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Abstract 
 

Checkpoint/recovery has been studied extensively, 
and various optimization techniques have been 
presented for its improvement. Regardless of the 
considerable research efforts, little work has been 
done on improving its restart latency. The time spent 
on retrieving and loading the checkpoint image during 
a recovery is non-trivial, especially in networked 
environments. With the ever-increasing application 
memory footprint and system failure rate, it is 
becoming more of an issue. In this paper, we present a 
Fast REstart Mechanism called FREM. It allows fast 
restart of a failed process without requiring the 
availability of the entire checkpoint image. By 
dynamically tracking the process data accesses after 
each checkpoint, FREM masks restart latency by 
overlapping the computation of the resumed process 
with the retrieval of its checkpoint image. We have 
implemented FREM with the BLCR checkpointing tool 
in Linux systems. Our experiments with the SPEC 
benchmarks indicate that it can effectively reduce 
restart latency by 61.96% on average in networked 
environments. 
 
1. Introduction 
 

Checkpoint/recovery (C/R) has been widely used 
for fault tolerance in networked computing 
environments, such as parallel and distributed systems 
[4, 9, 18]. It periodically stores a snapshot of the 
running program, including CPU registers, signals, file 
caches, and process address space, on stable storage 
and uses it to restart execution in case of failure.  A 
networked system is generally composed of abundant 
resources, thereby making it possible to restart the 
crashed program on an alternative resource from the 
checkpoint image, rather than waiting for the repair of 
the failed resource. As a matter of fact, such a 
remote-restart mechanism is common in Grid 
computing [24] as well as in high performance 
computing [20].  

Existing research on C/R has mainly focused on 
reducing checkpoint overhead, whereas little work has 

been done on reducing its restart latency. Here, restart 
latency refers to the time that elapses between the 
initiation of the checkpoint image retrieval and the 
restart of the failed process. In the current C/R practice, 
a restart requires the checkpoint image to be 
completely available on the destination machine before 
it can proceed. In networked environments where the 
checkpoint image is accessed via interconnected 
networks, restart latency can be substantial. This is 
especially problematic in the field of high performance 
computing where applications typically are memory 
demanding. Research has determined that the memory 
footprint is a major contributor to the checkpoint image 
size [7, 20]. Further, due to the ever-increasing system 
size and complexity [4], failures occur more frequently 
than before, thereby making restart latency a critical 
concern in networked environments. 

The recovery problem has been previously studied 
in various fields including operating systems, 
databases, and internet services [1, 14, 15]. However, 
existing solutions are either specific to particular 
problem domains or hardly applicable to improve 
checkpoint based restart. As mentioned earlier, the 
research on C/R mainly focuses on runtime 
optimization of checkpointing, with little attention to 
process recovery. Therefore, reducing restart latency 
for general C/R protocols remains an open problem.  

In this paper, we present FREM, a Fast REstart 
Mechanism, to enhance general C/R protocols by 
concentrating on reducing restart latency. The core 
idea of FREM is to enable quick restart on a partial 
checkpoint image by recording the process data 
accesses after each checkpoint. More specifically, at 
runtime, through a user-transparent system support, it 
tracks the memory access information of the process 
(denoted as the touch set) following each checkpoint 
within a specific time period (denoted as the tracking 
window). At recovery time, rather than retrieving the 
entire checkpoint image for restart, FREM only 
requires the touch set on the destination machine for 
quick restart. The remainder of the checkpoint image is 
then transferred after the process is restarted on the 
destination machine. By doing so, FREM intends to 
overlap application execution with the retrieval of the 



Proc. of the 38th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN) 

2 
 

checkpoint data which is not immediately needed, 
thereby reducing restart latency. 

