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Premise of the work >

Optimizing complex scientific workflows using

a re-configurable -aware
system for extreme scale computing
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HPC Applications

Experiment Workflow (DAC)

 Highly data-intensive

* multi-stage

Diffraction
Pattern

* E.g.,three sub stages of simulation,
analysis and modeling.

 Data Dependent

* Many stages interchange data or
compare results to reach to a
convergence

 Jterative

Analysis Workflow (DAC)
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» The cycle of simulation, analysis
and modeling is repeating for
gaining higher resolution of data.
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Modeling Workflow (HPC)
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NVRAM

. " ¥+ Single .5V Supply.
Diverse Storag € 4@ 7" . Infinite EEPROM to RAM Recall.
: '  Latency 3pus

« A variety of storage and NVMe SSD:
* |/0 Multipath.
memory hardware * Multi-stream Writes.

* Different characteristics * Latency: 12us

* Sensitivity to Random SATA SSD:
et S _* TLC flash memory.

« Concurrency of operations o\ » + NAND flash memory ce
- Device layouts 2 * Latency: 500ps

» Power requirements

* Performance requirements

e Different Vendors

SATA HDD:
* Optimizations « Mass device storage.
« Device drivers * mechanical complexity

M L e makes it fragile.

e Latency: 7000us
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LCurrent Situation )
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Problem Statement )

How can we support multiple under a
single platform that abstracts the complexity of

2
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Profile I/0 calls w

Automatically map I/0 calls to app

Map different app characteristics to storage

Perform I/O access optimization on d.

Diverse
Storage
Hardware

Adapt storage software to changing ¢

Unify diverse storage devices

Identifying Challenges

\_/
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Perform I/O access optimization on

Diverse
Adapt storage software to changing - Storage
Hardware

Unify diverse storage devic-

Our Proposal
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Scope of this research

Application - Source Code
based Application

M odel Profiler

Data e Use-cases

« Compression

Model * Prefetching

* Replication

Storage
Model Shared log Store.

 Hierarchical
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Outline )
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Baseline
* Default I/0O behavior

Application’s I/O behavior

of applications.

Tracing Applications

* Observing what application is
doing. Collect Data

* Trace application using
tracing mechanisms.

Analyze data

* Using data mining to extract
patterns and co-relate back to
application behavior.

Test & Measure

* Test if the changes
improved performance
and measure the metrics.

Analyze data

» Analyze collected data to
find bottlenecks.

Configure

* Trail and error on various
configurations to tune

application behavior. Configure App

* Tune and tweak the
applications.

Test and Measure \

* Rerun application with new A
changes.
11/ 61 Vidya HCompress HFetch Chronolog




Current Methodology of Profiling

< Online Profiling <

Profiling is done before the Profiling is done during the
actual execution of program. execution of program.

High profiling accuracy. Low profiling cost

High profiling cost Low profiling accuracy

12 / 61 Vidya HCompress HFetch Chronolog | Conclusion




Observation

Behavior of an application
stems from its source-code.

Predicting I/0O behavior from
source-code can enable us to
understand cause of an I/0

behavior.

< Hypothesis




Performing Code-Block I/O

Characterization for Data
Access Optimization

1)

2)

Publications

Hariharan Devarajan, Anthony Kougkas, Prajwal Challa, and ZXian-He Sun, 2018,
December. Vidya: Performing Code-Block I/O Characterization for Data Access
Optimization. In 2018 IEEE 25th International Conference on High Performance Computing
(HiPC) (pp. 255-264).

Hariharan Devarajan, Anthony Kougkas, Prajwal Challa, and Xian-He Sun, 2018, April.
Poster: Performing Code-Block I/O Characterization for Data Access Optimization. In 2018
IEEE 6th Greater Chicago Area Systems Research Workshop (GCASR).



structures.

* Use montage as a
case-study.

* Profile using
existing tools for
CPU, memory, & 1/0.

