion-lines-codeand-one-place/, 2015, [Online; accessed
April-2018].

[26] A. Kougkas, H. Eslami, X.-H. Sun, R. Thakur, and W. Gropp, “Re-
thinking key–value store for parallel i/o optimization,” The International
Journal of High Performance Computing Applications, vol. 31, no. 4,
pp. 335–356, 2017.

[27] J. Lu, H. Chen, P.-C. Yew, and W.-C. Hsu, “Design and implementation
of a lightweight dynamic optimization system,” Journal of Instruction-
Level Parallelism, vol. 6, no. 4, pp. 332–341, 2004.

[28] M. T. Kandemir, S. W. Son, and M. Karaköy, “Improving I/O Perfor-
mance of Applications through Compiler-Directed Code Restructuring.”
in In Proc. 6th USENIX Conference on File and Storage Technologies
(FAST), 2008, pp. 159–174.

[29] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi,
“Characterizing and profiling scientific workflows,” Future Generation
Computer Systems, vol. 29, no. 3, pp. 682–692, 2013.

[30] B. Behzad, H. V. T. Luu, J. Huchette, S. Byna, R. Aydt, Q. Koziol,
M. Snir et al., “Taming parallel I/O complexity with auto-tuning,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. ACM, 2013, p. 68.

[31] Y. Yin, S. Byna, H. Song, X. H. Sun, and R. Thakur, “Boost-
ing Application-Specific Parallel I/O Optimization Using IOSIG,” in
IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (ccgrid), May 2012, pp. 196–203.

[32] Intel, “Performance Analysis Tool,” https://github.com/intel-hadoop/
PAT, 2015, [Online; accessed April-2018].

[33] Chameleon.org, “Chameleon system,” https://www.chameleoncloud.
org/about/chameleon/, 2017, [Online; accessed April-2018].

[34] H. Sato, “A Graph500 benchmark implementation,” https://github.com/
htsst/netalx, 2015, [Online; accessed April-2018].

[35] S. University of Connecticut, “External Sorting Library Project,” http:
//lib-ex-sort.sourceforge.net/, 2010, [Online; accessed April-2018].

[36] N. Sarten, “A C++11 k-means clustering implementation,” https://
github.com/genbattle/dkm, 2017, [Online; accessed April-2018].

[37] CORAL, “LLNL,CORAL Benchmark Codes,” https://asc.llnl.gov/
CORAL-benchmarks/, 2014, [Online; accessed April-2018].

[38] LLNL, “Ior benchmark,” https://goo.gl/YtW4NV, 2017.
[39] A. Kougkas, M. Dorier, R. Latham, R. Ross, and X.-H. Sun, “Leverag-

ing burst buffer coordination to prevent i/o interference,” in e-Science
(e-Science), 2016 IEEE 12th International Conference on. IEEE, 2016,
pp. 371–380.

[40] G. Bryan, “UCAR CM1 atmospheric simulation,” 2016. [Online].
Available: http://www2.mmm.ucar.edu/people/bryan/cm1/

[41] W. Research and F. Model, “WRF,” 2016. [Online]. Available:
http://www.wrf-model.org/index.php

[42] G. . Benchmarks, “Graph500,” 2017. [Online]. Available: https:
//graph500.org/

[43] M. Folk, A. Cheng, and K. Yates, “Hdf5: A file format and i/o
library for high performance computing applications,” in Proceedings
of Supercomputing, vol. 99, 1999, pp. 5–33.

[44] H. Devarajan, A. Kougkas, X.-H. Sun, and H. Chen, “Open ethernet
drive: Evolution of energy-efficient storage technology,” in Proceedings
of the ACM SIGHPC Datacloud’17, 8th International Workshop on
Data-Intensive Computing in the Clouds in conjunction with SC’17,
2017.

[45] A. Kougkas, A. Fleck, and X.-H. Sun, “Towards energy efficient data
management in hpc: the open ethernet drive approach,” in Parallel
Data Storage and data Intensive Scalable Computing Systems (PDSW-
DISCS), 2016 1st Joint International Workshop on. IEEE, 2016, pp.
43–48.

[46] J. C. Kieffer and E.-H. Yang, “Grammar-based codes: a new class
of universal lossless source codes,” IEEE Transactions on Information
Theory, vol. 46, no. 3, pp. 737–754, 2000.

[47] C. G. Nevill-Manning, “Inferring sequential structure,” Ph.D. disserta-
tion, University of Waikato, 1996.

[48] S. Seelam, I.-H. Chung, D.-Y. Hong, H.-F. Wen, and H. Yu, “Early
experiences in application level I/O tracing on Blue Gene systems,”
in International Symposium on Parallel and Distributed Processing
(IPDPS). IEEE, 2008, pp. 1–8.

[49] A. Chan, W. Gropp, and E. Lusk, “An efficient format for nearly
constant-time access to arbitrary time intervals in large trace files,”
Scientific Programming, vol. 16, no. 2-3, pp. 155–165, 2008.

10

