
A Dynamic Multi-Tiered Storage System for
Extreme Scale Computing

Hariharan Devarajan Anthony Kougkas Xian-He Sun
hdevarajan@hawk.iit.edu, akougkas@iit.edu, and sun@iit.edu

ABSTRACT
In the era of data explosion, where
data analysis is essential for scien-
tific discoveries, the slow storage
system has led to the research co-
nundrum known as I/O bottleneck.
Additionally, the explosion of data
has led to proliferation of applica-
tion as well as storage technolo-
gies. This has created a complex
matching problem between diverse
application requirements and stor-
age technology features.
In this proposal, we introduce Jal,
a dynamic, re-configurable, and
heterogeneous-aware storage sys-
tem. Jal utilizes a layered approach
including application model, data
model, and storage model. Our
evaluations have shown these
models, can accelerate I/O for
the application while transparently
and efficiently utilizing the diverse
storage systems.

Poster QR

Website QR

CHALLENGES
Challenge 1: How to understand and characterize the cause of application I/O behavior?
1. Understanding the applications’ I/O behavior is cumbersome and the research has been focused

on understanding ”What Happened”.
2. However, they have to provide manual analysis and heuristics to determine its causal relationship

for the observed I/O behavior.
Challenge 2: How to match diverse application requirements with storage configurations?
1. Scientific workflows require a diverse set of performance requirements to perform I/O.
2. However, modern storage system are not re-configurable to adapt to conflicting I/O require-

ments and complex heterogeneous storage hierarchy.
Challenge 3: How to design a dynamically re-configurable multi-tiered storage system?
1. Modern system are multi-tenant and run a variety of workflows that have multiple conflicting

requirements.
2. However, software stack is designed for static, homogeneous and fixed software deployments

and fail to cope in this dynamic environment.

HIGH-LEVEL DESIGN
Applications

Hierarchical Hardware

Jal Storage System

Vidya (source-code based application profiler)

Data Access Optimizations (Transformations)
Compression

Ares

HCompress

Replication

HReplica

Prefetching

HFetch

ChronoLog (Hierarchical Log Store)

MPI Simulation BigData Analysis Machine Learning...

NVRAM NVMe SSD Burst Buffers PFS...

Figure 1: High-Level architecture of Jal Storage System

Jal storage system is a dynamic re-configurable multi-tiered storage system which can achieve
perfect matching between application requirements and diverse storage technologies.

Application Model using Vidya It uses a source-code based profiler which identifies the
cause of the I/O behavior of applications. Using this approach, Vidya can enable automated
optimization and insights on application’s I/O behavior.
Storgae Model using ChronoLog It builds a heterogeneous-aware storage system which
can be dynamically re-configured to different storage configurations during runtime.
Data Model using Optimization Each optimization translates different application’s I/O
requirement to underlying storage configuration to extract maximum performance of each
applications. We develop novel data compression, data prefetching, and data replication
engines that can transform different application requirements into storage configuration for
optimizing I/O.

COMPONENT DESIGN

Extractor

Code Parser

I/O Decorator

PDG Builder

Analyzer Optimizer

.

.

.

Vidya Framework

Code-block
Classifier

PDG Aggregator

CIOC calculator

Bottleneck
Identifier

Code Injector

Code Compiler

CPU

Memory

I/O System

System Application

C

Figure 2: Vidya design

Profile: extraction of code fea-
tures.
Analyze: transforming code fea-
tures to app features.
Optimize: use app features for
automatic optimization.

ChronoLog
Cluster

ChronoKeeper

ChronoStore
(multi-tiered)

ChronoLog Client API

ChronoGrapher ChronoPlayer

Record
(append)

Playback
(tail-read)

Replay
(historic reads)

Distributed Key-Value Store
SSD SSD SSD SSD SSD SSD SSD SSD

Distributed/Parallel File System
HDD HDD HDD HDD HDD HDD HDD HDD HDD HDD HDD HDD

GraphDB,
OLAP stores

External Storage
(e.g., Object Stores, Hadoop File Systems, Parallel File Systems, DataLakes, Data Warehouses, Tapes)

NoSQL,
Search, Query

Monitoring,
Visualization

BigData
Analytics

Telescopes,
Sensors, IoT

Stream
Processing

Distributed Journal with Index

NVMe NVMe NVMe NVMe

ChronoVisor
Client

Registry

Chronicle Meta Directory

Global
Clock

Write (append)

Tail Read

Historic Read

Connect
Disconnect

Create
Destroy

Sync
Clock

Figure 3: Chronolog design

Unify: heterogenous hardware
under single platform.
Chrono: Timebased data
ordering to avoid synchronization.
Stream: paradigm to consume
and retrieve data.
MWMR clients do not disctate
I/O parallelism.
Tunable based on configuration
different combination of hardware
is utilized.

HCompress
Profiler

System
performance

metrics

Applications/ Multi-tiered middleware software
(e.g., Hermes, PDC, etc.)

HCompress
Library

Destination/Target Hierarchical Storage
(e.g., Native, Hermes, PDC, etc.)

APICompress(task) Decompress(task)

Compression Manager

Storage Hardware Interface

Input Analyzer
Data Attribute Detector

Cost Predictor
Regression Model

System Monitor
System Status

 Initial
 system
state

Compression
performance

metrics

Initial
model
seed

Library Pool

Compression Decompression

Metadata Decorator

Encode Decode

HCDP Engine

Compression

Placement
Optimizer

Schema
Subtask

#1

Subtask
#n

...