* Correlate with code

Profile

Approach
| Vidya | HCompress | HFetch | Chronolog | Conclusion
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Build

*Design an

automated tool

» Extracts features

* Predicts I/0 intensity

* Performs code-
optimizations

* Hypothesize several
code-structures.

* Classify them to
increase/decrease
I/0 intensity.

e Collect several source-code

e Extract identifies code-structures

* Measure I/0 intensity through
profiling
* Train a ML model, code-block

I/0 Characterization (CIOC), to

predict I/0 intensity.




Building the ML model

* Collect source code from different domains (graph,
scientific, Al, benchmarks)

» Extract features and build dataset

* code-block unit (function/class/branch/loop/line)

* 4200 records dataset

16 / 61

(=

Linear Regression Model

V() = o + Z,Bi * Xim
i=1

* Good model fit
. R2=0.92, f-statistics = 785 CIOC:

« Top two significant variables Code-block I/O
» Amount of I/O characterization
* Number of files opened




« Extractor

» Uses LLVM to parse the source code and build a
Program Dependency Graph (PDG).

 PDG is enhanced with I/0O features on various
pieces of code.

Analyzer Optimizer
 Analyzer sl
'
« Analyzes the PDG and extracts code features. Classifier |dentifier

* The aggregator combines code features to the
root of the PDG and calculates the I/0 intensity
using CIOC.

 Optimizer

e Identifies which code-feature can decrease I/0O
intensity.

* Injects the changes and recompiles the code.

17/61 | Vidya | HCompress | HFetch | Chronolog | Conclusion|




Evaluation

* Node Configuration
- 128 GBRAM,

 10GDbit Ethernet, and

« 200GB HDD

* Cluster Configuration

« 32 client nodes

* 8 storage nodes

18 /7 61

* Applications tested
e Synthetic Benchmarks,
- CMI,
« WRE, and
* Graph500’s BFS and GMC

 Compared solutions

[ Testbed ] [Configuration]
* Darshan
* Omnisc’lO
o
Vidya HCompress HFetch Chronolog | Conclusion




Profiling Performance

Profiling Scale

Workload Irreqularity

Parsing —=
Tracing —=
Prediction ——

Darshan Analysis ——=3
Omnisc'l0 —w—

Vidya —w—
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Profiling scale (# processes)

e Darshan ¢ .

* profiling cost increases as
scale increases
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Omnisc’IO’s profiling
accuracy decreases as
irregularity increases.

Complexity of Code

-
Parsing ——
Tracing ——

Prediction ——=

Darshan Analysis —/——=3
Omnisc’lQ —»—

Vidya —=—

Accuracy (%)

& 20 42
el \0
R RN
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O W0
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o

Medi High
COIT\p|E?&'ﬁI)fug} code 4

 Complexity: loops, functions,
classes, and files
* Vidya

* On lower scales the profiling - Vidya and Darshan is . parsing time increases as
e acculztc('))r dec.:rea,lIsce)s. unaffected. complexity increases.
1dya and vmnisc iU 1s « 3x faster than Darshan
unaffected. ) o e 2x slower than Omnisc’IO
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Optimization Benefits

Prefetching On/Off Caching On/Off

Profiling —=m Profiling —=
Execution —3 Execution —/——3

O'ac' A L
o ot
W e

B
Input workload Input workload

« Characteristics: Irregular » Characteristics: repetitive with
workloads with simple code. complex code structures.

 (QOverall observation:

« Darshan has the highest accuracy and, hence, potentially be manually optimized.
* Omnisc’lO has less cost but inaccurate.
« Vidya bridges this gap with overall best result (profiling + execution time).

20/ 61 Vidya HCompress HFetch Chronolog | Conclusion




Summary

Vidya proposes a trade-off between
accuracy & cost of profiling.

Vidya proposes a methodology to calculate I/0
intensity using source-code structures.

Vidya can reduce the cost of application profiling 9x
while maintaining a high accuracy of 98%.

