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Abstract—Data volume grows dramatically in the era of big
data. To save capital cost on storage hardware, datacenters
currently prefer using erasure coding rather than simply
replication to resist data loss. Erasure coding can provide
equivalent three-way fault tolerance to HDFS’s default three
replication mechanism but degrades data availability for task
scheduling. In an erasure-coded system, data reconstruction
time will be paid while tasks access the missing blocks during
MapReduce job processing. Tasks’ accessing corrupt data
introduces task stragglers and degrades resource utilization.
To overcome these challenges, we propose a novel mechanism,
Dominoes, that coordinates lightweight data states checking
and job scheduling to hide such recovery penalty during job
processing and enhances job throughputs. The experimental
results confirm Dominoes’ effectiveness and efficiency that
improves job throughput by 9% to 9.7% under failure at an
overhead of 2.6% for failure-free jobs.
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I. INTRODUCTION

In today’s datacenters, data volume grows rapidly. Typi-
cally, in Facebook production cluster, 500TB to 900TB new
data is being generated every day [1]. MapReduce program-
ming paradigm is increasingly popular due to its transparent
parallelism and efficient processing of huge datasets with
high scalability [2]. MapReduce file systems, such as Google
File System (GFS) [3] and Hadoop Distributed File Sys-
tem (HDFS) [4], have been proposed to use replications
for failure tolerance in commodity clusters a decade ago.
Such default three replication consumes redundant two-time
storage space. Therefore, its resulting capital cost becomes
considerable.

To this end, the erasure coding algorithms are widely used
in latest production datacenters, such as Google ColossusFS
(the successor to GFS) [5], Facebook HDFS [6] [7], and Mi-
crosoft Azure Storage system [8]. Erasure coding techniques
significantly reduce the storage cost from 3X down to as
low as 1.4X. Compare to the conventional triplication fault
tolerance strategy, the erasure coding techniques can at least
provide equivalent three-way reliability but at a much lower
storage cost. Its reliability feature is an important supplement
to hardware RAID techniques that erasure coding technique
is adopted by General Parallel File System (GPFS) [9] [10]

in High-Performance Computing centers. In erasure-coded
systems, several blocks are assigned to a failure group and
parity blocks are generated by computing raw data blocks.
A “corrupt” block in this paper indicates a block is corrupt
or missing, which is consistent with the description for
unhealthy block states in HDFS. A job or a task is “flawed”
if it processes any corrupt block. The system recovers the
corrupt block by computing the corresponding raw blocks
and parity blocks.

However, erasure-coded systems trade data availability
for low storage cost, thus introducing drawbacks. Block
recovery mechanisms can be categorized into two classes
based on the granularity of data recovery workload. One is
to repair block while accessing failure occurs; the other one
is similar to conventional HDFS re-replication job that to
recover all corrupt blocks system-wide. A routine system-
wide data recovery job is necessary to repair corrupt data
in time to avoid permanent data loss. The conventional
HDFS re-replication mechanism only needs to replicate the
missing block from its replications whereas an erasure-
coded HDFS system requires multiple raw blocks and parity
blocks to recover the unhealthy block. It costs considerable
network traffic and I/O bandwidths for job reconstruction.
Furthermore, to achieve a lower cost of data durability,
the erasure coding strategy inevitably hurts data availability
during task scheduling. This is because MapReduce prefers
to schedule tasks onto the datanodes where the target data
reside and such single raw data narrows the options of the
data source for tasks. Hence, to avoid entire job failure
due to the inaccessible target data blocks, a data recovery
job must be conducted prior to the corresponding map task
processing the data blocks. Furthermore, task stragglers due
to inaccessible data blocks hurt performance and system
utilization.

Lots of efforts have been contributed to reducing read
latency while target blocks are inaccessible [8], improving
performance of data reconstruction job [7] [11], reducing
data reconstruction traffic [8] [12], and further reducing the
storage cost of erasure coding [1]. However, few efforts
consider scheduling MapReduce jobs, tasks, target data
states and block recovery job coordinately.



This paper revisits job and task processing in erasure-
coded Hadoop system and reveals the potentials to hide
the data block reconstruction latency. We propose Dominoes
to improve both job throughput and system efficiency. The
contributions of this paper are threefold:

• We propose Dominoes that detects corrupt blocks on
demand, and schedules jobs and map tasks in a spec-
ulative manner. In this way, Dominoes automatically
detects and recovers corrupt blocks, and hides the
penalty of data recovery.

• Dominoes simultaneously considers both job fairness
and system job throughput. Besides, it adopts a loosely-
coupled software design that introduces low overhead
to the existing system.

