
1

Dynamic Scheduling with Process Migration*

Cong Du, Xian-He Sun, and Ming Wu
Department of Computer Science

Illinois Institute of Technology
Chicago, IL 60616, USA

{ducong, sun, wuming}@iit.edu

Abstract*

Process migration is essential for runtime load

balancing. In Grid and shared networked
environments, load imbalance is not only caused by the
dynamic nature of underlying applications, but also by
the fluctuation of resource availability. In a shared
environment, tasks need to be rescheduled frequently
to adapt the variation of resources availability. Unlike
conventional task scheduling, dynamic rescheduling
has to consider process migration costs in its
formulation. In this study, we first model the migration
cost and introduce an effective method to predict the
cost. We then introduce a dynamic scheduling
mechanism that considers migration cost as well as
other conventional influential factors for performance
optimization in a shared, heterogeneous environment.
Finally we present experimental testing to verify the
analytical results. Experimental results show that the
proposed dynamic scheduling system is feasible and
improves the system performance considerably.

1. Introduction

Many distributed environments have been

developed to meet the demand for more computation
power. Some of the well-known distributed systems are
Condor, NetSolve, Nimrod, and the Grid environment
[14]. Resources in these systems are heterogeneous and
are shared among different user communities. Each
resource or organization may have its own resource
management policies and resource usage patterns.
Central control does not exist in resource management.
To harvest Grid computing in these environments
requires a continued dynamic rescheduling of Grid
tasks to adapt to the availability of locally controlled

* This research was supported in part by national science foundation
under NSF grant SCI-0504291, CNS-0406328, EIA-0224377, and
ANI-0123930.

computing resources. In addition, besides load balance,
migration-based dynamic scheduling also benefits
dynamic Grid management [19] in the cases of new
machines joining or leaving, resource cost variation,
and local task preemption.

An appropriate rescheduling should consider the
migration costs. This is especially true in distributed
and heterogeneous environments, where plenty of
computing resources are available at any given time
but the associated migration costs may vary largely. An
effective and broadly applicable solution for modeling
and estimating migration costs, however, has been
elusive. Even if an estimate is available, integrating
migration cost into a dynamic scheduling system is still
a challenging task. Based on our years of experience in
process migration [8] and task scheduling [24], we
propose an integrated solution in this study.

The design of a migration-based dynamic
scheduling is fourfold: reschedule triggering, migration
cost modeling, task scheduling, and parameter
measurement. We have proposed a reschedule
triggering system [10]. In this paper, we focus on the
three remaining problems. We choose to analyze the
migration cost based on our HPCM (High Performance
Computing Mobility) middleware [12]. HPCM is a
middleware released under the NSF middleware
initiative. It has a complex structure to support reduced
process states and pipelined communication/execution
for efficient process migration. All the parameters of
the migration cost model are measured by monitoring
the system and application running status at runtime.
Due to the sophistication of HPCM, the analytical
results presented in this study can be extended to other
existing migration and checkpointing systems as well.
Based on the estimated migration cost, we develop an
integrated dynamic scheduling system to optimize
application performance.

In the next section, we give an overview of related
work. In Section 3, we briefly describe the process
migration mechanisms and then model the migration
cost. A dynamic scheduling algorithm is introduced in

2

Section 4. Experiments and the parameter measurement
methodologies are presented in Section 5. Conclusions
and future work are discussed in Section 6.