Vidya can be used to automatically optimize
applications source-codes up to 3.7x.
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Outline )

Profiler 0
Code-block level application profiling.
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Reduction of I/O bottleneck

Data

Several middleware solutions are
proposed to reduce the I/0
latency and increase application
performance.

In all approaches, the solutions
utilize an Intermediate
Temporary Scratch (ITS) space
(e.g., Main Memory) to optimize
I/0 access.

Increasing the space of ITS would',
greatly enhance the effectiveness \\\

of these solutions. \\




Current approach: Increase ITS space.

< Software <

Add new intermediate Reduce I/0 footprint through
resources to increase layers. data reduction techniques.

E.g., HBM, NVRAM, NVMe

E.g.,Data Compression.
SSD, etc.

Increases space availability. Reduces Data Footprint.

24/ 61 _ HCompress HFetch Chronolog | Conclusion




Observation

Benefit of compression
comes from trading CPU
cycles to reduce 1/0 cost.

A combination of these two
The new hardware reduces approaches can compound the
this I/0 cost. increase of available ITS for 1I/0
optimizations.

< Hypothesis




HCompress

Hierarchical & Intelligent Data

Compression for Multi-Tiered
Storage Environments

1)

)

3)

Publications

Hariharan Devarajan, Anthony Kougkas, and Xian-He Sun. "HCompress: Hierarchical Data
Compression for Multi-Tiered Storage Environments" IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2020. (to appear)

Hariharan Devarajan, Anthony Kougkas, and Xian-He Sun. "Ares: An Intelligent, Adaptive,
and Flexible Data Compression Framework." In 2019 19th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID), pp. 82-91. 2019.

Hariharan Devarajan, Anthony Kougkas, and Xian-He Sun. "An Intelligent, Adaptive, and
Flexible Data Compression Framework. (Poster)" In 2019 19th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID), 2019.



N

Visual representation of 3D space.

Problem Formulation

e Match three dimensions

* Application Characteristics

 Compression Characteristics

 Hierarchical Tier Characteristics

We can formulate it as a
minimization of total time for
executing an I/O task

Compression Libraries

1

The constraints required
* # sub-problems should be small.

* Data compression is useful.

 Compressed data fits in a tier. \

\
\



HCompress Goals

& &




HCompress Design

HCompress Profilex

* Runs a exhaustive benchmark to capture Applications/ Multi-tiered middleware software
system and compression characteristics (e.g., Hermes, PDC, etc.)
p I | — Compression — Decompression —=Profiling ] :
. . HCompress -
Compression Cost Predictor Profiler [ Compress(task) | API « - - < Decompress(task) |
---------- i | | A
 Uses linear regression model Compression ) | 1
i g ) P metrics | Input Analyzer Engine | Compression Manager
* Uses reinforcement learning to improve N | | | {Data Attribute Detector oo |
accuracy. V| nitial 1 : ECOmpressmni Schema
i | model [ Cost Predictor ! ! 1] Subtask
i seed ' M D e ST e T 1 = i ) | #1 I
a I — | | R Model ! | T"
Engine w1 . RegressionModel i| 1™ ( i
! nitial | « < | i uptasl
: : i : System Monitor i .
* Employs a dynamic programming (DP) ' ;’;ﬁg“ﬁhf---'%);é{éa;'é{é{dé """ e g';ﬁmzeg: Length(P)
s y i et ' I
]?ata c?haractenstlcs, Cc?mpress1on . Sysem HCompress ; :
libraries, and Storage tiers performance | | | o W] S
_metries ;| [ M1PTary ___Storage Hardware Interface
Compression Manager I ¥
3 A Destination/Target Hierarchical Storage
Manages library pool (e.g., Native, Hermes, PDC, etc.)

