
A Statistical-Empirical Hybrid Approach to

Hierarchical Memory Analysis

Xian-He Sun1 and Kirk W. Cameron2

1 Illinois Institute of Technology, Chicago IL 60616, USA
2 Los Alamos National Laboratory, Los Alamos NM 87544, USA

Abstract. A hybrid approach that utilizes both statistical techniques

and empirical methods seeks to provide more information about the per-

formance of an application. In this paper, we present a general approach

to creating hybrid models of this type. We show that for the scienti�c

applications of interest, the scaled performance is somewhat predictable

due to the regular characteristics of the measured codes. Furthermore,

the resulting method encourages streamlined performance evaluation by

determining which analysis steps may provide further insight to code

performance.

1 Introduction

Recently statistics have provided reduction techniques for simulated data in the

context of single microprocessor performance [1, 2]. Recent work has also focused

on regressive techniques for studying scalability and variations in like architec-

tures statistically with promising but somewhat limited results [3]. Generally

speaking, if we were to combine the strength of such comparisons with a strong

empirical or analytical technique, we could conceivably provide more informa-

tion furthering the usefulness of the original model. A detailed representation

of the empirical memory modeling technique we will incorporate in our hybrid

approach can be found in [4].

2 The Hybrid Approach

2.1 The Hybrid Approach: Level 1

We will use cpi, cycles per instruction, to compare the achievable instruction-

level parallelism (ILP) of particular code-machine combinations. We feel that

great insight can be gathered into application and architecture performance if

we break down cpi into contributing pieces. Following [5] and [6], we initially

break cpi down into two parts corresponding to the pipeline and memory cpi.

cpi = cpipipeline + cpimemory (1)

Level one of the hybrid approach focuses on using two-factor factorial experi-

ments to identify the combinations that show di�erences in performance that



warrant further investigation. Following the statistical analysis method in [3],

we identify codes and machines as observations to be used in the two-factor fac-

torial experiments. Once all measurements have been obtained, we can perform

the experiments for the factors code and machine. Using statistical methods with

the help of the SAS statistical tool, we gather results relating to the variations

present among codes, machines and their interactions. We accomplish this via

a series of hypothesis experiments where statistically we determine whether or

not a hypothesis is true or false. This is the essence of the two-factor factorial

experiment. This allows us to identify within a certain tolerance, the di�erences

among code-machine combinations.

Hypothesis: Overall e�ect does not exist. For this experiment, the depen-

dent variable is the overall average cpi measured across codes for the machines.

With these parameters, disproving the hypothesis indicates that in fact, di�er-

ences between the architectures for these codes exist. If this hypothesis is not

disproved, then we believe with some certainty, that there are no statistical di�er-

ences among the two architectures for these codes. If this hypothesis is rejected,

then the next three hypotheses should be visited.

Hypothesis: Code e�ect does not exist. For this experiment, the dependent

variable is the cpipipeline term from the decoupled cpi of Equation 1. In practice,

this term is experimentally measured when using the empirical model. If the

hypothesis holds in this experiment, no di�erence is observed statistically for

these codes on these machines at the pipeline level. Conversely, if the hypothesis

is rejected, code e�ect does exist indicating di�erences at the pipeline level for

this application on these architectures. In the empirical model context, if this

occurs, further analysis of the cpipipeline term is warranted.

Hypothesis: Machine e�ect does not exist. For this experiment, the de-

pendent variable is the cpimemory term from the decoupled cpi of Equation 1.

This term can be derived experimentally as well. If the hypothesis holds in this

experiment than no discernible di�erence between these machines statistically is

apparent for these codes. Otherwise, rejecting this hypothesis indicates machine

e�ect does exist. In the case of the empirical memory model, this warrants fur-

ther investigation since it implies variations in the memory performance across

code-architecture combinations.

Hypothesis: Machine-code interaction does not exist. For this exper-

iment, the dependent variable is overall cpi measured across individual codes

and individual machines. If this hypothesis is held, then no machine-code in-

teraction e�ects are apparent statistically. Otherwise, rejecting the hypothesis

begs for further investigation of the individual codes and machines to determine

why machine-code interaction changes the performance across machines. Such

performance di�erences indicate that codes behave di�erently across di�erent

machines in an unexpected way, hence requiring further investigation.



