\\SCALABLE COMPUTING

SOFTWARE LABORATORY

Hariharan Devarajan

Anthony Kougkas

A Dynamic Multi-Tiered Storage System for

Extreme Scale Computing

Xian-He Sun
hdevarajan@hawk.iit.edu, akougkas@iit.edu, and sun@iit.edu

ILLINOIS INSTITUTE
OF TECHNOLOGY

ABSTRACT CHALLENGES COMPONENT DESIGN EVALUATIONS

In the era of data explosion, where Challenge 1: How to understand and characterize the cause of application /0 behavior? .
nalysis i ntial for len- : : : ’ .. ‘Prof‘iling‘:‘
d-?_ta j. alysis 1S esie t? or scie Understanding the applications’ | /O behavior is cumbersome and the research has been focused s Vidya Framework D @ Profile: extraction of code fea 560 Execution === 1
ITl I Verli W r . " " . B 250 I il -
tific discoveries, the slow storage on understanding "What Happened”. = P pa— o o Vidya profiling balanc_es the trade-off bet.
system has led to the research co- . . - . . 6P| [[ode Parser]| [Coebioc Sotleneck tures. = offline and online profiling techniques.
However, they have to provide manual analysis and heuristics to determine its causal relationship = 3 Classifier dentier . g
nundrum known as |/O bottleneck. £ the ob 4 1/0 behavi . oLl 0 1 Analyze: transforming code fea- = 20| — Profiline more expensive than online
‘s . or € ODServe €navior. emory urder regator ode Injector Y B
Additionally, the explosion of data 3 J =1 0 tures to app features. 1o : g § .
has led to proliferation of applica- Challenge 2: How to match diverse application requirements with storage configurations? e 10 Decorstor Y} 010C caloutor JIRH] Code Compier) @ Optimize: use app features for 0\&%&2\%@\0\@'& SO O Prediction less accurate than offline
' _ g . . . : o ¢ % e O Overall Overall performance is better, due
tion as well as storage technolo Scientific workflows require a diverse set of performance requirements to perform |/O. | | | automatic optimization. N o | P ’
gies_ This has created a Complex _ o _ Flgure 2: Vldya de5|gn WRF inout workload BFS to a middle ground on trade-off.
_ _ However, modern storage system are not re-configurable to adapt to conflicting 1/O require- g
matching problem between diverse d ox h o X | | _
/' ; ; d » ments an Comp ex eterogeneous Storage lerarc y GraphDB, NoSQL, Monitoring, BigData Telescopes, Stream Flgure 6: Vldya: PrefetChlng On/Oﬂ:
app /Catlon reqL”rementS an Stor OLAP stores Search, Query Visualization Analytics Sensors, loT Processing -
age technology features. Challenge 3: How to design a dynamically re-configurable multi-tiered storage system? I ChronoLog Client Ur(ljlfY- _hererolge?ous hardware
: : _ _ _ . pissment] besves | coes IR (tan.,ead) under single platrorm. C Bookkeeer - Corfu w ChromaLog wio Backlon = ChronolLog w Backio i
In this proposal, we introduce Jal, Modern system are multi-tenant and run a variety of workflows that have multiple conflicting ——3---d- -3~ -——-- - | e ——— p————— : _ 1o0m mBockieeper mCorfu 7 Chronologw/oBacklog & Chronolleg w Backdog Chronolog can be efficiently used as a _
a dynamic, re-configurable, and requirements. [Chromovisor_ ChronoKeeper Ch’%‘?l‘::;?: Chrono: Timebased data g 1ov gg g backend for Key-Value store such as Redis.
_ _ _ | regmy || ook Distributed Journal with Index - e ordering to avoid synchronization. 2 00K : X . .
heterogenec.nljs aware storage sys However, software stack is designed for static, homogeneous and fixed software deployments ™ vamce ooy | | |[E22]][] ﬂwvmﬁ] e | | £ oK . E E? Chrono enables time based ordering and
\]]]] istoric Read | ! . S T x ©