Figure 4: HCompress design

Adaptive compression engine
which can choose for different
app requirement the ideal
compression.
Dynamic compressors can be
changed on runtime to provide
different performance
characteristics.
Intelligent: Feedback loop to
improve prediction of performance
counters for efficient placement.

Node
Application Cores

n

HFetch Server running on core n+1

...

RAM

Application
Memory

NVMe SSD

Remote Parallel File System

HFetch
Memory

1
H

2
H

3
H H

Data Prefetching
I/O clients

Hierarchical
Data

Placement
Engine

Data Prefetching
Dedicated RAM

I/O events (fopen, fread, fclose)

File Segment
Auditor
Segment
Statistics
Segment
Mappings

Hardware
Monitor

Daemons

Event Queues

...

Agent Manager

Burst Buffers

Node-to-node
communication

Instructions
Data movement
Events

Figure 5: HFetch design

Pipeline Enable hierachical
pipeline for prefetching
optimization.
Server-Push utilize inotify to
capture asynchronous I/O events
and prefetch data.
Dynamic Change to changing
hotness of dataset and prefetch
relevent pieces accordingly.
Global Data-centric prefetching
enables a global view of data
instead of per-process/app view.

EVALUATIONS

 0

 10

 20

 30

 40

 50

 60

 70

No P
re

fetch
ing

Darsh
an

Omnisc
’IO

Vidya

No P
re

fetch
ing

Darsh
an

Omnisc
’IO

Vidya

P
ro

fi
lin

g
 t
im

e
 (

s
e
c
)

Input workload

Profiling
Execution

BFSWRF

Figure 6: Vidya: Prefetching On/Off

Vidya profiling balances the trade-off bet.
offline and online profiling techniques.

Profiling more expensive than online
Prediction less accurate than offline
Overall Overall performance is better, due
to a middle ground on trade-off.

0
.7

0
6

1
0

.7
9

7

0
.6

2
6

1
1

.4
5

1

0
.0

9
1

1
.1

2
3

1
6

.5
0

2

10000 100000 1000000
NUMBER OF PUT OPERATIONS

0
.6

9
0

7
.0

9
7

0
.2

6
4

5
.0

8
9

0
.0

3
7

0
.5

2
8 1
0

.1
8

5

0

10

20

30

40

50

60

10000 100000 1000000

T
IM

E
 (

S
E

C
O

N
D

S
)

NUMBER OF GET OPERATIONS

5
1

K 1
8

3
K

4
5

K

4
6

K

6
9

K

3
4

1
K

5
7

K

6
2

K

1
.1

9
M

2
4

3
K

7
9

2
K 9
0

9
K

1
.0

3
M

6
8

3
K

7
1

7
K 8

9
2

K

0

200K

400K

600K

800K

1.0M

1.20M

Put Get Put Get

GetAll after PutAll Get after Put

T
H

R
O

U
G

H
P

U
T

 (
O

P
/S

)

KEY-VALUE STORE WORKLOADS

Bookkeeper Corfu ChronoLog w/o Backlog ChronolLog w Backlog

Figure 7: ChronoLog backend for KVS

Chronolog can be efficiently used as a
backend for Key-Value store such as Redis.

Chrono enables time based ordering and
hence no synchronization during tail
operations.
Hierarchical Uses NVMe as a fast catch
for recent data and hence get after put is
more stable than get all after put all.

2560

Multi-tiered No Compression

1,
17

5

1,
86

5

4,
41

9

8,
96

7

77
8 1,

31
4

2,
97

2

6,
01

0

44
1

65
1 1,

68
7

4,
61

2

81 11
1

30
6 71

8

0

2000

4000

6000

8000

10000

320 640 1280 2560

T
IM

E
(S

EC
O

N
D

S
)

PROCESSES

BASE STWC MTNC HCompress

Figure 8: HCompress: Scientific workflow

Optimizes complex workflow of Simulation
(VPIC) + Analysis (BD-CATS).

System Based on weights system is
configured to use the most appropriate
compression.
Hierarchical Engine utilizes better layers
and save more data on higher layers.

CONCLUSIONS
We presented Jal storage system, a dynamic, multi-tiered storage system which can
be reconfigured for different application requirement on runtime. We discussed our
layered methodology along with of extracting application requirements, converting them
into various storage configuration, and finally a building a malleable log store which
can deploy those storage configurations. We showcased through evaluations that this
approach can lead to 7x better performance over existing storage systems by utilizing
several automated layers of source-code based profiler, data access optimizations, and a
distributed Log store. Additionally, we showcased that this approach is viable for modern
multi-tenant super computers with good performance benefits.

PAPERS
[1] Devarajan, H., Kougkas, A., Challa, P., and Sun, X.-H. (2018). Vidya: Performing code-block io characterization for data access optimization. In

2018 IEEE 25th International Conference on High Performance Computing, Data, and Analytics. IEEE.
[2] Devarajan, H., Kougkas, A., Logan, L., and Sun, X.-H. (2020a). Hcompress: Hierarchical data compression for multi-tiered storage environments.

In 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
[3] Devarajan, H., Kougkas, A., and Sun, X.-H. (2019). An intelligent, adaptive, and flexible data compression framework.
[4] Devarajan, H., Kougkas, A., and Sun, X.-H. (2020b). Hfetch: Hierarchical data prefetching for scientific workflows in multi-tiered storage environ-

ments. In 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 62–72.
[5] Kougkas, A., Devarajan, H., Bateman, K., Cernuda, J., Rajesh, N., and Sun, X.-H. (2020). Chronolog: A distributed shared tiered log store with

time-based data ordering. In Proceedings of the 36th International Conference on Massive Storage Systems and Technology (MSST 2020).

	References