2. Related work

Different task scheduling policies have been used in

distributed shared environments. Condor system [20]
uses a matchmaking mechanism to allocate resources
with ClassAds. The scheduling strategy is based on the
match of the users' specification of their job
requirements and preferences, with the machines'
characteristics, availabilities, and conditions. The
process migration is implemented based on a
checkpointing-based mechanism. However, it does not
support run-time process migration in heterogeneous
environments. AppLeS [5] is a well-known task
scheduling system in Grid computing. It uses a loop of
task events to schedule subtasks of a meta-task
dynamically. While it can reschedule un-started
subtasks, it does not support checkpointing or process
migration. Projects like Mosix [3], and OpenSSI [21]
support Single System Image (SSI) clustering, and
hence support process migration over the nodes within
the cluster. Because SSI technologies assume a tightly
coupled cluster environment, these systems cannot be
applied to massive message-passing based parallel
applications or a general loosely coupled Grid
environment. Virtual Machine Migration [6] may also
be used in load balancing. However, because it
requires the migration of the entire running
environment, including the operating system, it is
heavy-weighted in nature and only works in local-area
clusters with fast communication channels. The Linux
Zap [22] supports migration of legacy applications
through the use of loadable kernel modules and
virtualization of both hosts and processes. It uses a
checkpointing-based mechanism to support process
migration on Linux. The Zap system, as well as some
heterogeneous process migration systems [23], has not
implemented any mechanism for dynamic scheduling
and reallocation. Their migration costs have never been
studied in depth and their migrations are conducted
manually. The benefit of rescheduling may not reach
its full potential if it does not consider the migration
cost.

3. Migration cost analysis

Process state collection, transmission and

restoration are of general importance in process
migration. While migration has potential performance
gain for running tasks, the scheduling must be aware of
the migration cost, which is the cost to migrate a

running process to its new location. In this section, we
first present a general migration cost model. Then, to
provide feasible runtime prediction, we conduct in-
depth analysis on the HPCM middleware [12].

HPCM is a user-level middleware supporting
heterogeneous process migration of legacy codes
written in C, Fortran or other stack-based programming
languages via denoting the source code. It consists of
several subsystems to support the main functionalities
of heterogeneous process migration, including source
code pre-compiling, execution state collection and
restoration, memory state collection and restoration,
communication coordination and redirecting, and I/O
state redirecting. We have developed several
optimization mechanisms to reduce the migration cost,
including communication/execution pipelining, and
live variable analysis. To make correct decisions and
achieve precise scheduling, it is important that the
migration cost, as well as the amount of process state,
is analyzed and measured at runtime.

The input of HPCM is the source code of an
application. The pre-compiler or the users choose some
points (called poll-points) in the source code. A poll-
point is a point where a migration can occur. The pre-
compiler annotates the source code and outputs the
migration capable code, namely the annotated code.
The annotated code is pre-initialized on the destination
machine before a migration. When a migration is
demanded, the migrating process first transfers the
execution state, I/O state, communication state and
partial memory state to the initialized destination. The
pre-initialized process resumes execution while the
remaining memory state is still in transmission. That is,
the process states are transferred in a pipelined manner.
The concurrency saves significant time in a networked
environment, especially when a large amount of state
data needs to be transmitted. The pipelining, however,
imposes difficulty in estimating the migration cost.

To migrate an application over heterogeneous
systems, we represent the application’s memory space
by a Memory Space Representation (MSR) model [7],
which is a machine-independent logical representation
of memory space. The snapshot of an application’s
memory space is modeled as a MSR directed graph.
Each vertex in the graph represents a memory block.
Each edge represents a relationship between two
blocks when one of them contains a pointer, which
points to a memory location within another memory
block. MSRLT (MSR Lookup Table) is a global
mapping table between application memory space and
the conceptual MSR model. Each memory block that
may be referenced in the MSR, including a dynamic
memory block, has an entry in the table. To represent a
pointer, which contains a machine-specific address, the

3

MSRLT is searched for the memory block that contains
the address. The pointer is then represented in MSR by
an edge to the referenced memory block. The pre-
initialized process restores the pointer to the correct
address allocated to the referenced memory block.

3.1. Migration cost

The task scheduling system is based on the

statistical information gathered by the system
monitoring and the estimated migration cost.

Similar to a checkpoint/restart system, the migration
is separated into three phases: data collection, data
transmission and data restoration. The times spent on
these phases are represented as Tc, Tt, and Tr,
respectively. The source machine and the destination
machine are represented as ms and md. For a general
process migration system without any optimization, the
cost to migrate a running process from ms to md is:

Csd = Tc + Tt + Tr. (3-1)
However, estimating the migration cost based on

this general migration cost model shown in (3-1) is not
practical. First, a precise estimation of each parameter
in (3-1) highly depends on the implementation of the
migration system, which is not general. Second, (3-1)
cannot be applied to optimized process migration
systems such as the HPCM system, where the phases
are overlapped to reduce the migration cost.