2.2 The Hybrid Approach: Level 2

If code e�ect exists, study cpipipeline. This indicates fundamental di�er-

ences at the on-chip architectural level. The empirical memory model does not

provide insight to such performance di�erences, treating cpipipeline as a black

box. Another model, such as that found in [7] could be used to provide more

insight to performance variations for such a code.

If machine e�ect exists, study cpimemory. If machine e�ect exists, statisti-

cal variations are present between di�erent codes at the memory hierarchy level

across machines. This is exactly the purpose of the empirical memory model: to

analyze contributions to performance from the memory hierarchy. At this point,

the statistical method has provided an easy method for determining when fur-

ther analysis using the memory model is necessary. This requires a more detailed

look at the decoupled cpi in Equation 1.

Latency hiding techniques such as out-of-order execution and outstanding

memory loads increase performance. We can no longer calculate overall cpi as

simply the dot-product of maximum latencies Ti at each i level of the hierarchy

and the associated number of hits to level i, hi. We require the average latency

incurred at each level in the hierarchy, ti. Furthermore, if we de�ne a term that

expresses the ratio of average latencies to maximum latencies in terms of cpi we

can express overall cpi in the following form:

cpi = cpipipeline + (1�m0)

nlevelsX

i=2

hi � Ti (2)

It is obvious that this is another representation of Equation 1. m0 is formally de-

�ned as one minus the ratio of the average memory access time to the maximum

memory access time:

m0 = 1�

P
nlevels

i=2
hi � tiP

nlevels

i=2
hi � Ti

: (3)

m0 quanti�es the amount of overlap achieved by a processor that overlaps mem-

ory accesses with execution. (1�m0) is the portion of time spent incurring the

maximum latency.

The above equations would indicate that m0 reects the performance varia-

tions in cpi when cpipipeline is constant. Calculating m0 is costly since it requires

a least square �tting �rst to obtain each ti term. By applying the statistical

method and through direct observation, we have isolated the conditions under

which it is worthwhile to calculate the terms of Equation 2. For conditions where

machine e�ect exists, m0 will provide useful insight to the performance of the

memory latency hiding e�ects mentioned. We can also use m0 statistically to

describe the scalability of a code in regard to how predictable the performance

is as problem size increases. We can use other variations on the original statis-

tical method to study the variations of m0. This is somewhat less costly than

determining m0 for each problem size and machine combination. Nonetheless,



actually calculating m0 values provides validation to the conclusions obtained

using this technique. If m0 values show no statistical variations or are constant

as problem sizes increase, performance scales predictably and m0 can be used

for performance prediction of problem sizes not measured. If m0 values uctuate

statistically or are not constant as problem size increases, performance does not

scale predictably and cannot be used for performance prediction.

m0 values across machines can also provide insight into performance. If sta-

tistical di�erences across machines for the same problem are non-existent or if

m0 �m
0

0
is constant as problem size increases, where each m0 represents mea-

surements for the same code over di�erent machines, then the memory design

di�erences make no di�erence for the codes being measured.

If machine-code interaction exists, study cpi. This corresponds to the

fourth hypothesis. If machine-code e�ect exists, statistical variations are present

when machine-code interactions occur. This indicates further study of the re-

sulting cpi is necessary since there exist unexplained performance variations.

This scenario is outside the scope of the hybrid method, but exactly what the

statistical method [3] was intended to help analyze. Further focus on particular

code and architecture combinations should be carried out using the statistical

method.

3 Case Study

3.1 Architecture Descriptions

Single processor hierarchical memory performance is of general interest to the

scienti�c community. For this reason, we focus on a testbed consisting of an SMP

UMA architecture and a DSM NUMA architecture that share the same process-

ing elements (the MIPS R10000 microprocessor) but di�er in the implementation

of the memory hierarchy. The PowerChallenge SMP and the Origin 2000 DSM

machines o�er state-of-the-art performance with di�ering implementations of

the memory hierarchy.