* Performs metadata encoding/decoding

\



Evaluation

* Cluster Configuration

* 64 compute nodes

4 shared burst buffer nodes

* 24 storage nodes

* Node Configurations

* compute node

[ Testbed ]

* 64GB RAM and 512GB
NVMe

 Burst Buffer node

 64GB RAM and 2x512GB SSD

* Storage node

30/ 61

 64GB RAM and 2TB HDD

[ Configuration]

* Applications tested
e Synthetic Benchmarks,
« VPIC, and
 BD-CATS

 Compared solutions
* Baseline vanilla PFS
» Single-tier with compression

* Multi-tiered without compression

HFetch

Chronolog

Conclusion




Impact of Data Compression & Tiered Storage

Compression on Tiered Storage Tiered Storage on Compression

RAM lmmNVMe ## BB

N\

f

None
huffman
1z4
quicklz

Hermes
SCENARIOS TESTED

Observations:

huffman

SCENARIOS TESTED

* Performing multi-tiered buffering with single - Different tier effect differently for each compression

compression doesn’t maximize the benefit.
» data placement is not aware of compression.

« HCompress achieves a benefit of 2x.

31/ 61

« HCompress balances trade-off dynamically and achieves
the best multi-tiered throughput.

HFetch Chronolog | Conclusion




Scientific workflow )

VPIC-IO BD-CATS-10

BASE STWC MTNC HC |BASE STWC MTNC HC |BASE STWC MTNC HC |BASE STWC MTNC HC

320 640 1280 2560
# PROCESSES

W12K
S
810K
W 8K
2
LEU 6K
= 4K
2K
0

Observations:

* Optimizes both write and read performance significantly
*  Optimizes all three parameters: compression time, decompression time and compression ratio equally
* Achieves a performance boost of 7x.

32/ 61 _ HCompress HFetch Chronolog | Conclusion




Summary

HCompress showcased how data characteristics and
system characteristics affect data compression.

HCompress proposes a hierarchical compression
engine for multi-tiered storage environments

Quantified the benefit of utilizing hierarchical
hardware and data compression cohesively.

HCompress can optimize scientific workflows up to
1x compared to competitive solutions.
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Profilerx
Code-block level application profiling.

Outline

Data Compression
Multi-tiered data compression engine.

v
v
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Current approach: Optimize data access.

< Software <

New intermediate resources Reduce I/0 cost using several
with higher bandwidth. data access optimizations.

E.g., HBM, NVRAM, NVMe E.g., Data prefetching, data
SSD, etc. staging, data replication, etc.

Increases performance and Reduces access cost by
reduces access latency. preloading data to compute.

Chronolog | Conclusion




Observation

Both tiered storage and data
prefetching optimize the
same problem.

A combination of these two
approaches can compound the
benefit to improve data access.

< Hypothesis




Hierarchical Data Prefetching

for Scientific Workflows in
Multi-Tiered Storage
Environments

Publications

1) Hariharan Devarajan, Anthony Kougkas, and Xian-He Sun. "HFetch: Hierarchical Data
Prefetching in Multi-Tiered Storage Environments" IEEE International Parallel and
Distributed Processing Symposium (IPDPS'20), 2020. (to appear)

2) Hariharan Devarajan, Anthony Kougkas, and Xian-He Sun. "HFetch: Hierarchical Data
Prefetching in Multi-Tiered Storage Environments (Poster)" Proceedings of the
International Conference for High Performance Computing, Networking, Storage and
Analysis (SC'19), 2019.



HFetch Goals )
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HFetch Design

* Server-Push
* Event are captured through kernel’s
inotify utility
» Prefetched data is push to the
hierarchy

Data Centric

* Score Incorporates

* recency, frequency, and sequencing
1
Scoreg = z (—)
(] o i=1 p
 Hierarchical Placement

* The engine calculates placement of
prefetch data based on multi-tiered
storage and data characteristics.