In the following, we derive a migration cost model
to estimate the migration cost of a process at a given
migration point (the break point in the execution
sequence where migration occurs). Though we use
HPCM middleware throughout the analysis, the model
is general and can be extended to provide accurate
estimation of other migration systems.

Given an application App running on a machine, at
time t = 0, it reaches a poll point P. If App does not
migrate at time t, it finishes on mj at tjj. If App is
scheduled to migrate to another machine at time t, it
finishes on mi at tji. For convenience, tj is used instead
of tjj in the following. The available communication
bandwidth from mj to mi is bji, which can be estimated
with existing network performance prediction tools
such as [25] and [13]. The available computing
capacity of mj for application App is τj. In Section 4,
we will discuss how to measure and predict this
parameter.

The migration cost Cji is defined as the time spent to
migrate App from mj to mi. So, tji = Cji + tjτj/τi.. If mi
has the same computing capacity as mj, that is τj = τi
(in most cases, this means mi is identical to mj), then
the migration cost is

Cji = tji – tj . (3-2)

3.2 Process state

A process’s state is represented as S = <App, P, M,

IO, Comm>. They are the execution state P, memory
state M, I/O state IO, and communication state Comm.
f(S) is the size of S. In HPCM, data collection,
transmission and restoration overlap with each other.
We assume the migration is from mj to mi and C is the
abbreviation for Cji. So the migration cost,

rtcrtc TTTCTTT ++<<),,max(
The complexity of data collection and restoration is

application-specific. Based on the data collection and
restoration algorithm, we can define the data collection
time as:

cT = search(MSRLT) + encode(S) + copy(S)
and the data restoration time as:

rT = update(MSRLT) + decode(S) + copy(S).
where search(MSRLT) is the time searching the

MSRLT data structure; update(MSRLT) is the time
updating the MSRLT data structure with machine-
specific address; encode(S) is the time encoding the
data to a machine-independent format; decode(S) is the
time decoding data; copy(S) is the time copying data to
or from a buffer. For homogeneous migration, it is not
necessary to encode data, so encode(S) and decode(S)
can be omitted from the formula.

Suppose there are n fully-connected nodes in MSR
graph. Because the MSRLT is searched in a depth-first
manner, search(MSRLT) has the upper bound
complexity of)log(nnO . To update the references in
MSRLT, update(MSRLT) takes O(n) time complexity.
encode(S), decode(S) and copy(S) state have the
complexity of))((SfO . The transmission time tT also
takes the time complexity of))((SfO . Putting them all
together, the migration cost is represented as:

)(0 SfC µα +≈ , (3-3)
α0 is a small migration overhead that is application

specific and depends on the number and size of fully-
connected subgraphs in the MSR model. If the
application has a large amount of referenced or
dynamic allocated memory blocks, α0 is bigger. For
other systems without the MSR model and
performance optimization, α0 is a constant. µ is called
migration processing rate, and it is represented as
seconds per byte. µ is proportional to the reciprocal of
the current available bandwidth, jib , between the

source and destination node, that is
jib
1αµ = . α1 is an

application dependent constant that reflects the
overlapping factor. α1 can be analytically computed

4

without consider overlapping. The overlapping factor
can be measured directly.

Experiments shown in Figure 1 confirm formula (3-
3). The linear increase of migration cost shows that the
migration cost is proportional to the size of the state for
a given application App and migration point P. The
migration cost is determined by the amount of state to
be collected, transmitted and restored during the
migration.

We measure α0 and α1 by experiments. As shown in
Figure 1, 0004.00 =α seconds, and 025.0=µ
second/MB when there is no other traffic on the
experimental platform. So 23.21 =α . The migration cost
C increases from 0.01 to 15.46 seconds when f(S)
increases from 0.415 to 635.22 MBytes.

In the following, we estimate the size of the process
state. A process state consists of execution state,
memory state, communication state, and I/O state.

