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ABSTRACT
In the era of data explosion, where
data analysis is essential for scien-
tific discoveries, the slow storage
system has led to the research co-
nundrum known as I/O bottleneck.
Additionally, the explosion of data
has led to proliferation of applica-
tion as well as storage technolo-
gies. This has created a complex
matching problem between diverse
application requirements and stor-
age technology features.
In this proposal, we introduce Jal,
a dynamic, re-configurable, and
heterogeneous-aware storage sys-
tem. Jal utilizes a layered approach
including application model, data
model, and storage model. Our
evaluations have shown these
models, can accelerate I/O for
the application while transparently
and efficiently utilizing the diverse
storage systems.
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CHALLENGES
Challenge 1: How to understand and characterize the cause of application I/O behavior?
1. Understanding the applications’ I/O behavior is cumbersome and the research has been focused

on understanding ”What Happened”.
2. However, they have to provide manual analysis and heuristics to determine its causal relationship

for the observed I/O behavior.
Challenge 2: How to match diverse application requirements with storage configurations?
1. Scientific workflows require a diverse set of performance requirements to perform I/O.
2. However, modern storage system are not re-configurable to adapt to conflicting I/O require-

ments and complex heterogeneous storage hierarchy.
Challenge 3: How to design a dynamically re-configurable multi-tiered storage system?
1. Modern system are multi-tenant and run a variety of workflows that have multiple conflicting

requirements.
2. However, software stack is designed for static, homogeneous and fixed software deployments

and fail to cope in this dynamic environment.
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Figure 1: High-Level architecture of Jal Storage System

Jal storage system is a dynamic re-configurable multi-tiered storage system which can achieve
perfect matching between application requirements and diverse storage technologies.

Application Model using Vidya It uses a source-code based profiler which identifies the
cause of the I/O behavior of applications. Using this approach, Vidya can enable automated
optimization and insights on application’s I/O behavior.
Storgae Model using ChronoLog It builds a heterogeneous-aware storage system which
can be dynamically re-configured to different storage configurations during runtime.
Data Model using Optimization Each optimization translates different application’s I/O
requirement to underlying storage configuration to extract maximum performance of each
applications. We develop novel data compression, data prefetching, and data replication
engines that can transform different application requirements into storage configuration for
optimizing I/O.

COMPONENT DESIGN

Extractor

Code  Parser

I/O Decorator

PDG Builder

Analyzer Optimizer

.

.

.

Vidya Framework

Code-block 
Classifier

PDG Aggregator

CIOC calculator

Bottleneck 
Identifier

Code Injector

Code Compiler

CPU

Memory

I/O System

System Application

C

Figure 2: Vidya design

Profile: extraction of code fea-
tures.
Analyze: transforming code fea-
tures to app features.
Optimize: use app features for
automatic optimization.
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Figure 3: Chronolog design

Unify: heterogenous hardware
under single platform.
Chrono: Timebased data
ordering to avoid synchronization.
Stream: paradigm to consume
and retrieve data.
MWMR clients do not disctate
I/O parallelism.
Tunable based on configuration
different combination of hardware
is utilized.
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Figure 4: HCompress design

Adaptive compression engine
which can choose for different
app requirement the ideal
compression.
Dynamic compressors can be
changed on runtime to provide
different performance
characteristics.
Intelligent: Feedback loop to
improve prediction of performance
counters for efficient placement.
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Figure 5: HFetch design

Pipeline Enable hierachical
pipeline for prefetching
optimization.
Server-Push utilize inotify to
capture asynchronous I/O events
and prefetch data.
Dynamic Change to changing
hotness of dataset and prefetch
relevent pieces accordingly.
Global Data-centric prefetching
enables a global view of data
instead of per-process/app view.
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Figure 6: Vidya: Prefetching On/Off

Vidya profiling balances the trade-off bet.
offline and online profiling techniques.

Profiling more expensive than online
Prediction less accurate than offline
Overall Overall performance is better, due
to a middle ground on trade-off.

0
.7

0
6

1
0

.7
9

7

0
.6

2
6

1
1

.4
5

1

0
.0

9
1

1
.1

2
3

1
6

.5
0

2

10000 100000 1000000
NUMBER OF PUT OPERATIONS

0
.6

9
0

7
.0

9
7

0
.2

6
4

5
.0

8
9

0
.0

3
7

0
.5

2
8 1
0

.1
8

5

0

10

20

30

40

50

60

10000 100000 1000000

T
IM

E
 (

S
E

C
O

N
D

S
)

NUMBER OF GET OPERATIONS

5
1

K 1
8

3
K

4
5

K

4
6

K

6
9

K

3
4

1
K

5
7

K

6
2

K

1
.1

9
M

2
4

3
K

7
9

2
K 9
0

9
K

1
.0

3
M

6
8

3
K

7
1

7
K 8

9
2

K

0

200K

400K

600K

800K

1.0M

1.20M

Put Get Put Get

GetAll after PutAll Get after Put

T
H

R
O

U
G

H
P

U
T

 (
O

P
/S

)

KEY-VALUE STORE WORKLOADS

Bookkeeper Corfu ChronoLog w/o Backlog ChronolLog w Backlog

Figure 7: ChronoLog backend for KVS

Chronolog can be efficiently used as a
backend for Key-Value store such as Redis.

Chrono enables time based ordering and
hence no synchronization during tail
operations.
Hierarchical Uses NVMe as a fast catch
for recent data and hence get after put is
more stable than get all after put all.
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Figure 8: HCompress: Scientific workflow

Optimizes complex workflow of Simulation
(VPIC) + Analysis (BD-CATS).

System Based on weights system is
configured to use the most appropriate
compression.
Hierarchical Engine utilizes better layers
and save more data on higher layers.

CONCLUSIONS
We presented Jal storage system, a dynamic, multi-tiered storage system which can
be reconfigured for different application requirement on runtime. We discussed our
layered methodology along with of extracting application requirements, converting them
into various storage configuration, and finally a building a malleable log store which
can deploy those storage configurations. We showcased through evaluations that this
approach can lead to 7x better performance over existing storage systems by utilizing
several automated layers of source-code based profiler, data access optimizations, and a
distributed Log store. Additionally, we showcased that this approach is viable for modern
multi-tenant super computers with good performance benefits.
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