-_TeSsSsSSsSssSsSss-gaSsSsSss-ssmFsaaasee=)
Node " RAM |
Application Cores : i i :
1 2 3 e n|: -
— —g — 1 Application {1
R Memory
I ;
I Agent Manager . : I
| : .".1.i : |
| -| Hierarchical File Segment Hardware | @ % _ 1|
I Data Auditor Monitor |- T HFetch |
Placement | _ |~ ‘Sgament —* pra——" o ]
I Segment | Leg—pe =Y Memory
 o| Engine L Statistics _t IE”‘E."_'.F.“_‘?'.JES.' P e
N AW pde s = ‘Segment Daemons P
4 [ {e) 1" ; Segment 1 Data Frefetl:hlng
e G \ [overs | OO _<>,,f' Dedicated RAM ; |
- I
| -| Node-to-node Data Prefetching 1/0
@_ communication clients

| :.!-IFetch Server running on core n+1

BE B B B B B B B ® S B F ® ® ® F F 8 8 8 8 8 8 8 8 8 8 8 B8 o5 5 EQE B B B B B

-——p |nstructions

al— Data movement
Agent Events
-————p= Kernel Events

(850|2} ‘peal} ‘uado)) sUaAa Q]

Remote Parallel File System




Example

Client space HFetch Server space

Applications HFetch Agents inotify_handle_event Auditor Data Placement

o e Hardware Monitor Update Segment Statistics Calculate Engine Tiers:
P 9 Frequency | Recency Sequence |Segment Score| T1<T2<T3<T4

fopen(f1, READ) . start_epoch(f1) - inotify_add_watch(f1)| [0,0,0,0] (0,000 | null [0.0,0.0,0.0,0.0]
fopen(f2, WRITE) : IGNORE : ‘

[T4,T4,T4,T4]

fopen(f1, READ) - start_epoch(f1) IGNORE

fread(f1,0,1) f1,offset:0,size:1,12 collect_event() [+1,0,0,0] [+12,0,0,0] \ prev->s0  {[1.0,0.0,0.0,0.0]| [T1,T4,T4,T4]

S i st
[{f1,offset:2,size:1,t4},
{f1,0ffset:1,size:2,t4}]

collect_event() [+1,+1,0,0] | [+#13,+t3,0,0] | prev->[s0,s1] [1.5,1.0,0.0,0.0]‘ [T1,72,74,T4]

fread(f1,0,1) fread(f1,1,2) collect_event() [#1,41,+1,0] | [+t4,+t4,+14,0] | prev->[s0,s1,52]([1.5,1.5,1.0,0.0]| [T1,T2,72,T4]

fread(f1,0,1) - - - f1,offset:0,size:1,t5 collect_event() [+1,0,0,0] [+t5,0,0,0] prev->s0  |[1 .2,0.5,0.3,0,0]’ [T1,72,T3,74]
fclose(f1) - end_epoch(f1) - IGNORE |
fclose(f2) fclose(f1) IGNORE  [end_epoch(f1) inotify_rm_watch(f1)
1. Specific Client I/0 interception of open/close 4. Update Auditor
2. Monitoring through VFS layer 1. Calculate scores
3. Collect event through Hardware Monitor. 2. Rearranges scores in descending order
1. Each layer has a different daemon 5. Run DPE

6. Perform I/O on different layers.

41 /7 61 _ HFetch HReplica | Chronolog | Conclusion




Evaluation

* Cluster Configuration

* 64 compute nodes
* 4 shared burst buffer nodes

* 24 storage nodes

* Node Configurations

* compute node [ Testbed ]

* 64GB RAM and 512GB
NVMe

 Burst Buffer node
e 64CB RAM and 2x512CGB SSD

* Storage node

 64GB RAM and 2TB HDD o

[ Configuration]

* Applications tested

e Synthetic Benchmarks,
* Montage, and

- WRF

 Compared solutions

e Stacker: ML-based online
prefetching

* KnowAc: offline prefetching

Chronolog

Conclusion




Benefit of Hierarchical Prefetching

Lower-RAM footprint

Ll

Parallel HFetch  Serial None
PREFETCHING SOLUTION

Observations:

A perfect parallel prefetching has 89% hit ratio.
Most common serial prefetching cannot overlap the
data perfectly and has more misses.

HFetch uses !4 of ram and is 17% slower.