0

5

10

15

20

0 50 100 150 200 250 300 350 400 450 500 550 600M bytes

se
co

nd
s

Figure 1. Process State and Migration Cost

Execution State. A stack containing the functions in
the calling sequences and their current execution
locations represents the execution state P. The
migration point is represented by <function, location>
couples in a stack, which are maintained by macros
inserted at the beginning and the end of each function.
For example, the execution state of a process is P = <
<main, main_L2>, <foo1, foo1_L1>, <foo2, foo2_L4>,
<foo1, foo1_L2>, …>, where main_L2 represents the
second poll point in the function main. So,

f(P) = β • depth(P) (3-4)
where the depth(P) is the depth of the stack at the

migration point P and β is the amount of data for a
single entry in the execution stack.

Memory State. There are three memory spaces in a
running process: heap space, global space, and stack
space. For programming languages like C and C++,
variables are defined at different locations and with
different storage type modifiers to indicate their
storage idiosyncrasies and locations. Blocks in heap
space are allocated at runtime and referenced by

pointers. Also there are some variables residing in the
register file for fast access. The global variables and
static variables reside in global space and can be
accessed after a function call. So, all the variables in
the global space are collected, transmitted and restored
as a part of the memory state. The dynamic allocated
memory blocks reside in the heap space with pointers
referencing to these blocks. A dynamic memory block
may lose all its references during execution, and then it
is called “garbage” and cannot be accessed afterward.
Only valid memory blocks need to be collected and
transmitted. Each function in the running sequence has
a stack segment and a local address space in stack. All
the parameters, including local auto variables and
temporary variables (variables defined by a compiler to
store the intermediate computing values) are stored in
the stack. They are only valid before the function
return to its caller. We perform live variable analysis
on these variables. That is, only variables that are live
(may be accessed after the migration point) at the
migration point are collected and transmitted. The
amount of memory state is represented as:

f(M)= Mg+ Ms(P) + Mh(P) (3-5)
where Mg is the size of variables in global address

space; Ms(P) is the size of live variables at migration
point P in stack space; Mh(P) is the size of the dynamic
memory blocks at migration point P in the heap space.

I/O State. Distributed applications may use many
approaches to store and access their data. Commonly
used approaches include network file systems such as
NFS, distributed file systems such as DFS and Coda
[4], and data transfer protocols such as FTP and
GridFTP [16]. The data migration cost highly depends
on these storage systems and data transfer protocols.
Estimating the performance of these systems is out of
the scope of this paper. In the following, we assume
the presence of the globally accessible storages. The
application data are not moved during the migration.
The I/O state of a process is registered into a data
structure called I/O Information Table. This table is
created and maintained at runtime. An entry in the I/O
Information Table is initialized when an I/O instance is
created. The I/O information table is transmitted to the
destination process and restored accordingly. The
amount of the I/O state is:

f(IO) = γ • iob(P) (3-6)
where γ is the size of each I/O entry in the I/O

Information Table; iob(P) is the size of I/O Information
Table at the migration point P.

Communication State. The communication state of a
process is composed of all its active connections
established with other processes [8]. For each

5

connection, the migrating process coordinates with its
communication partners to direct new messages to the
destination process, drains the message queue and
saves the incoming message to the received-message-
list. The communication state is forwarded to the
destination machine with its received-message-list. The
destination process then restores the communication
connections. It first checks the received-message-list
for incoming messages in future execution. The size of
communication state is:

f(Comm) = ∑
∈)(

))((
PNi

imsglength (3-7)

where N(P) is the set of all the established
connections of the process App at the migration point P;
msg(i) is the size of the received_message_list of
connection i.

Putting them all together, the size of process state is:
f(S)= β • depth(P) + Mg+ Ms(P) + Mh(P) +
γ • iob(P) + ∑

∈)(
))((

PNi
imsglength (3-8)

where f(S) is the data size of state S; β is the size of
an entry in the running stack; Mg is the size of variables
in global address space; Ms(P) is the size of live
variables at migration point P in stack space; Mh(P) is
the size of the dynamic memory blocks at migration
point P in the heap space; γ is the size of each I/O entry
in the I/O Information Table; iob(P) is the size of I/O
Information Table at the migration point P; N(P) is the
set of all the established connections of the process
App at the migration point P; msg(i) is the size of the
received_message_list of connection i.