• A prototype system has been built based on Facebook
erasure-coded Hadoop system. To investigate the design
trade-off, two scheduling strategies, FixBeforeJob and
FixInMap, are implemented. The evaluation results
show that Dominoes has an 11.5% to 48.5% and
9.1% to 9.7% performance improvement, respectively,
compared with the other two strategies. Dominoes
introduces a 2.6% overhead to failure-free workloads.

The rest of this paper is organized as follow: firstly, we
present the background and motivation in section II. Next,
we illustrate the design in Section III and implementation in
Section IV respectively. We then evaluate the performance
of Dominoes in Section V, discuss related work in Section
VI and conclude in Section VII.

II. BACKGROUND AND MOTIVATION

A. Routine Data Integrity Checking in Hadoop Framework

Apache Hadoop is the most popular open-source MapRe-
duce implementation, which consists of Hadoop MapReduce
and HDFS. MapReduce system adopts master/slave architec-
ture, in which one node acts as the master and rest of nodes
serve as slaves. Recently introduced the next generation
Hadoop framework, Apache YARN [13], separates the role
of centralized job manager into resource management and
application master per job, but still inherently master/slaves
architecture. It has the limitations on jobs scheduling [14]
and data management. Particularly, the master/slaves ar-
chitecture in HDFS is the same for both Hadoop and
YARN systems: one master node, the namenode, manages
all namespace and metadata information in a centralized
manner whereas the rest of nodes, the datanodes, monitor
their hosting blocks and provide I/O services to clients.

The namenode manages namespace information and han-
dles all data retrieval operations. It mainly maintains three
types of metadata information: file to blocks, block to
locations, and machine to its hosting blocks. All metadata
is kept in memory, but the first one will be checkpointed to
disk. The latter two kinds of information can be dynamically
rebuilt from reports of datanodes. Datanode maintains a

block list that contains the blocks stored in its local disks,
which is kept in memory.

The namenode detects datanodes health status via heart-
beats but repair corrupt blocks in a lazy manner. Datanodes
send routine heartbeats to the namenode every three seconds.
The namenode acknowledges the status of individual datan-
ode. By default, if namenode has not received a heartbeat
from a datanode for more than 300 seconds, it will determine
the datanode as a dead node. However, the blocks will not
be recovered immediately, the system will lazily launch a
system-wide data reconstruction job instead. Each datanode
will scan data directories and reconcile the differences
between blocks in memory and on the disk every 21,600
seconds (six hours). Also, datanode will report to namenode
its block list every 21,600,000 milliseconds (six hours) by
default [15]. Datanode can periodically scan its hosting
blocks, but this service is considered costly and thus off by
default. Data integrity is ensured during data transmission.
Datanodes provide I/O services transparently to clients. A
file will be chunked up into fixed-size blocks; blocks in
a file are distributed across datanodes in the cluster. Data
transmissions between datanodes are conducted in pipeline
via packages, acknowledgment and checksum techniques are
adopted to guarantee data integrity during the procedure.

Unfortunately, long detection interval, centralized names-
pace management and the lazy recovery mechanism result
in data state inconsistency issues between namenode and
actual data block status on datanode. Corrupt data block
detection and block recovery are not the main concern, and
the interval is long in conventional HDFS system. It is
because replication provides multiple data sources for task
processing. Once one block is inaccessible, the failure-redo
mechanism will launch another attempt task to access the
data from other equivalent replicas. Moreover, in an erasure-
coded system, an encoded data block becomes a single copy,
and data repair is needed once target block is inaccessible.

B. Corrupt Data Detection and Recovery in Erasure-coded
HDFS System

This paper is based on Facebook erasure-coded HDFS
system (HDFS-RAID) [16]. We review the capability of
corrupt data detection and data recovery in the system.

Once the data have been written to the HDFS, they are
stored in three-way replications as the conventional HDFS
does. RaidNode is a new add-on master process that in
charge of encoding data blocks and launching data recovery
tasks. The system encodes the data blocks and generates
parity blocks after a configured interval (usually one hour).
The replications then will be erased after encoding, and only
one copy set of raw data blocks will be kept in the system.