Extending Prefetching cache.

A
S

aln-Memory Optimal
OHFetch
B/n-Memory Naive
mNone

TIME (SEC)
N w
(=] oS

ey
(=)

ol

320 640 1280 2560
# CLIENT PROCESSES

Adding more layers reduces the cost of miss
penalty

» Additional cache space on lower tiers

* Devices slower than RAM but faster than PFS.
35% to 50% faster.

Chronolog | Conclusion




Scientific Workiflows

Montage WRF

@Stacker OKNOWAC HHermes [No Prefetching B Stacker O KNO_WAC B Hermes @No Prefetching
B Profile-Cost 700 B Profile-Cost

3K

TIME (SEC)
N
=

=

640 1280 2560

640 1280 2560
# CLIENT CORES | # CLIENT CORES

Observations:

« Offline Profiler is accurate but has an initial cost through profiling.

* Stacker doesn’t have that cost, but application-level prefetching hurts due to cache evictions and pollution.
 HFetch optimized this using a global data-centric score which helps the overall workflow.

 HFetch boosts read performance by 20-40%.
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Summary

HFetch introduces a data-centric hierarchical
prefetching methodology.

HFetch proposes a novel data centric scoring
mechanism to measure the hotness of data.

Quantified the benefit of utilizing hierarchical
hardware and data prefetching cohesively.

HFetch can optimize scientific workflows up to 35%
compared to competitive solutions.
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Profiler

Outline
Code-block level application profiling.

—

Multi-tiered data compression engine.

Data Prefetching
Multi-tiered data prefetching technology.

Data Compression O
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Shared Log as storage model

Key-Value &
Storage is cheap and hence maintain GraphDB, OLAP Object Store, Search query
) store, etc., | layer
what happened and when instead of Query layer
mutation of data.
* Inherent versioning semantics
Enables high performance with
append only semantics.
* Deletes are through invalidations and (I;Aomtorlng B B | Stream
background compactions of log. Graphs Log Processing
Enable decoupled consumer
producer semantics.
Achieves tunable consistency
semantics.
A Shared log is an ideal backbone Hadoop Parallel File sensors, lof,
Systems Telescopes

for any storage requirement.

Chronolog _ Conclusion_ Y.



Observation

Shared log is a good data
abstractions for many
storage systems.

A hierarchical storage and time-
based data ordering to build an
efficient shared log store

< Hypothesis




ChronoLog

A Distributed Shared Tiered
Log Store with Time-based
Data Ordering

Publications

1) Anthony Kougkas, Hariharan Devarajan, Keith Bateman, Jaime Cernuda, Neeraj Rajesh and
Xian-He Sun. ChronoLlog: A Distributed Shared Tiered Log Store with Time-based Data
Ordering" Proceedings of the 36th International Conference on Massive Storage Systems
and Technology (MSST 2020). (to appear)



ChronolLog: High Level Design

GraphDB, NoSQL, Monitoring, BigData Telescopes, Stream
OLAP stores Search, Query Visualization Analytics Sensors, loT Processing

° ] (]
Ob ectives ChronoLog Client API
Connect Create Record PI b k
Log distribution %

e . e e el Y A

0 . 0 I 4 " "
» Parallel 3D data distributions ) ChronoVisor ChronoKeeper ChronoLog I
cli Global !
Log or dering : Reé?srltry C|C:,CT< “ Dist‘ributed Jc‘)urrjal wit? Index ‘ —>cv:wlit|:(:):a:d')‘ :
: Chronicle Meta Directory “NVIMGH “NVIMeH “NV[MeI “NVlMeH — Tail Read :
* Complete ordering with indexing 1 T 3 T T - —> Historic Read ||
1 y . —
1| ChronoStore [ ChronoGrapher ]‘ ChronoPlayer 1 :
Log access 1| (multi-tiered) 7 7 ¥ — |
: Distributed Key- Valué Store ‘ :
 Concurrent data access based on I Ussp|| [[ssp]] [[ssp]| [[ssp[| [[ssp]| [[ssp]] [[ssp]| [[ssp]] ||,
| A A
. l I } !
I/O S1ze. : Dlstnbuted/ParaIIeI File System :
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I