4. Dynamic task scheduling

We have developed a dynamic task scheduling

system to reallocate applications dynamically at
runtime. To choose a machine as the destination
machine, we calculate the expected application
execution time after migration and the cost of
migration. Let jm denote the source machine and im

is the magration destingation machine. As shown in
Section 3, jiC , the time of migrating a process from

jm to im , is

)(0 SfC ji µα += (3-3)

Let '
jw denote the unfinished workload on jm . The

completion time of the unfinished workload '
jw , jiT ,

is calculated as follows.
)('

jjiji STCT += (4-1)

where)('
jST denotes the execution time of the

application with unfinished workload on machine im .

When the destination machine im is dedicated to
the execution of the migrated application, we can
calculate jjj wST τ/)(' ′= where jτ denotes the

computing power of the machine im . If the
destination machine is in a shared environment, for
example, in a Grid environment, its resource
availabilities may vary with time. To estimate the

application execution time on a shared resource, we
need to identify the availability of computing resources
and its influence on the application performance.

We use parameters λ , ρ , σ to describe the
dynamic resource usage pattern of a shared machine.
λ is the local job arrival rate, σ is the standard
deviation of job service time, and ρ is the resource
utilization. We assume the arrival of local jobs follows
a Poisson distribution withλ . The service time of local
jobs follows a general distribution with mean µ/1 and
standard deviation σ . These assumptions are based on
the observations of machine usage patterns reported by
researchers in Wisconsin-Madison, Berkeley,
Maryland et. al. [2]. The cumulative distribution
function of the application completion time on a
machine can be calculated as [15]:

⎪⎩

⎪
⎨
⎧ ≥>−≤−−+−

=≤
otherwise

wtifSwtSUwewe
tT

,0

),0|/)(Pr()/1(/
)Pr(

ττλτλ

Assumption: an application is located on machine, 0m .
Objective: dynamically reallocate an application when an
abnormality is noticed
--
Begin
Receiving the triggering signal
List a set of idle machines that are lightly loaded over an
observed time period, },{ ,21 qmmmM K= ;

1=′p ;
For each machine km)1(qk ≤≤ ,

Use Formula (3-3) to calculate the migration cost,
kC0
;

Use Formula (4-2) to calculate the mean of the remote
task execution time,)('

kST ;
Use Formula (4-1) to calculate the application
completion time,

kT0

If
'0 p

T > kT0 , then kp =′ ;

End For
Migrate the application from

0m to
pm ′

;

End

Figure 2. Dynamic task scheduling algorithm

(4-2)

6

where)(SU is the sum of busy periods of local
jobs on the machine. τ is the computing capacity of
the machine and w is the workload of the application.

After identifying the cumulative distribution
function of)('

jST , we can decide which machine

should be selected as the destination machine. The
basic idea is given below. First, we list a set of idle
machines that are lightly loaded over an observed time
period. Then for each machine, we calculate the
migration cost and the expected application execution
time with formula (3-3) and (4-2) respectively. The
machine which has the minimum expected application
completion time will be chosen as the destination.
Figure 2 gives the detailed dynamic task scheduling
algorithm.

5. Experiment results

We implemented the dynamic scheduling algorithm

to verify the correctness of the migration cost model.
We performed experiments on the sunwulf Computer
Farm in the Scalable Computing Software (SCS)
laboratory at the Illinois Institute of Technology.
Sunwulf is a heterogeneous cluster in both computing
and communication capacity. In our previous work,
HPCM has been proven to work well on both
heterogeneous and homogeneous ISAs. In this paper,
we focus on the heterogeneities in computation and
communication capacity and their impact on the
scheduling mechanism. ISA heterogeneity, which does
not affect our model and scheduling mechanism, is not

discussed. Sunwulf is composed of one Sun Enterprise
450 server node (sunwulf node), 64 Sun Blade
workstations 100 (hpc-1 to hpc-64) and 20 Sun Fire
V210R (hpc-65 to hpc-84) compute nodes. The Sun
Enterprise 450 server has four CPUs, 8M cache and

4GB memory. Each CPU is 480 MHz. The Sun Blade
compute node has one 500-MHz CPU, 256K L2 cache,
and 128M memory. The Sun Fire V210R compute
node has two 1GHz CPUs, 1M L2 cache and 2GB
memory. All the systems are running SunOS 5.9
operating system. All the Sun Fire 210R servers are
connected with a Gigabits Ethernet. The maximum
bandwidth is 89.1M bytes/s. Other communication
channels within the workstations or between the
servers and the workstations are 100Mbps internal
Ethernet. The maximum bandwidth is 11.8M bytes/s.
The workstations are organized as a “fat tree” structure.
The computation and communication heterogeneities
make sunwulf a good test bed for our system.