HDFS-RAID provides XOR and Reed-Solomon (RS)
erasure coding techniques. The system can be configured
with either technique. Besides the conventional data scan-
ning and checking policy, this system provides a mas-



Table I
TIME GAP BETWEEN BLOCK CORRUPTION AND RECOVERY UNDER

ROUTINE DETECTION

Number of Total File Interval (Seconds)
Block size = 1MB Block size = 64MB

1 7.19 42.577
2 18.308 388.237
4 26.335 277.686
8 53.585 70.631
16 58.584 1373.223
32 178.162 147.946
64 591.248 2360.541

Table II
BLOCK RECONSTRUCTION TIME

Block Size (MB) Reconstruction Time(Seconds)
1 0.866

32 5.072
64 9.056
128 16.995
256 30.034

ter/slaves architecture to detect corrupt data blocks and
launch recovery tasks. Both namenode and datanodes have
responsibilities for checking data states. Namenode is the
master that collects the latest reports from datanodes whereas
each datanode checks its hosting blocks and report to the
namenode. Contrary to the conventional HDFS, once the
data blocks are identified as corrupt, the RaidNode first
polls the corrupt data block information from the namenode,
then launches recovery tasks instead of reconstructing all
unavailable dataset in a batch way. However, the detection
interval and recovery interval are proportional to data set
scale. Table I presents the time gap between block corruption
and recovered. Each file contains 32 blocks and one of
them is corrupt. The values vary and depend on the arrival
time of routine data detection but increase along with data
sizes. It indicates the block under failure will last for a
considerable long time in large scale systems. Facebook
datacenter reports data lost at 100k blocks per day and
data reconstruction traffic is 180TB per day in production
erasure-coded Hadoop system [1]. Once the dataset is huge,
the intervals are considered long that makes data states
inconsistent between that in the namenode and that of actual
data hosting in datanodes.

C. Impact of Unavailable Block to MapReduce Applications

1) Flawed Job: It will be a flawed job if the target
input contains corrupt data that cannot be recovered in
time. MapReduce scheduler pursues data locality that is
acquired from centralized metadata management, but it lacks
awareness of latest data states of target data blocks. The data
states kept in centralized master may not reflect the actual
states due to delay verify and delay report. There is a lack of
communication between namenode and job scheduler (Job
scheduler here is a component in both in the first generation

MapReduce and Hadoop YARN), as well as in erasure-coded
Hadoop system. The job scheduler assigns tasks based on
the metadata that is kept in the namenode but regardless
of the actual states of blocks stored in datanodes. Failure-
redo mechanism will conduct another task attempts onto
replications in conventional MapReduce framework but this
mechanism is doomed to failure due to missing of a health
data source and the lack of replication for other attempt
tasks.

2) Data Reconstruction Penalty in Job Processing Run-
time: To avoid entail job failure, it is reasonable to re-
construct the missing target data block in runtime. It may
avoid rerunning the failure job, however, the penalty of data
reconstruction will be added to the elapsed time of the task
processing, which results in straggler tasks prolonging the
completion time of map phase and eventually hurt the overall
performance of MapReduce application. The corresponding
overheads of pure data reconstruction time are demonstrated
in Table II. Moreover, the data recovery will be addressed
one by one, and the corresponding in-queue waiting time of
data recovery tasks is not included in this table. Hence, the
read delay, in practical terms, can be considerable, which
significantly degrades MapReduce application performance.

3) Multiple Stragglers: An unavailable block will not
only introduce a straggler task that attempts to access it.
If there exists more than one map task, they will all become
stragglers when one block is unavailable. This is because
there is hidden data dependence between map tasks and
input data block.

By intuition, MapReduce is a full parallelism in the map
phase and map tasks are independent of each other. By
default, splits that assigned to a map task are calculated
and created by physical blocks. It is true that each map task
processes its assigned split. However, the contents of a file
are stored into contiguous blocks, and blocks are chunked
up by configured fixed size, hence, a logical unit, such as a
record may cross the boundary of physical blocks. Hadoop
handles this issue transparently. A split can be considered as
a reference about assigned data range, described by file path
in HDFS, start offset, and length. If the start offset is non-
zero, RecordReader of map task always trackbacks bytes of
one synchronized marker length and skip the contents before
it catches the first synchronized marker to ensure the data
integrity. The RecordReader will stop reading the contents
if the length of what it reads is not less than the split length.
Hence, the RecordReader may need to read the last record in
the split from anther following block. Thus, once a block is
unavailable, more than one map task, probably three tasks,
will fail consequently.