Log scaling

* Capacity and auto-tiering S

(e.g., Object Stores, Hadoop File Systems, Parallel File Systems, DatalLakes, Data Warehouses, Tapes)

Log storage
* Tunable parallel I/O



ChronoKeeper

1. Record(C1,data)

' L1Key > 5
Attach Timestamp T8 . lData Data. | GetTail(C1)
~ HashT8toserver  [NIERESA U i Calculate Max(T[])
2.3 Invoke(play,CI,TB)_‘
"""""" 2.4 Return data

* Distributed Journal /

» Fast Data Ingestion /

» Fast Tail Operation ,’
* Lock-free tail updates O  12insertdats) | 13Updateindex _ | |  2.2RetumCl tail array
I
e Uniform Data Distribution |

» Through distributed Hash Map

1
e Time Data Ordering |
* Through Partitioned Ordered Map “ ____________________________
» Caching of Latest Events \ 5 Ct

C22
Ci7
1 M
Server indices
ChronoKeeper Server #N

* Using backlogs

1 M
Server indices

Event Backlo
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ChronoStore

Stream Paradigm

* Enables Explicit Parallelism based on
Operation Size (Not Clients)

* Growing and shrinking of resources to
enable efficient resource utilization

ChronoGrapher

* Continuously moves data from
ChronoKeeper to PFS

 Aggregates I/O

ChronoPlayer

* Retrieves data from PFS, SSD KV and
ChronoKeeper

* Resolves range and perform I/O once for
duplicate ranges.

ChronoGrapher

1.3 Add events

2.1G10upBY CID

! KeyhBY,

3.2 Parallel
write to PES
(MPI-IO

1.1 Pull
events
from
journal

.3 Emit stor

Collector (CID,EID) Builder

2.2.SortBy, EID
ek [Optional] >

1.2 Put |
data L. External write
o> Distributed Key-Value Store (REST)
ChronoPlayer
< Response &
@ 3.1 Parallel
2.2 read

——————— —-»> Request - il

_ 1.1 Liste 1.2 2.1 anges Ko Request
for replays Handler  [Push Pull Be;’ Executor
——————— > Request - -—-- ““Rap_ge»’:‘
tiers
1.3 Return data @ 3.2 Push data to

to client Response <&

response queue




Evaluation

* Cluster Configuration

* 64 compute nodes
* 4 Key-Value Store Nodes

» 24 storage nodes

* Node Configurations » Applications tested

« 64GB RAM and 512GB .
NVMe  Compared solutions
* Key-Value Store Node « BookKeeper
« 64GB RAM and 2x512GB e Corfu
SSD
* Storage node ®

 64GB RAM and 2TB HDD




Write Operation breakdown.

Client 1.Attach ChronoTick 2.Send to server

ChronoKeeper

(] ChronoGrapher 3.Add data 4.Update index
m 5.Update tail 6.Put data to KVS
7.Add to backlog 8.Create story
9.Sort story m 10.Write story

Observations:

 The observed Write Operation cost is 14% of the whole journey.
« Asynchronously, data is flushed in the background where writing to KV store and writing to

PFS takes 62% of the time.
* Building of Story (aggregation) is 13% of time.
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3.13%

0.13%
0.60%

Conclusion




Key-Value Store Performance

m Bookkeeper m ChronoLog w/o Backlog & ChronolLog w Backlog

g

Y
~
o
e
-
2
o
I
o
2
o)
a4
I
|

4
Tp]
- -
_—

Get Put

GetAll after PutAll Get after Put
KEY-VALUE STORE WORKLOADS

Observations:

 BookKeeper is the slowest as operations are served by one server always.
* Corfu uses better data distribution.