tem. Jal utilizes a layered approach and fail to cope in this dynamic environment. — —F e Stream: paradigm to consume 2 o < 53 hence no synchronization during tail
: : : ' ronostore ChronoGrapher ChronoPlayer " 200K X X = B ¥ < X 5 .
including application model, data i (multi-tiered) [e y +and retrieve data. < iR ' B 5 &SN operations.
Distributed Key-Value Store : . . Put Get Put Get . .
moTIeI, | and s;orage r;]]odel. hOur HIGH-LEVEL DESIGN i WHSSDH [sso) seol (ssol isol ol (ol 5500 | MWMR clients do not disctate i N Hierarchical Uses NVMe as a fast catch
evaluations ave shown these | — . | | /O arallelism KEV-VALUE STORE WORKLOADS :
| Distributed/ParallelFie System . P ' for recent data and hence get after put is
models, can accelerate /O for Application | iz Caond) Coond) Cims) (o) Chpo) Ghpe) CRpn) Chps) L CREo) Comel)| - : - .
h 1|. - hl / | : : : pp Cat O. S . . N ﬁ__________ﬁ __________ ﬁ __________ E ______ I Tunable based on Conflguratlon F|gure 7 ChronOLog baCkend fOI’ KVS more Stable than get a” after pUt a”
t edar;;? I_catllon W_l_lfe traESpj_rent y [MPI Slmulatlon] [BigData Analysis] [Machlne Learnlng] R different combination of hardware
an e |C|ent y ut| |Z|ng t e IVerse e w (e.g., Object Stores, Hadoop File Systems, Parallel File Systems, DataLakes, Data Warehouses, Tapes) . .-
is utilized. o . .
~storage systems. Jal Storage System Figure 3: Chronolog design o ; Optimizes complex workflow of Simulation
o 7 (VPIC) + Analysis (BD-CATS)
. . . ications/ Multi-tiered middlewar war 1 I I = 8000 7 y .
Vidya (source-code based application profiler) B o oo, BDG oty e Adaptive compression engine g g : | |
— ' . which can choose for different 2 = 5% ‘ System Based on weights system is
— . : mpr __ : : = - pE 7 - -
Data Access Optimizations (Transformations) corofler | (| LComeressitask)) AP (= { Decompressitask) app requirement the ideal R o Bi %% : é% . configured to use the most appropriate
I I I ICIC I Tres. sessEaaesuEa B R — em e e oo Eperformancei nout Analvzer C naine : Compression Manaaer . 0 & ié/% = ’/%/% © ;%4 .
. Compression : Prefetching Replication oy \Datlaztt:ibute[‘),etector_'1,bom:es|::::.g g ,-L-ib-ré-r-y:,-éél- ------ e : compression. 0 4 pRocesses 1290 256 compression.
‘[Ik |l di Rl Gomprsssion TBesmmprssson | i . _— Hierarchical Engine utilizes better layers
Poster QR Ares : o : e Q) R T Dynamic compressors can be Figure 8: HCompress: Scientific workflow sine o d
QSLEN > 1 :[HEetch] :[HReplica] o | systomMonior] | | ey Eeode o ewie || changed on runtime to provide and save more data on higher layers.
- : . ' - ' Bl H | P vnhisinivalty A |i Placement ; |L#_Jj | | |iMetadata Decorator T i :
- HCOmpreSS : . : . . Sstﬁteg ____System Status_____ Optimizer i different performance
.. Sy;m . HCombress + i Characterlstlcs
perr;c;rtr:sgce Libraryp Storage Hardware Interface I "_] F db k | CONCLUSIONS
ChronoLog (Hierarchical Log Store) i i ntefligent: Feedback loop to . L .
J Sl S improve prediction of performance We presented Jal storage system, a dynamic, multi-tiered storage system which can
Hierarchical Hardware Figure 4: HCompress design counters for efficient placement. be reconfigured for different application requirement on runtime. We discussed our
[NVRAM] [NVMe SSD] [Burst Buffers] PES e layered methodology along with of extracting application requirements, converting them
! NOde (RAM ! | into various storage configuration, and finally a building a malleable log store which
. . - : A I. " C _:_ __!:_ e : I . .] .
Figure 1: High-Level architecture of Jal Storage System ¥ pplication Cores - | Pipeline Enable hierachical can deploy those storage configurations. We showcased through evaluations that this