In the first experiment, we have tested four
applications to verify the migration cost model. The
first one is the linpack C sequential program, which
solves a dense system of linear equations with
Gaussian elimination [11]. The second is the bitonic
program written by Joe Hummel [18], which builds a
random binary tree and then sorts it. The third is gzip, a
popular compression utility. The last application
xlintims is from CLAPACK [9] with single precision
real timing routines. CLAPACK provides routines for
solving systems of simultaneous linear equations, least-
squares solutions of linear systems of equations,
eigenvalue problems, and singular value problems.

According to formula (3-3), the migration cost is
proportional to the data size of the process state.
Because the data collection overlapped with data
communication, α0 is very small. The maximum value
we observed in our experiments is less than 0.01

seconds for bitonic program which has a large amount
of dynamically allocated memory blocks. In the
following experiments, we assume it is a constant. α1 is
an application dependant constant and bji is the

0

0.2

0.4

0.6

0.8

se
co

nd
s

1st 3rd 5th

Estimated Cost

Actual Cost

Figure 6. Migration Cost Estimation (xlintims)

0

0.5

1

1.5

se
co

nd
s

1st 3rd 5th

Estimated Cost

Actual Cost

Figure 5. Migration Cost Estimation (gzip)

0

5

10

15

20

se
co

nd
s

1st 2nd 3rd 4th 5th 6th

Estimated Cost
Actual Cost

Figure 3. Migration Cost Estimation (Linpack)

0

5

10

15

20

se
co

nd
s

1st 2nd 3rd 4th 5th 6th

Estimated Cost

Actual Cost

Figure 4. Migration Cost Estimation (Bitonic)

7

available bandwidth from mj to mi. We perform our
tests on Sun Fire nodes with Gigabit Network and
randomly generate communication load to simulate the
traffic in Grid. Since the source and destination
machine are identical and have the same computing
capacity, the actual migration cost can be measured by
formula (3-2). The parameters in formula (3-8) are
measured at runtime by querying the running
applications for current status. After receiving a
migration request, the dynamic scheduling system
sends a query to the running process asking for current
size of state by a user-defined signal. The running
process checks its current execution state, memory
state, I/O state and communication state and generates
a process description schema in XML language
describing current data size of each process state. The
process schema includes the static and dynamic
information about a running process such as
application name, type (computational intensive, data
intensive, dynamic memory management intensive,
etc.), and data size of each state. β, γ and the size of
global memory state Mg are provided by a precompiler.
In our experiments, β = 4 and γ = 28. The depth of
execution stack depth(P), the memory size of stack
space Ms(P), heap space Mh(P), and the size of I/O
information table iob(P) are measured and maintained
by HPCM middleware. The number of live
communication connections N(P) and the length of the
received message list length(msg(i)) are measured at
runtime through querying. Based on the information
provided by the process schema, the dynamic
scheduling system calculates the size of process state
using formula (3-8) and then estimates the migration
cost using formula (3-3).

Table 1. Comparisons of scheduling Strategies

As shown in Figure 3-6, the migration cost can be
estimated with error ranging from 0%-18%. Each
application is tested 6 times. The migration is triggered
randomly so the running state varies each time. As
shown in the figures, the migration cost may vary
according to the application’s current running state.
The average error is 8.19% for linpack, 5.76% for

bitonic, 6.51% for gzip and 2.51% for xlintims. The
overall average error for these tests is 5.74%. This
experiment shows that the migration cost can be
precisely predicted by our migration cost model.