While the idea may be straightforward, the design 
and implementation of FREM is challenging. The key 
issues include how to accurately identify the touch set, 
how to appropriately set the tracking window, and how 
to effectively load the partial image on the destination 
machine. To address these challenges, in this paper we 
propose: 
• A post-checkpoint tracking method for capturing 

the touch set.  Hardware and software complexities 
in real systems introduce numerous complications to 
the identification of the touch set. The proposed 
method monitors the memory access pattern of the 
process during the tracking window by considering 
the underlying hardware and software features, and 
records the precise access pattern as the touch set 
along with the checkpoint image. More importantly, 
such support is provided through a user-transparent 
system implementation.  

• A heuristic method for estimating the tracking 
window. The tracking window, which determines 
the size of the touch set, plays a crucial role in 
FREM. The ideal scenario is such that the execution 
time of the resumed process on the touch set exactly 
matches the retrieval time of the remaining 
checkpoint image.  We present an upper bound 
heuristic to estimate the window size, which intends 
to make a balanced tradeoff between performance 
and design simplicity. 

• A revised page fault handling mechanism for 
partial image loading. To restart the process with 
its partial address space available, the kernel page 
fault handler is modified to coordinate the regular 
kernel paging mechanism with the special page fault 
handling required by FREM. 
 
We have implemented FREM with the BLCR [6] 

checkpointing tool in Linux systems. Our experiments 
with the SPEC CPU2006 benchmarks [21] show that 
the average improvement achieved by FREM is 
61.96% in terms of reducing restart latency. To the best 
our knowledge, we are among the first to exploit 
runtime data access information to achieve fast process 
restart in networked environments.  FREM 
complements existing studies on checkpoint/restart by 
enhancing the recovery process. As an example, FREM 
can be integrated with MPICH-V [2] and LAM-MPI 
[22] to enhance fault management for high 
performance computing [8]. 

The remainder of this paper is organized as follows. 
Section 2 discusses related work. Section 3 introduces 
the main idea of FREM, followed by a description of 
the detailed methods in Section 4. Section 5 presents 

our experimental results. Finally, Section 6 
summarizes the paper and points out future directions. 
 
2. Related Work 
 

The idea of fast restart is not new, and has been 
studied in several fields. For example, Baker and 
Sullivan have discussed the use of a “recovery box” (a 
protected area of non-volatile memory) in the Sprite 
system to store crucial process state needed for fast 
recovery [1]. In database systems, quickly resuming 
transaction processing is the focus. For example, the 
Oracle systems have used the “on-demand rollback” 
technique to allow new transactions to execute while 
the rollbacks are still being performed [14].  Recently, 
more attention has been paid to fast recovery for 
Internet services.  A representative work is the ROC 
project from Berkeley and Stanford [15]. It focuses on 
providing a holistic solution for post-failure recovery 
of Internet services by using fine-grained system 
partitioning and recursive restart. Rao et al. have 
proposed a class of hybrid protocols to maintain the 
failure-free performance of sender-based protocols 
while approaching the performance of receiver-based 
protocols during recovery [19]. FREM is 
fundamentally different from these works in that it 
emphasizes the reduction of restart latency for general 
C/R applications.  

Existing studies on C/R mainly focus on checkpoint 
optimization. One major direction is to determine an 
optimal checkpoint frequency. Young has derived a 
simple first order approximation of the optimal 
checkpoint interval, based on the assumption of 
Poisson failure arrivals [26]. To allow failures during 
checkpointing or recovery, Dali has proposed a higher 
order interval approximation model by extending 
Young’s work [3].  Vaidya has developed an 
improved interval by differentiating checkpoint latency 
and overhead [25]. Plank and Thomason have 
investigated the optimal checkpoint interval for parallel 
applications [18].  Additionally, there are numerous 
papers on dynamic checkpoint scheduling, such as 
aperiodic checkpointing [10] and cooperative 
checkpointing [13].  The other major direction is to 
reduce checkpoint overhead, especially the disk I/O 
time. Latency hiding and memory exclusion are two 
key techniques [16].  The studies in this category 
include copy-on-write [9], diskless checkpointing [17], 
and incremental checkpointing [5, 20]. Despite these 
runtime optimizations, no dedicated attention is paid to 
reducing restart latency during recovery. 
Complementing the above studies on checkpoint 
optimization, our proposed FREM emphasizes the 
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reduction of restart latency. Further, the principle of 
FREM is applicable to general C/R protocols. 