III. DESIGN

A. Design Principles

Figure 1 illustrates the idea of Dominoes. Dominoes
detects the data states before task scheduling, schedules jobs



Figure 1. Example of Dominoes: (a) task a processes block A, task b process B, and so on; tasks will be scheduled according to data locality but from
head to end of task queue in greedily manner; (b) red block D is detected as corrupt, the infected tasks c, d, and f are the related tasks; (c) move the
infected tasks c, d, and f to the rear of task queue; (d) the tasks c, d, f process their target data block healthy while block D is recovered. Simplifying
the case but without loss of generality, we use data block instead of split and the order of splits is the same after sorting according to split sizes. Job
scheduling strategy is in the same manner.

and tasks accordingly. We name a task in a state of infected
due to its dependent block is unhealthy. The goal is to hide
the data recovery time during job processing. Dominoes con-
sists of three software modules to meet the challenges from
processing corrupt blocks in erasure-coded Hadoop system.
Firstly, the centralized master should acquire information
of target blocks in a reasonable very short time to recover
the blocks in time for further job scheduling. Secondly, the
system should handle stragglers that raise due to corrupt
blocks and, should speculatively continue the attempt tasks
for job completion. Thirdly, the job scheduler should be
aware of the latest block states and schedules jobs and tasks
accordingly, to improve overall system performance.

B. Detect Corrupt Blocks in Time

First of all, at the time before checking, if the target data
set is triplication and has not been encoded yet, Dominoes
skips checking and informs the scheduler the input dataset
healthy. As the interval of data checking is long and the
scheduler may not be aware of the latest states of target data
in time, we develop a lightweight data checking mechanism
to detect the corrupt data before jobs get scheduled. This
strategy brings twofold benefits: 1) it identifies the prob-
lematic target data and trigger data repair; and 2) it informs
the scheduler to avoid running flawed job and to schedule
tasks in coordination with data recovery.

Corrupt block detection should be lightweight and respond
in a short time; otherwise, such procedure may introduce
higher overhead than it potentially benefits runtime systems.
Distinguished from the original erasure-coded Hadoop, the
scope of a block checking procedure in Dominoes is nar-
rowed down to certain blocks in specified files rather than all
block sets across the entire cluster; therefore, it significantly
reduces the response time.

However, the lightweight data checking strategy has its
limitations. It cannot detect data corruption due to bit flips
before runtime, which might be covered by other rou-
tine blooming-filter and transmission check-sum techniques.
Fortunately, if the applications adopt checksum detection
during map tasks processing, corrupt data can be detected
in the same way as conventional Hadoop detects it. Such
exceptions due to corrupt data blocks will be captured and
addressed in following subsection.

C. Tolerate Flawed Jobs or Tasks

Corrupt data blocks need to be recovered urgently since
the corresponding infected tasks will become a penalty to
the overall performance of the job. Hence, the results of
lightweight checking should be immediately pushed to trig-
ger data recovery procedure instead of periodically detecting
and reporting to the centralized manager to shorten the
interval between corrupt data block detection and data repair.

To transparently perform map task failure-redo process-
ing, an automatically speculative runtime data recovery
mechanism is proposed. Once the task cannot access its
target blocks, the inaccessible blocks will be reported to
the recovery manager immediately. The map tasks will be
identified as failure map tasks but not in the same way
as the conventional Hadoop. Such failure map tasks will
not be in the first-class priority in task scheduling and be
rescheduled onto another slaves. This is because there are
no replications available in the system and simply re-running
the task probably encounters failure due to missing of health
target data blocks. Therefore, the map task will be held only
the data repair procedure is completed.

D. Job Schedule According to Latest Data States

To avoid launching flawed jobs or tasks that result in
degrading parallelism and wasting resource, the idea of this



module is to schedule jobs or tasks whose target data have
passed through the lightweight data checking. Since the
scheduler is a centralized manager and jobs are in queue
while there are multiple jobs submitted. The job scheduler
acquires the latest states of data blocks, and then schedules
jobs and tasks considering target data states.

To improve job throughput and system utilization, when
there are multiple jobs in queue, a job with corrupt data
blocks will be held, and yield to the following ready jobs.
Tasks are also in a queue, and the scheduler assigns tasks
to slaves from begin to end of the queue but is aware of the
data locality information. Hence, the infected tasks will be
marked and moved to the end of the task queue. Meanwhile,
the data recovery procedure is conducting and overlapping
other map tasks that are processing. Moreover, it will not
consume resources that are acquired by related map tasks,
therefore, explores parallelism in the map phase.

The scheduler runs jobs and tasks speculatively even if
it is aware of corrupt data if there is only one job in the
queue. It is possible that corrupt data can be recovered in
time; otherwise Hadoop will inform the corresponding user
of a timeout due to data corruption.

IV. IMPLEMENTATION

The prototype of Dominoes is built on erasure-coded
Facebook Hadoop-0.20 [16]. To coordinate the data check-
ing, data recovery and job scheduling in Dominoes, we
implement three software modules, JobDecider, FileFixer,
and JobFileChecker to intercept the original job procedure.
JobDecider is a new thread in NameNode, which con-
tains two lists of jobs and a list of files, RunnableJobList
stores jobs that are ready to run and WaitingJobList holds
jobs with corrupt blocks, and EmergentFileQueue saves
the information of files, which must be fixed as soon as
possible. FileFixer is also a new thread in NameNode, which
updates corrupt block information (further denoted as CBI).
JobFileChecker is implemented in JobTracker to submit jobs
with CBI at the beginning. The architecture of Dominoes is
showed in Figure 2.