:§ 1 2 3 e [NLE - | sipeline for prefetching approach can lead to 7x better performance over existing storage systems by utilizing
; ¢ Application i . . :
. VORI Memory timizati several automated layers of source-code based profiler, data access optimizations, and a
Jal storage system is a dynamic re-configurable multi-tiered storage system which can achieve ;] Agent Manager N | optimization. oy . . .
. % DN) e distributed Log store. Additionally, we showcased that this approach is viable for modern
. perfect matching between application requirements and diverse storage technologies. i et — . o Server-Push utilize inotify to . . .
Website QR i et roware S . 1 /0 . multi-tenant super computers with good performance benefits.
- - - - etc
Application Model using Vidya It uses a source-code based profiler which identifies the ' *| Placement S i Memoy T capture asynchronous cvents
: . : : : | :| Engine Statistics TENONEIES . e and prefetch data.
cause of the |/O behavior of applications. Using this approach, Vidya can enable automated : Segment Daemons | © i Data Prefetching | | 'S
E r F '-' E optimization and insights on application’s | /O behavior. ¥ = eppnes oo< l'.’f”."fa.tf'f'f.AT”'T,! 2 Dynamic Change to changing PAPERS
. . . | Node-to-node |yData Prefetching ' E’:
- - N . Storgae Model using ChronOLOg It builds a heterogeneous—aware storage system which <:|:> communication /0 clients : =) holtness Of_ dataset ar:jd pTefetCh [1] Devarajan, H., Kougkas, A., Challa, P., and Sun, X.-H. (2018). Vidya: Performing code-block io characterization for data access optimization. In
: : : : : : : ; ~ NVMeSSD] g _ 2018 IEEE 25th | onal Confe High Perf: C ing, Data, and Analytics. |IEEE.
. 144 can be dynamically re-configured to different storage configurations during runtime. | Areich Serverunming oneore M LN [2, relevent pieces accordingly - S rermationar onierence on TIEh | Eriormance omputing Tata, and /nabies | - |
] I N _/_ JL .1 GI I D . 'F h [2] Devarajan, H., Kougkas, A., Logan, L., and Sun, X.-H. (2020a). Hcompress: Hierarchical data compression for multi-tiered storage environments.
L .'.". 1 Data Model using Optimization Each optimization translates different application’s 1/0 Tr— = obal Data-centric prefetching In 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS3).
<4+—— INSTructions o .
: : : : : Burst Buffers o 3] Devarajan, H., Kougkas, A., and Sun, X.-H. (2019). An intelligent, adaptive, and flexible d ion f k.
. requirement to underlying storage configuration to extract maximum performance of each <~ Data movement g enables a global view of data 3] Devarajan, ., Hougkas, A, and Sun, %-H. (2019). An intelligent, adaptive, and flexible data compression framewor

[4] Devarajan, H., Kougkas, A., and Sun, X.-H. (2020b). Hfetch: Hierarchical data prefetching for scientific workflows in multi-tiered storage environ-
ments. In 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 62—72.

[5] Kougkas, A., Devarajan, H., Bateman, K., Cernuda, J., Rajesh, N., and Sun, X.-H. (2020). Chronolog: A distributed shared tiered log store with
time-based data ordering. In Proceedings of the 36th International Conference on Massive Storage Systems and Technology (MSST 2020).

Events * ﬁ
N N/

Remote Parallel File System

instead of per-process/app view.

applications. We develop novel data compression, data prefetching, and data replication
engines that can transform different application requirements into storage configuration for
optimizing 1/0.

Figure 5: HFetch design

	References