There also exist several optimization techniques that 
utilize memory paging mechanisms to achieve fast 
process execution. For example, demand paging is a 
well-known technique, which allows a process to begin 
execution with part of its pages available in the 
physical memory [23]. Unlike demand paging, FREM 
selectively restores the pages that will be immediately 
needed for fast recovery by tracking the pages used 
after the checkpoint.  

Similarly in the field of process migration, paging 
mechanisms are also incorporated to achieve fast 
process restart on the destination machine [11]. While 
these migration methods focus on optimally 
transferring process state between the source and 
destination processes, FREM targets reducing restart 
latency and does not require a live copy of the process 
on the source machine. 

 
3. Main Idea  

 
The main idea of FREM is illustrated in Figure 1. 

There are two phases in FREM: (1) the post-checkpoint 
tracking phase at runtime and (2) the fast restarting 
phase during recovery.  

The post-checkpoint tracking phase is composed of 
two steps: 
• At time t0 the checkpointing tool is invoked to dump 

the process state onto stable storage, just as any 
regular checkpoint mechanism does.  

• Upon completion of the checkpoint at time t1, FREM 
starts to track the page-level memory accesses of the 
process between t1 and (t1+tw) where tw is the 
tracking window size. The memory access 
information, called “the touch set” in this paper, is 
formally defined as the intersection of the process 
address space saved in a checkpoint and its working 
set during the following tracking window. The goal 
of this step is to capture the touch set and store its 
information remotely on stable storage along with 
the regular checkpoint image at the end of the 
tracking window. FREM takes advantage of the 
paging mechanism supported by modern computer 
systems to monitor the page access: it first clears the 
access bit of each page table entry (PTE) at t1, which 
will be set by the CPU when the corresponding page 
is accessed; at the end of the tracking window, 
FREM collects the pages touched by the process by 
scanning the status of the access bit of each PTE. 
The touch set information consists of a set of page 
address ranges accessed by the process during the 

 

 
Figure 1. Main Idea of FREM 
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tracking window (denoted as the touch set 
descriptor).   
During recovery, FREM takes four steps to achieve 

fast restart on the destination machine: 
• At recovery time t3, FREM retrieves the touch set 

descriptor.  
• At time t4, based on the descriptor, FREM retrieves 

the touch set as well as other necessary process state, 
such as register contents and process signals from 
the checkpoint image. 

• Upon completion of retrieving the touch set at time 
t5, the process is restarted on the touch set. 
Meanwhile, FREM forks another thread to 
simultaneously retrieve the remaining pages from the 
image file. 

• At time t6, when all the remaining pages are 
retrieved and loaded on the destination machine, the 
process continues running on the complete address 
space. 
The rationale of FREM is that the touch set captures 

the precise data access of the process during process 
recovery. We exploit this feature to optimize the restart 
procedure by overlapping the computation with the 
communication and disk I/O as shown in Figure 1 
(Step 3a -3b). The effectiveness of FREM requires that 
the process only access a relatively small portion of its 
address space within a given time window after a 
checkpoint. This assumption is justified by two facts in 
practice: (1) many applications demonstrate good 
temporal locality in data accesses, and (2) applications 
using dynamic memory allocation may have a large 
amount of unused or dead data in their checkpoint 
image files [16].  

 
4. Methodology 
 

In this section, we elaborate our research methods. 
They are developed to address the key challenges listed 
in Section 1, namely how to accurately identify the 
touch set, how to appropriately set the tracking window 
size and how to effectively load the partial image on 
the destination machine. 
 