To evaluate the efficiency of the proposed dynamic
scheduling algorithms (DSA) in selecting a destination
machine for process migration, we conduct
experiments to compare its performance with other
machine selection strategies: migration-cost-minimum
(MCM), execution-time-minimum (ETM), and random
selection (RS). The migration-cost-minimum approach
chooses a machine to which the migration cost is the
minimum. The execution-time-minimum approach is to
find a machine where the unfinished workload of the
application will be executed in a minimum time. We
have mentioned that the sunwulf cluster is
heterogeneous in terms of the nodes’ computer power
and the underlying communication infrastructure. To
further increase the heterogeneity of our test platform
to simulate a Grid environment, we generate synthetic
traffic on the network and workload on the nodes. In
our simulation environment, the arrival rate of local
jobs on each machine follows Poisson distribution. The
local jobs’ lifetime is simulated with x/0.2 [1], which
follows the observation of real-life processes in [17].
x is a random number between 0 and 1. The local job
arrival rate and the job service rate on each machine
are randomly generated in an adjustable range. The
resource utilization of each machine is thus different.
We randomly generate the network traffic so that the
end-to-end network performance among those nodes is
different. Table 1 shows the application execution time
with different machine selection approaches. The job
execution time of each selection strategy is compared
with the minimum completion time of all strategies and
is marked with different grey levels for ≤5%, 5% to
20%, 20% to 50% and >50% higher than minimum
completion time respectively. The experiment results
show that with considering the migration cost, the
proposed scheduling algorithm (DSA) is the best in
performance. ETM may find acceptable destination for
the process for light process migration. However, as
shown in Table 1 for Linpack C applications, when the
communication channel is busy, ETM cannot avoid
performance degradation caused by increased
migration cost.

6. Conclusion and Future Work

In this paper, we study dynamic scheduling in a

shared distributed environment. We have introduced a
migration cost model, derived a dynamic scheduling
algorithm that considers migration costs as a decision

seconds DSA MCM ETM RS
1 2395.33 2578.52 2468.12 4174.63
2 494.91 619.49 553.46 526.54
3 65.83 89.42 81.29 90.82

linpack

4 21.52 23.60 25.02 76.81
1 557.78 1359.56 557.81 557.72
2 57.18 67.45 69.54 92.83

xlintim
s
 3 615.97 1489.73 616.15 1466.6
≤5% 5%-20% 20%-50% >50%

8

factor, and implemented an automatic dynamic
scheduling system that integrates the model, algorithm,
and a triggering/monitor subsystem. Experimental
results show that the model is precise, the scheduling
algorithm is more appropriate than existing scheduling
algorithms, and the dynamic scheduling system is
effective and practical. The proposed dynamic
scheduling system has a real potential to positively
impact parallel and distributed computing.

We have considered worst-case scenarios in our
analysis and implementation. The Grid environment is
heterogeneous and shared, and the HPCM migration
system supports the transfer of runtime, memory, and
communication states. The analysis and
implementation can be extended to other less powerful
migration systems or to dedicated environments. Since
checkpointing and migration mechanisms differ mostly
in communication state, the results can be also applied
to checkpointing systems.

We have proposed and implemented a prototype of
the dynamic task scheduling system to reallocate
processes dynamically. Currently, we select the
destination machine based on an estimate of the
completion time of the migrated process. When an
application consists of multiple processes running
concurrently on different machines, we need to
consider the overall application completion time as a
selection criterion. We plan to extend our current work
to this more complicated scenario in the future.

References

[1] Y. Amir, B. Awerbuch, A. Barak, R. S. Borgstrom, et al,
"An opportunity cost approach for job assignment in a
scalable computing cluster," IEEE Trans. on Parallel and
Distributed Systems, vol. 11, no. 7, 2000.
[2] A. Acharya, G. Edjlali, and J. Saltz, "The utility of
exploiting idle workstations for parallel computation," in
Proc. of SIGMETRICS, 1997, pp. 225-236.
[3] A. Barak, S. Guday, and R. G. Wheeler. "The MOSIX
Distributed Operating System: Load Balancing for UNIX”,
vol. 672. Springer-Verlag, 1993.
[4] P. J. Braam. The Coda Distributed File System. Linux
Journal, June 1998.
[5] F. Berman, R. Wolski, H. Casanova, W. Cirne, et al.
"Adaptive computing on the Grid using AppLeS," IEEE
Trans. Parallel Distrib. Systems, 14 (2003) 369-382.
[6] C. Clark, K. Fraser, S. Hand, J. G. Hansen, etl "Live
Migration of Virtual Machines". In Proc. 2nd Symp. on
Networked Sys. Design and Impl. Boston, MA May 2005.
[7] K. Chanchio and X. H. Sun, "Data collection and
restoration for heterogeneous process migration," Software--
Practice and Experience, 32:1-27, April 15, 2002.
[8] K. Chanchio and X-H. Sun, "Communication State
Transfer for the Mobility of Concurrent Heterogeneous