 ChronoLog, uses hierarchical storage which increases the throughput of operations
* For get all after put all, as data is already flushed to slower mediums, hence, reads are slower.
* It has better locality in Get after Put.
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Conclusion




Summary

A distributed log store which utilizes hierarchical
storage and time-based data ordering

We showcased the design of real-time data
movement paradigm to enable MWMR semantics.

Quantified the benefit of utilizing hierarchical
hardware and time-based ordering.

ChronoLog can optimize applications by almost 12x.

56 / 61



Profilerx
Code-block level application profiling.

Outline

Data Compression
Multi-tiered data compression engine.

Multi-tiered data prefetching technology.

Chronol.og
A Shared log store.

Data Prefetching O
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Jal Storage System

Jal

Vidya (Source Code based application Profiler)

Data Access Optimizations (Transformation)

Compression Prefetching Replication

Ares HCompress HFetch HReplica

Chronol.og (Hierarchical Log Store) HCL




Accomplishments

 Conference Papers

« Anthony Kougkas, Hariharan Devarajan, Keith Bateman, Jaime Cernuda, Neeraj Rajesh and Xian-He Sun. ChronolLog: A Distributed Shared
Tiered Log Store with Time-based Data Ordering" Proceedings of the 36th International Conference on Massive Storage Systems and
Technology (MSST 2020). (to appear)

* Hariharan Devarajan, Anthony Kougkas, and Xian-He Sun. “HFetch: Hierarchical Data Prefetching for Scientific Workflows in Multi-Tiered
Storage Environments,” 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS), New Orleans, Louisiana, USA, 2020.

» Hariharan Devarajan, Anthony Kougkas, Luke Logan, and Xian-He Sun. "HCompress: Hierarchical Data Compression for Multi-Tiered Storage
Environments," 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS), New Orleans, Louisiana, USA, 2020.

* Hariharan Devarajan, Anthony Kougkas, and Xian-He Sun. "An Intelligent, Adaptive, and Flexible Data Compression Framework", In
Proceedings of the IEEE/ACM International Symposium in Cluster, Cloud, and Grid Computing (CCGrid’19)

* Hariharan Devarajan, Anthony Kougkas, Prajwal Challa, and Xian-He Sun. "Vidya: Performing Code-Block I/0 Characterization for Data Access
Optimization", In Proceedings of the IEEE International Conference on High Performance Computing, Data, and Analytics 2018 (HiPC'18)
* Journal Papers
* Hariharan Devarajan, Anthony Kougkas, and Xian-He Sun, "I/O Acceleration via Multi-Tiered Data Buffering and Prefetching", Journal of
Computer Science and Technology, 2019, (pre-print and scheduled to appear in 1st quarter of 2020)
* Workshop Papers

* Hariharan Devarajan, Anthony Kougkas, Hsing-Bung Chen, and Xian-He Sun. "Open Ethernet Drive: Evolution of Energy-Efficient Storage
Technology", In Proceedings of the ACM SIGHPC Datacloud'l7, 8th International Workshop on Data-Intensive Computing in the Clouds in
conjunction with SC'17.
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Related Work

Hardware prefetchers move data from memory

into CPU caches to increase the hit ratio.
Offline data prefetchers involves a pre-
processing step which identifies application’s
access pattern and device a prefetching plan.
Smart compression asymmetric compression
schemes to reduce energy consumption.

Shared Log Store

¢ Corfu:
 Distributed Log store for SSD
 Uses sequencer for data ordering
* BookKeeper:
* Uses implicit parallelism for reading.
 Writing to a jounral goes to one server.

 Tail is maintained using metadata service.
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03 02

Static Tools

 Captures application-level access pattern
information per-process and per-file
granularity

Dynamic Tools

* Uses models the behavior of I7/0 in any HPC
application and predicts future accesses

Tiered storage management

transparent management of this hierarchy for
buffering purposes

e Hermes

* Proactive Data Container

* Univistor
significant boost to I/0 performance through
data buffering in faster devices.




Q&A )

Thank you

hdevarajan@hawk.iit.edu
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