4.1. Identification of the Touch Set 
 

Precisely identifying the touch set is crucial in the 
design of FREM. There are two types of possible 
errors:  (1) false positives where pages not of interest 
are included in the touch set and (2) false negatives 
where pages of interest are missing from the touch set. 
These errors stem from the complicated features of 
hardware and software design, which include hardware 
bypassing, page swapping and dynamic memory 
management.  

4.1.1. Hardware bypassing. Although the access bit 
of the PTE is often used to track page-level data 
accesses, not every single memory access updates the 
access bit in the PTE [27]. For example, a Translation 
Lookaside Buffer (TLB) hit can cause the memory 
access to bypass the PTEs. When a TLB hit occurs, the 
process directly reads the address translation 
information from the TLB, rather than going through 
the page table maintained by OS. Hardware bypassing 
can introduce false negatives in the identification of the 
touch set. In the architectures that support 
software-managed TLBs, FREM can directly look into 
the TLB to obtain the correct status of the access bit, 
thereby solving the issue. 

But in the architectures without such support, such 
as our target platform x86, using a hardware-managed 
TLB, TLB peeking is forbidden. To address the issue, 
FREM must ensure the consistency between the TLB 
and the PTE entries. In our current design, at the 
beginning of the tracking window, FREM not only 
clears the access bit in the PTE, but also invalidates the 
corresponding TLB entry. By doing so, FREM 
guarantees the first access of each page will cause a 
TLB miss and consequently set the access bit of the 
PTE. While such TLB invalidation introduces some 
overhead from the perspective of the 
micro-architecture, the overhead is generally several 
orders of magnitude smaller than the reduction of 
restart latency at the macro-system level. Clearing the 
access bits of the PTEs could disturb the kernel page 
replacement, but in Linux, page replacement is based 
on a separate PG_REFERENCE bit of each physical 
frame. So to guarantee the original replacement 
algorithm, FREM turns on the corresponding 
PG_REFERENCE bit when it clears an access bit 
which has been previously set. 

In addition, a DMA (Direct Memory Access) 
operation also bypasses the CPU, thereby causing false 
negatives. We suggest instrumenting the corresponding 
device driver to set the access bits of PTEs whenever a 
DMA transfer is initiated. In the current design, we 
adopt a simple strategy which includes all the mapped 
DMA pages in the touch set. Typically the amount is 
much smaller than the entire process address space on 
the x86 platforms. 

 
4.1.2. Page swapping. Page swapping, which clears 
the PTE access bits, may also cause false negatives in 
the identification of the touch set. Hence, FREM must 
track the access bits upon page swapping. To solve the 
problem, we instrument the Linux kernel swap thread 
kswapd to ensure that whenever a page swap occurs 
during the tracking window, the access bits of the 
PTEs are first scanned by FREM before they are 
cleared by the kernel.  
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4.1.3. Dynamic memory management. Dynamic 
memory allocation and deallocation operations change 
the process address space. Without a careful analysis, 
they may cause identification errors.  As shown in 
Figure 2, we identify three types of pitfalls stemming 
from dynamic memory usage. 

 

 
Figure 2. Pitfalls in the identification of the touch set 

caused by dynamic memory management 
 

In Figure 2(a), at time t1 the memory region r (the 
region of [a,b]) is saved on stable storage as the 
checkpoint image. At time t2, a deallocation operation 
shrinks r to [a,c] and releases all the pages in (c,b]. 
When FREM scans for the touch set at time (t1 + tw) 
(the end of the tracking window), a false negative error 
may occur - the pages in (c,b] accessed during time (t1, 
t2) are lost. 

In Figure 2(b), the memory region r is checkpointed 
at time t1. At time t2 an allocation operation extends r 
to [a,c]. At the scan time (t1 + tw), the pages in (b,c] 
accessed during time (t2, t1+tw) should not be counted 
in the touch set; otherwise a false positive error is 
introduced. Recall that the touch set is defined as the 
intersection of the process address space saved in the 
checkpoint image and its working set during the 
tracking window. Although the pages in (b,c] were 
accessed during time (t2, t1+tw), they are not part of the 
checkpoint image, indicating they do not need to be 
retrieved during the restart phase.  