A. Job Submission

The CBI consists of four members, filename, block ID,
start offset and its length. This is because RaidNode fixes
corrupt blocks in the granularity of files, and block level in-
formation will be used for the task scheduling of Dominoes.
The procedure of job submission in Dominoes is showed
in Algorithm 1. Once a job is submitted in JobTracker,
JobFileChecker will collect the CBI of a job by traversing all
related data blocks from datanodes. JobFileChecker submits
the job to the JobDecider according to the CBI, if all blocks
are healthy, the job will be added into RunnableJobList,
otherwise in WaitingJobList.

WaitingJobList

DataNode

RaidNodeFileFixer

RunnableJobList

JobTracker

JobFileChecker

EmergentFileQueue

Update

Get Runnable 
Jobs

Submit Job

Get Files to FixUpdate Corrupt 
Information

Check & Submit

Update Corrupt 
Information

Figure 2. Architecture of Dominoes

Algorithm 1 Check&Submit
Description: JobF ileChecker is called by JobTracker

after a job is submitted to JobTracker
Input: job← the submitted job
Input: jobF iles← files required by the job

1: corruptionInfo← newList
2: for file in jobF iles do
3: for block in file.blocks do
4: if block.healthyOnDataNodes() = false then
5: corruptionInfo.add(file, block)
6: end if
7: end for
8: end for
9: if corruptionInfo is empty then

10: JobDecider.addToRunnable(job.id)
11: else
12: JobDecider.addToWaiting(job.id, corruptionInfo)
13: end if

B. Job Execution based on Data States

In Dominoes, a job will put on hold if the files are
not ready. When there are jobs submitted to JobTracker
but are not set to ‘runnable’ by JobDecider, JobTracker
will ask JobDecider for runnable jobs periodically. If the
RunnableJobList is not empty, the corresponding jobs will
be returned. Otherwise, if a certain slots are underutilized,
JobDecider gets the job at the head of WaitingJobList, puts
all its files into EmergentFileQueue and returns the job, as
shown in Algorithm 2.

C. Get Files to Fix

RaidNode asks the next file to fix periodically. JobDecider
checks EmergentFileQueue firstly because the corresponding
jobs have already set as runnable but with corrupt blocks.



Algorithm 2 GetRunnableJobs
Description: function on JobDecider side, called by

JobTracker periodically
Input: mro← whether a job must be set runnable even its

corrupt files are not ready
Output: a list of runnable jobs

1: returnList← newList
2: if runnableJobList not empty then
3: returnList.addAll(runnableJobList)
4: runnableJobList.clear()
5: else if mro = true then
6: job← waitingJobList.poll()
7: emergentF ileQueue.addAll(job.files)
8: returnList.add(job)
9: end if

10: return returnList

Algorithm 3 UpdateList
Description: update the states of jobs in waitingJobList,

called by JobDecider periodically
Input: timeout← the max time a job could be held before

set runnable
1: updatedList← newList
2: while job← waitingJobList.poll() do
3: if job.corruptF iles is empty then
4: runnableJobList.add(job)
5: else if job.durationT ime > timeout then
6: runnableJobList.add(job)
7: emergentF ileQueue.addAll(job.corruptF iles)
8: else
9: job.weightedV alue← updateV alue(job)

10: updatedList.add(job)
11: end if
12: end while
13: waitingJobList.addAll(updatedList)

If the EmergentFileQueue is empty, JobDecider gets the
first file of the first job in WaitingJobList, adds this file to
FileFixer and then return it to RaidNode.

D. CBI Update

FileFixer stores the file-to-job mapping and traverses all
blocks of files by communication with DataNodes. If a block
is recovered, it will be removed from the CBI of the job. A
file will be removed if all its blocks are recovered. Since a
file put into EmergentFileQueue indicates that the job will
try to run even it is not ready, checking the states of files in
EmergentFileQueue is not necessary.