Computing," IEEE Trans. on Computers, Vol. 53, No. 10, pp:
1260-1273, 2004.
[9] http://www.netlib.org/clapack/
[10] C. Du, S. Ghosh, S. Shankar, and X.-H. Sun, "A
Runtime System for Autonomic Rescheduling of MPI
Programs," in Proc. of Intl. Conf. of Parallel Processing,
Montreal, Canada, August 2004.
[11] J. Dongarra, "The Linpack Benchmark: An
Explanation," in Proc. of 1st Intl. Conf. on Supercomputing,
pp. 456-474, Athens, Greece, June 8-12, 1987, Springer-
Verlag 1988.
[12] C. Du, X.-H. Sun and K. Chanchio, "HPCM: A Pre-
compiler Aided Middleware for the Mobility of Legacy
Code," in Proc. of IEEE Cluster Computing Conference,
Hong Kong, Dec. 2003. Software available at:
http://archive.nsf-middleware.org/NMIR4/contrib/download.asp.
[13] A. Eswaradass, X.-H. Sun, and M. Wu, "A Neural
Network Based Predictive Mechanism for Available
Bandwidth," in Proc. of 19th Intl Parallel and Dist.
Processing Symposium, Denver, CO, April., 2005.
[14] I. Foster, C. Kesselman, The Grid2: Blueprint for a New
Computing Infrastructure, Morgan-Kaufman, 2004.
[15] L. Gong, X.-H. Sun, E. F. Waston, "Performance
modeling and prediction of non-dedicated network
computing," IEEE Trans. Comput. 51 (2002) 1041-1055.
[16] B. Allcock, L. Liming, and S. Tuecke, “GridFTP: A
Data Transfer Protocol for the Grid.”
[17] M. Harchol-Balter and A. Downey, "Exploiting process
lifetime distributions for dynamic load balancing," in Proc.
of ACM Sigmetrics Conf. Measurement and Modeling of
Computer Systems, 1996.
[18] J. Hummel, L. Hendren, A. Nicolau. "A language for
conveying the aliasing properties of dynamic, pointer-based
data structures," in Proc. International Conference on
Parallel Processing, 1992.
[19] K. Keahey, M. Ripeanu, and K. Doering. "Dynamic
creation and management of runtime environments in the
Grid," Workshop on Designing and Building Web Services
(GGF 9), Chicago, October, 2003.
[20] M. Lizkow, M. Livny, and T. Tannenbaum,
"Checkpoint and Migration of UNIX Processes in the Condor
Distributed Environment," Technical Report 1346.
University of Wisconsin-Madision, April 1997.
[21] http://openssi.org/
[22] S. Osman, D. Subhraveti, G. Su, and J. Nieh, "The
Design and Implementation of Zap: A System for Migrating
Computing Environment," in Proc. of the 5th Operating
System Design and Implementation, Dec. 2002.
[23] P. Smith and N. Hutchinson, "Heterogeneous Process
Migration: The Tui System," Software -Practice and
Experience, Vol 28, No.6, pp.611-639, 1998.
[24] X.-H. Sun and M. Wu, "Grid Harvest Service: A System
for Long-Term, Application-Level Task Scheduling," in Proc.
of IPDPS 2003, Nice, France, Apr 2003.
[25] R. Wolski, N. T. Spring, and J. Hayes, "The Network
Weather Service: a Distributed Resource Performance
Forecasting Service for Metacomputing," Journal of Future
Generation Computing Systems, vol. 15, no. 5-6, pp. 757-768,
Oct. 1999.