In Figure 2(c), the memory region r is checkpointed 
at time t1. At time t2, a deallocation operation shrinks r 
to [a,c]. Then later at time t3, an allocation operation 
extends it to [a,d]. The question is whether we should 
scan the pages in (c,b] or not? The answer is two-fold. 
At time t2 just before their deallocation, the pages in 
(c,b] should be tracked because they are part of the 
checkpoint image; otherwise a false negative error is 
introduced. At time (t1 + tw), the pages in the same 
range (c,b] are actually newly allocated and should not 
be counted in the touch set; otherwise a false positive 

error is introduced. 
The above analysis indicates that the touch set is 

always a subset of the checkpoint image, which 
monotonically decreases during the tracking window. 
Based on this key observation, we develop a simple yet 
effective algorithm to track the touch set: upon the 
completion of a checkpoint, the address information of 
the pages saved in the checkpoint image is stored by 
FREM (denoted as the candidate pages); whenever a 
memory deallocation takes place, FREM checks the 
intersection between the candidate pages and the pages 
to be released for the identification of the touch set; 
after that, FREM updates the candidate pages by 
excluding the intersection. The algorithm can eliminate 
the potential false positives and false negatives as 
illustrated in Figure 2. Figure 3 summarizes our 
algorithm to identify the touch set.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. The touch set identification algorithm 
 

In our implementation, to ensure the efficiency of 
the search and insertion operations, we use a double 
linked list and a red-black tree to store the touch set 
descriptor and the candidate pages respectively. In 
addition, to monitor memory space deallocation, the 
Linux kernel function do_munmap is instrumented. 

Dumping the checkpoint image {  
Step 1. Invoke BLCR to save the checkpoint image; 
Step 2. Record the pages saved in the checkpoint image    
      as the candidate pages; 
Step 3. Initialize the touch set descriptor; 
Step 4. Invalidate the TLB entries if necessary; 

} 
Tracking the touch set { 

Upon each memory deallocation { 
Step 1. Check the intersection between the pages to be  
      released and the candidate pages; 
Step 2. Identify the accessed pages (in the intersection)  
      as part of the touch set; 
Step 3. Update the candidate pages by excluding the  
      intersection; 

} 
Upon each page swap { 

Step 1. Check the intersection between the pages to be  
      traversed and the candidate pages; 
Step 2. Identify the accessed pages (in the intersection)  
      as part of the touch set; 

} 
Upon the completion of tracking { 

Step 1. Check the intersection between the current  
      memory region and the candidate pages; 
Step 2. Identify the accessed pages (in the intersection)  
      as part of the touch set; 
Step 3. Store the touch set descriptor, along with the  
      checkpoint image; 

} 
}
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The modified kernel only impacts the target process 
within the tracking window, thereby minimizing its 
disturbance to other processes in the system. 
 
4.2. Estimation of Tracking Window 

 
The tracking window size tw is equally important in 

the FREM design and is dynamically determined at the 
beginning of the post-checkpoint tracking. How to set 
an optimal window size is challenging. A small 
window size reduces the time duration of overlapping 
computation and image retrieval during recovery and 
also incurs numerous remote page faults. On the other 
hand, a large window size leads to a large touch set, 
thereby increasing recovery latency and also increasing 
the risk of failures. An ideal tw should yield a perfect 
touch set such that the resumed process first accesses a 
page not in the touch set just as the transmission of the 
remaining checkpoint image finishes, e.g., the time t6 
in Figure 1. 

In our current design, a heuristic method is adopted 
to estimate the window size: once we know the 
checkpoint image size W at the completion of a 
checkpoint, we set tw to the retrieval time of the 
checkpoint image (denoted as retrieval(W)). It can be 
simply calculated as the sum of the disk I/O and 
network transfer time: 

W Wretrieval(W)=  +  + network latencydisk BW network BW
Here, the parameters like latency and bandwidth can be 
obtained according to the hardware specifications or 
through benchmark tools. Note that retrieval(W) is a 
conservative estimate and can be used as an upper 
bound. In practice, the actual image retrieval time 
should be less as the disk I/O may be overlapped with 
the network transfer. The rationale is to ensure the 
availability of the entire checkpoint image before the 
process completes its execution on the touch set. It is 
possible to set tw to a smaller value. Currently we did 
not do this and leave it as future work. 