E. Job State Update

The job state update algorithm is presented in Algo-
rithm 3. The update function is processed periodically, which
traverse all jobs in WaitingJobList. A job will be set runnable

if all its files are confirmed healthy. Since WaitingJobList
determines the order of recovery order of files, it must
consider the overall system efficiency and the job fairness.
A threshold time is given for fairness, if the duration of a
job held in WaitingJobList exceeds the threshold, the job
will be set as runnable immediately, and all its files will be
put into EmergentFileQueue for emergent repair. To improve
the job throughput and resource utilization, WaitingJobList
orders job by the number of un-fixed blocks. The duration
time is also considered for fairness. Therefore, we propose
a simple formula to calculate the weighted value:

Numunfixed block

2(duration/threshold)∗ratio (1)

Since threshold also determines the maximum job waiting
time, a ratio can help adjust the inclination of the slope. The
higher the ratio is, the more important the threshold is to the
weighted value.

F. Data-State-Aware-Scheduler

1) Data State Aware Job Scheduling: As explained
above, if job J1 is submitted before job J2, but J1 has corrupt
data, J2 may run prior to J1 if J2 is ready or has smaller
weighted value.

2) Data State Aware Task Scheduling: The CBI will also
be returned to the JobTracker, which can help scheduling
tasks. The block information in CBI indicates the range of
the corrupt data, which may not have been repaired yet.

If a job is set as runnable but with corrupt data, a map task
whose split overlaps a corrupt block cannot run successfully
due to unhealthy data. Dominoes parses split target data
range for each map task. Recall that CBI contains a file
name, start offset and length, which indicates a data range
that is unhealthy. By comparing such ranges between splits
and the corrupt blocks, the infected map tasks are identified
and marked. Those infected map tasks will be held at the
end until the rest map tasks are scheduled.

V. EVALUATION

This section evaluates the performance and the introduced
overhead of Dominoes.

A. Scheduling Strategies for Flawed Jobs

As mentioned in section II, the original HDFS-RAID
system [16] detects and fixes flawed data, the time gap is
long and unacceptable. Thus, in our evaluation, we enhance
the original HDFS-RAID system to handle corrupt data in
two straightforward strategies, FixBeforeJob and FixInMap.
FixBeforeRun checks the states of target data blocks and
reports corrupt blocks to RaidNode. Jobs in FixBeforeRun
strategy will be held until all corrupt blocks are fixed, even
though the resource in the cluster is free. FixInMap behaves
on the contrary, it processes jobs without checking target
data blocks. It handles corrupt block, automatically recovers
the corrupt data and then continues task processing.



B. Test Setup

We conduct our experiments on 33 nodes interconnected
by a Gigabit Ethernet switch. One node is used as the master
node and the rest are the slaves. Each node is equipped with
a Quad-Core AMD Opteron Processor 2376, 8GB RAM, and
one 150 GB SATA disk.

We choose WordCount for the evaluation jobs and submit
four jobs with 30 seconds intervals. Each job processes
four files, each file has 4GB data; that is 16GB data in
total for one job. The first three jobs contain 10%, 8%, 5%
corrupt data and the fourth has all health data. We inject
data failure by deleting data blocks in local file system and
bypass HDFS. We record the procedure of jobs in each
strategy to capture the effectiveness and performance of
Dominoes in detail. Four metrics are presented to measure
the performance in system and user aspects. The system
metrics are 1) completion time of all submitted jobs and
2) total time for map tasks; the user metrics are 3) average
round-time for jobs and 4) average waiting time for jobs.

C. Performance Analysis on Scheduling Strategies

To illustrate the progresses of job execution under failure,
we divide the procedure into four continuous stages: check-
ing stage, hold on stage, map phase and to-the-end stage.
The checking stage begins when the job is submitted into
JobTracker and ends when the job is runnable, the hold on
stage ends when the first map task runs, the map phase ends
when all map tasks complete, the last stage ends when the
job is finished.

From Figure 3(a) to Figure 3(c), the total execution time
of all jobs are 1500s, 857s, and 774s under FixBeforeJob,
FixInMap and Dominoes, respectively. In Figure 3(a), we in-
vestigate the order of files being fixed among jobs. Suppose
i−j indicates the jth file in job−i, the order is 1−1, 1−2,
2−1, 2−2, 3−1, 3−2, 1−3, 1−4, 2−3, 2−4, 3−3 and
3−4. The fixing order of the first six files is because job−1
fixes its first two file before job−2 is submitted, and yields
to job − 2 because the latter has less corrupt blocks. The
number of corrupt blocks of job− 2 being cacluated is less
than that of job − 1 due to the asynchronous CBI update.
Job − 2 yields to job − 3 for the same reason. After file
3− 2 is fixed, job− 1 reaches the timeout threshold and set
as runnable immediately. Thus, file 1− 3 and 1− 4 are put
into the EmergentFileQueue. Job − 2 reaches its threshold
and its unfixed files are added into EmergentFileQueue as
well. During the checking stage of job−1 to job−3, job−4
is submitted and set as runnable immediately because all its
files are ready. In Figure 3(b), all jobs are executing without
checking stage. As all slots are occupied by previous jobs,
later jobs have to wait. Job − 4 waits about 450s before
map stage even though all its files are ready. In Figure 3(c),
job − 1 is set as runnable immediately because all slots
are free at the beginning. Later, job − 2 and job − 3 are
submitted but have to wait because slots are busy. Job− 3