Further, the tracking window size can be set to zero 
so as to disable FREM under two conditions: 
• When W is smaller than a pre-defined threshold TH, 

tw is set to zero. For the applications with small 
memory footprints, FREM is not used. The value of 
TH can be set by system administrators or users 
based on their tolerable restart latency.  

• If retrieval(W) is larger than the checkpoint interval, 
we also set tw to zero. Based on our experience, this 
violation is rare in practice since the retrieval time 
retrieval(W) is usually much less than the checkpoint 
interval. 
 
 

4.3. Partial Image Loading 
 
To enable the process restoration on the touch set, 

FREM coordinates its partial image loading with the 
Linux demand paging mechanism: 
• Once the touch set is retrieved, FREM restores the 

structure of the process address space via the 
memmap function call, and then loads in the touch 
set. Afterward the process is restarted and another 
kernel thread is forked to simultaneously retrieve the 
remaining image to the destination machine. 

• During the overlapped execution, FREM provides 
special page fault handling for the process by 
implementing the no_page callback function as a 
memory map driver. (1) If a page fault address 
belongs to the touch set (this is possible due to 
dynamic memory allocation), the default page fault 
handling is used. (2) If a page fault address falls out 
of the touch set, FREM first checks whether the 
requested data is already available in the local image 
file; if yes, the requested page will be loaded 
on-demand; otherwise a remote page fault occurs. A 
simple strategy is employed to deal with remote 
page faults in our current design, which stops the 
application until the requested page is retrieved. Due 
to the conservative estimation of the tracking 
window size, the probability of remote page faults is 
rare. As soon as the entire checkpoint image is 
available and loaded, FREM unhooks this driver 
from the memory management subsystem to restore 
its normal operations. A more sophisticated 
mechanism like on-demand remote data retrieval 
will be investigated in our future work. 

  
5. Experiments  
 

To evaluate FREM, we have implemented a 
prototype system with the BLCR checkpointing tool 
[6] in Linux 2.6.22 systems.  Our testbed consists of 
two x86 machines, one used as the source machine and 
the other as the destination machine. Each machine is 
equipped with a 2.8GHz Pentium 4 processor, 512KB 
cache, 1 GB RAM and an 80GB 7200RPM Maxtor 
disk. Two network configurations at the National 
Center for Supercomputing Applications (NCSA) are 
tested:  (1) FAST, which denotes a fast Myrinet2000 
network deployed in the NCSA Mercury cluster and (2) 
SLOW, which represents a relatively slow Ethernet 
connection deployed between the Mercury and 
Tungsten clusters [12]. Table 1 lists the measured data 
retrieval parameters. 
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Table 1. Parameters of image retrieval cost 

 
 
The benchmark suite SPEC CPU2006 is tested in 

our experiments [21]. Since FREM targets the 
applications with large memory consumptions, we 
choose the applications whose memory footprints are 
greater than 150 MB. Among these applications, we 
randomly select twelve applications and present their 
results in the following. 

 
5.1. Application Restart Latency 

 
In this set of experiments, we compare application 

restart latencies by using the regular BLCR and 
FREM-enhanced BLCR. Table 2 lists our measured 
results, including application checkpoint image size, 
size of the touch sets, and restart latencies using BLCR 
and FREM.  As we can see from the table, for most 
applications, the touch sets are substantially smaller 
than the checkpoint images. The use of FREM can 
significantly reduce application restart latency. The 
performance achieved by using FREM is very 
promising:  the average reductions on restart latency 
are 72.43% and 61.96% in the FAST and SLOW 
networks, respectively. 