starts before job− 2 because it has less corrupt blocks and
has higher priority in WaitingJobList. By comparing the
procedure of job − 1 in Figure 3(b) and Figure 3(c), we
can see job− 1 in Dominoes spends less time in execution.
This is because the flawed tasks are scheduled to the tail of
the task queue whereas the corrupt files have been fixed via
EmergentFileQueue.

Figure 4 illustrates the performance of Dominoes with
different parameters. Compared with job− 2 in Figure 3(c),
job− 2 in Figure 4(a) starts prior to job− 3 because it has
a higher ratio, in which the threshold determines the order
of jobs in WaitingJobList. Similarly, job− 2 in Figure 4(b)
also starts prior to job− 3 because the timeout threshold is
smaller.

D. Performance Metrics from System and User Aspects

We measure the performance from system and user as-
pects; the corresponding results are presented in Figure 5
and Figure 6, respectively. We configure different system
parameters for the runs. Figure 5(a) presents the overall
job completion time that indicating the duration for all the
jobs get done in system. Dominoes always finishes all jobs
before the other modes, the accelerated rate compared to
FixBeforeJob and FixInMap are 11.5% to 48.5% and 9.1%
to 9.7%, respectively.

The less total time for map tasks of a job take, the more
resource become available for other jobs. Therefore, Domi-
noes enhances job throughput when the cluster is heavily
loaded. In Figure 5(b), Dominoes spends less time in map
than FixInMap because the infected map tasks are scheduled
to the end of map queue. Figure 6(a) presents the average
round-time for jobs that Dominoes has the best performance.
Average waiting time in job queue in Figure 6(b) indicates
the fairness among users, the job executions will not be
blocked in FixInMap that making the waiting duration in
job queue minimum among three strategies.

In summary, FixBeforeJob has the longest job completion
time. FixInMap has the shortest job waiting time but is
inefficient for both system resource usage and average job
round-time. Compared with FixBeforeJob and FixInMap,
Dominoes considers both performance and fairness, thus it
gains the highest job throughput and the minimal average
job round time.

E. Dominoes Overhead Evaluation

We evaluate the potential overhead introduced by Domi-
noes by comparing the performance of the original HDFS-
RAID and that of Dominoes for processing the same set
of job in failure-free conditions. The results are showed in
Figure 7. The processing progresses and elapsed time of jobs
are almost the same. The completion time of HDFS-RAID
and Dominoes are 762.8 and 782.6 seconds, respectively.
Dominoes introduces an overhead of 2.6%, this is because
the job is submitted to JobDecider before it actually runs,
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Figure 3. Performance of FixBeforeRun (a), FixInMap (b), and Dominoes (c) with parameter threshold 15 mins and ratio 5
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Figure 4. Performance of Dominoes under different parameters
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Figure 5. Performance metrics from system aspect
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Figure 6. Performance metrics from user aspect
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Figure 7. Performance with failure-free jobs



which involves cross-node communication in checking states
of blocks. From Figure 7, it is clear that the overhead
happens in the checking stage. When the cluster is heavily
loaded, the overhead can be hidden by overlapped job
waiting time.

VI. RELATED WORK

Our work builds on HDFS-RAID system and existing
erasure coding algorithms. We first discuss some of the
important efforts on erasure-coded systems, especially for
HDFS; we then present the related work in scheduling
strategies for Hadoop system.

A. Erasure-coded HDFS

1) Corrupt Data Detection: The conventional HDFS
features checksum and HDFS-RAID employs parity codes
for data integrity. HARDFS [17] proposed a lightweight
versioning mechanism on namespace management, replica-
tion management, and read/write protocols, to detect silent
failures in HDFS. It enhances the data integrity of HDFS
during amending data operations. On the contrary, our work
relies on existing detect techniques but it conducts an on-
demand check on the target data while scheduling jobs.

2) Reduce Storage Overhead: Gibson et al. proposed
DiskReduce that applies RAID-5 and RAID-6 redundancy
coding over HDFS, which efficiently introduce erasure cod-
ing to HDFS [18] [19]. Facebook datacenter uses Reed-
Solomon codes to efficiently reduce storage cost from
default 3X to 1.4X. The recently-introduced HACFS [1],
according to the data access frequencies divide data into
hot and cold dataset, and adopts two erasure coding tech-
niques that achieve optimal reconstruction performance and
storage overhead, respectively; it eventually obtains both
optimal tradeoffs in system-wide. These work focus on
fault tolerance performance and optimizing read degrade for
MapReduce applications. Most efforts have been made from
storage system aspect. Few of them has touched job or task
processing, particularly failing to address the stragglers or
flawed job that raise due to flawed data, in an erasure-coded
Hadoop system.

3) Data Recovery Optimization: Microsoft proposed Lo-
cal Reconstruction Code (LRC) [8] that encodes data into
local parity codes and global parity codes for efficiently
repairing single block failure and multiple failures respec-
tively, which reduces involved data blocks for data recovery,
therefore, greatly reducing network traffic and I/O bandwidth
needed for reconstruction. Sathiamoorthy et al. applied the
XOR algorithm [7] that can be calculated very efficient in
modern computers, onto RAID-HDFS system, also grouping
raw data blocks into two-dimensional layout, and computing
parity blocks in vertical and horizontal way; Rashmi et al.
introduced a novel erasure coding Hitchhiker [12] that built
over RS codes. Both of them reduce the network and I/O
bandwidth for recovering failure data blocks. Reconstruction

for on-demand read has been adopted in Windows Azure
Storage [8], in which reading for an unavailable data block
will trigger reconstruction immediately. Though this system
experiences reading delay, it avoids failure. Dominoes im-
plements such delay read feature; moreover, earlier detect
and data-state-aware scheduling can further avoid the read
latency while processing tasks speculatively.

B. Hadoop Scheduling Strategies

1) Alleviating Stragglers in Hadoop System: On the other
hand, numerous work has been dedicated to alleviating
skews and stragglers for Hadoop system. As the latest
completed map task determines the completion time of
intermediate data shuffling phase, potentially prolongs the
overall job completion time [20]. Conventional Hadoop
adopts speculative tasks that launching multiple speculative
tasks while a few percentile of map tasks remains [21].
Besides, lots of work is proposed to alleviate the stragglers
and skews due to input data size skew [22] [23], com-
putation skew [22], heterogeneous hardware [24], or even
non-assumption skews [25]. Different from existing work,
our paper focuses particularly to alleviate the stragglers that
are caused by accessing unavailable data blocks in erasure-
coded Hadoop system.

2) Delay Scheduling: Delay scheduling improves data
locality [26] [27]. MapReduce prefers assigning tasks to the
nodes where the target data reside in order to avoid network
traffic and latency. On the other hand, MapReduce pursues
parallelism greedily by assigning tasks while computing
resources available. Meanwhile, the slaves communicate
with job scheduler every three seconds, which consequently
hurts data locality. Zaharia et al. proposed to delay a few
seconds (e.g.,5 seconds) when assigning a task to optimize
the possibility of data locality and improve overall job
throughput system-wide, which especially benefits small
jobs that are dominating workload in datacenters [26]. Guo
et al. adopted the delay scheduling and further proposed to
consider data locality for multiple potentials due according
to replications coordinately [27]. Our work is similar to
delay scheduling, aiming for high job throughput system-
wide. However, the delay latency introduced in our work
is paid per job for earlier failure detection and recovery,
whereas delay overhead in delay scheduling is paid per task
for data locality concern.

3) Exploiting Parallelism: On the one hand, when the
reduce tasks cannot get the computing resource will signif-
icantly prolong the completion time [28] [29]. On the other
hand, if reduce tasks occupy resource too early will degrade
the parallelism of map tasks, and data shuffle can overlap
computation but without occupying reduce tasks slots [30].
Those issues alleviated in YARN because the task type-free
resource allocation policy but still hold. Similarly, Dominoes
greedily exploits parallelism, but by 1) scheduling map tasks
to avoid failures due to data unavailability and 2) data



recovery overlaps task processing whereas data detection
overlaps job processing.

VII. CONCLUSION

Due to huge data volume consuming considerable storage
space, many distributed systems have adopted erasure coding
instead of replicas to reduce long-term storage overhead
thus saving capital cost. Erasure-coded systems provide at
least three-way equivalent fault tolerance for data loss so
that data durability is guaranteed, however, data availability
is significantly degraded. This introduces job failure or
task stragglers due to unavailable data blocks that hurt
job performance and job throughput. We propose a novel
approach, namely Dominoes, combining lightweight data
checking mechanism and job scheduling techniques to hide
the latency and improve job throughput. The experimental
results confirm Dominoes improves average performance by
9% to 9.7% under failure and at a 2.6% overhead for a
failure-free condition.
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