 
Table 2. Restart latency (RL) by using BLCR 
and FREM with SPEC CPU2006 applications. 
The parenthesized numbers in the last two 

columns are relative improvements (in 
percentage) achieved by FREM. 

 
 

Figures 4 and 5 show, respectively, the raw 
improvement and the relative improvement on restart 
latency achieved by FREM over BLCR. As we can see 
from Figure 4, the reduction ranges from a couple of 
seconds to a couple of hundred seconds. The highest 
reduction is 152.6 seconds in the FAST network and 
208.5 seconds in the SLOW network. According to 
Figure 5, except for applications 8 and 9, the relative 
improvement is more than 53.78% in the SLOW 
network and more than 49.25% in the FAST network. 
The trivial improvements on applications 8 and 9 are 
attributed to their low temporal data locality. For 
instance, for application 8, its touch set is 402 MB, 
which is very close to the checkpoint image of 409 MB; 
for application 9, the improvement achieved by FREM 
drops sharply when the network performance is 
changed from FAST to SLOW. This is also caused by 
the rapid growth of the touch set when the network 
performance is low. However, we shall point out that 
even in a slow network, the raw restart latency is still 
reduced by at least a couple of seconds. 
 

Raw Improvement on Restart Latency by Using FREM
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Figure 4. Raw improvement on restart latency 

by using FREM over BLCR 
Percentage Improvement by Using FREM
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Figure 5. Percentage improvement on restart 

latency by using FREM over BLCR 
 

For the gcc test cases (applications 6 and 7), the 
relatively small touch set is largely attributed to the 
dynamic memory deallocation of the applications. For 
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these applications, although the checkpoint image is 
large, it has many pages that will never be used again 
and will soon be freed. This observation indicates that 
dynamic memory management can provide more 
optimization opportunities for FREM. 
 
5.2. Runtime Overhead  
 

The use of FREM introduces two types of runtime 
overhead: (1) the post-checkpoint tracking overhead 
and (2) the fast restart overhead. 

 
Table 3. Post-checkpoint tracking overhead  

(in milliseconds) 

 
 

Table 4. Fast restart overhead  
(time unit: seconds) 

 
 

The post-checkpoint tracking overhead is mainly 
caused by three factors: the PTE scan time, the 
descriptor search and insertion time, and the I/O time 
to store the descriptor.  Table 3 lists the measured 
post-checkpoint tracking overheads. We have observed 

similar results for runs in the FAST and SLOW 
networks. Due to space limitations, here we only 
present the results obtained in the SLOW network. It is 
shown that the post-checkpoint tracking overhead is 
generally less than 60.2 milliseconds, which is trivial 
compared to the performance gain achieved by FREM. 
The PTE scan time is the dominant contributor to the 
overhead.  This is due to the fact that 
memory-demanding applications typically have huge 
page tables.  In general, the search and insertion time 
is less than 15.0 milliseconds, while the descriptor I/O 
time is less than 1.5 milliseconds. These overheads are 
mainly determined by the number of entries in the 
touch set descriptor, which should not exceed two 
thousand, because of spatial data locality. 

When using FREM, the restart of the process is 
overlapped with the image retrieval until all the 
remaining image is delivered to the destination 
machine. This overlapping inevitably incurs some 
overhead to the program execution due to resource 
contention. This is denoted as the fast restart overhead. 
Table 4 lists the sizes of remaining images to be 
retrieved, the durations of overlapping and the fast 
restart overheads in the SLOW network, for all 
applications. In general, the restart overhead is less 
than 22.7 seconds, which is much smaller than the 
reduction of restart latency achieved by FREM (see 
Section 5.1).  Further, when the duration of 
overlapping is increasing, the overhead generally 
grows. This is caused by the fact that the number of 
context switches increases, thereby incurring more 
overhead. We believe on the emerging multi-core 
machines, the overhead can be reduced due to greater 
parallelism provided by the advanced architectures.  
 
5.3. Statistical Performance Analysis  
 

The results shown so far indicate that FREM can 
significantly reduce the restart time, but also introduces 
some runtime overheads. Given that checkpoint 
frequency is usually greater than that of recovery, a 
key question that may be raised is whether FREM is 
capable of producing positive performance gain in the 
long run. To answer this question, we conduct a set of 
experiments to examine application performance when 
using FREM in a long run. Here, the “long run” means 
that we statistically evaluate application performance 
between two restarts. In our experiments, we simulate 
Poisson failure arrivals of the underlying system, 
where the arrival rate ranges from one failure per 1000 
days to 10 failures per day. The application checkpoint 
interval is set according to Young’s approximation 
formula [26]. The SLOW network is used in this set of 
experiments. 
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Two evaluation metrics are used to measure the 
overall performance of FREM: (1) Egain, the expected 
restart improvement achieved by FREM between two 
restarts and (2) Eoverhead, the expected runtime overhead 
introduced by FREM between two restarts. They are 
calculated as follows: 

  _   (1- )

  _   

              _ _ (1- )

gain

overhead ckp

E RL improvement f

E tracking overhead N

fast restart overhead f

= ×

= ×

+ ×

 

Here, f is the failure probability of FREM, i.e., the 
chance that a failure occurs during the tracking 
window. Nckp is the average number of checkpoints 
between two restarts.  

Our simulations show that for all applications other 
than applications 8 and 9, Egain surpasses Eoverhead by a 
significant margin ranging from 14.3 seconds to 183.3 
seconds under different failure arrival rates. Due to 
space limitations, we only present the results for 
applications 1, 2 and 8 in Figure 6. For applications 1 
and 2, the runtime overhead Eoverhead introduced by 
FREM is substantially smaller than the performance 
gain Egain achieved regardless of failure rates. Further, 
it is shown that the overhead drops as the failure rate 
grows. When the failure rate increases, the number of 
checkpoints Nckp decreases, thereby resulting in less 
post-checkpoint tracking overhead. For application 8, 
the benefit achieved by FREM is much less impressive. 
A major reason is that the application lacks temporal 
data locality, thereby resulting in trivial restart 
improvement. When the failure rate gets higher, the 
runtime overhead may overshadow the restart 
improvement. This observation suggests that data 
locality should be used as key guidance to determine 
whether to apply FREM or not. 

 
5.4. Result Summary 
 

In summary, the above experiments have shown 
that: 
• For most applications, FREM can reduce restart 

latencies by 61.96% on average, as compared to the 
regular C/R mechanism. The results on the 
applications with good temporal data locality are 
more promising. 

• The post-checkpoint tracking overhead incurred by 
FREM is around tens of milliseconds, which is 
trivial compared to the reduction in restart latency 
achieved by FREM (e.g., in the range of a couple of 
seconds to 208.5 seconds). The restart overhead 
depends on application characteristics, generally 
ranging from less than one second to 22.7 seconds.  

• Our statistical performance analysis has shown that 
by using FREM, the expected application execution 

time between two restarts can be reduced by 14.3 
seconds to 183.3 seconds.   

 

 
Figure 6. Statistical performance analysis  

of FREM  
 
6.  Conclusions 
 

We have presented a novel mechanism called 
FREM to tackle the restart latency problem of general 
checkpoint protocols in networked environments.  
Through user-transparent system support, it allows fast 
restart on a partial checkpoint image by recording the 
process data access after each checkpoint. We have 
implemented FREM with the widely used BLCR 
checkpointing tool in Linux systems. Experiments on 
SPEC CPU2006 benchmarks have shown that FREM 
can effectively reduce process restart latency by 
61.96% on average. In future, we will explore an 
aggressive way to estimate the tracking window. In 
addition, a more sophisticated image loading 
mechanism will be developed for better performance of 
FREM. Our ultimate goal is to integrate FREM with 
existing checkpointing tools for better fault 
management of applications. 
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