The 200MHz MIPS R10000 microprocessor is a 4-way, out-of-order, super-

scalar architecture [8]. Two programmable performance counters track a number

of events [9] on this chip and were a necessity for this study. Even though the

R10000 processor is able to sustain four outstanding primary cache misses, ex-

ternal queues in the memory system of the PowerChallenge limited the actual

number to less than two. In the Origin 2000, the full capability of four outstand-

ing misses is possible. The L2 cache sizes of these two systems are also di�erent.

A processor on PowerChallenge is equipped with up to 2MB L2 cache while a

CPU of Origin 2000 system always has a L2 cache of 4MB.

In our context, we are only concerned with memory hierarchy performance

for a dedicated single processor. As mentioned, the PowerChallenge and Ori-

gin 2000 di�er primarily in hierarchy implementation and we will not consider

shared memory contributions to performance loss since all experiments have

been conducted on dedicated single processors without contention for resources.



3.2 ASCI Representative Workloads

Four applications that form the building blocks for many nuclear physics sim-

ulations were used in this study. A performance comparison of the Origin and

PowerChallenge architectures has been done using these codes [10] along with a

detailed discussion of the codes themselves. In the interest of space, we provide

only a very brief description of each code.

SWEEP is a three-dimensional discrete-ordinate transport solver. HYDRO

is a two-dimensional explicit Lagrangian hydrodynamics code. HYDROT is a

version of HYDRO in which most of the arrays have been transposed so that

access is now largely unit-stride. HEAT solves the implicit di�usion PDE using

a conjugate gradient solver for a single timestep.

3.3 Hybrid Analysis

We now apply the hybrid method to draw conclusions regarding our codes. We

should note that some of the statistical steps involved can be performed by

simple inspection at times. For simple cases this can be e�ective, but generally

simple inspection will not allow quanti�cation of the statistical variance among

observations. For this reason, we utilize statistical methods in our results. In-

spection should certainly be used whenever the con�dence of conclusions is high.

We will not present the actual numerical results of applying statistical methods

to our measurements due to restrictions on space. We will however provide the

general conclusions obtained via these methods, such as whether or not a hy-

pothesis is rejected. The observations used in our experiments include various

measurements for the codes mentioned at varying problem sizes. All codes were

measured on both machines using the same compiled executable to avoid di�er-

ences and with the following problem size constraints: HEAT [50,100], HYDRO

[50,300], SWEEP [50,200], and HYDROT [50,300].

Level 1 Results For the �rst hypothesis, \overall e�ect does not exist," we

use level one of the original statistical model. A straight-forward two-factor fac-

torial experiment shows that in fact the hypothesis is rejected. This indicates

further study is warranted and so, we continue with the next 3 hypotheses. Us-

ing cpipipeline as the dependent variable, the two-factor factorial experiment is

performed over all codes and machines to determine whether or not code e�ect

exists. Since identical executables are used over the two machines, no variations

are observed for cpipipeline values over the measured codes. This is expected as

the case study was prepared to focus on memory hierarchy di�erences. Thus

the hypothesis holds, and no further study of cpipipeline is warranted for these

code-machine combinations.

Next, we wish to test the hypothesis \machine e�ect does not exist". We

perform the two-factor factorial experiment using cpimemory. The results show

variations for the performance of cpimemory across the two machines. This will

require further analysis in level two of the hybrid model. Not rejecting the hy-

pothesis would have indicated that our codes perform similarly across machines.



The third hypothesis asks whether \machine-code interaction exists". In fact,

performing the two-factor factorial experiment, shows that machine-code inter-

action is present since we reject the hypothesis. This will have to be addressed

in level two of the hybrid model as well.

Level 2 Results Now that we have addressed each of the hypothesis warranted

by rejection of the \overall e�ect" hypothesis, we must further analyze anomalies

uncovered (i.e. each rejected hypothesis). We have identi�ed code e�ect existence

in level 1. It is necessary to analyze the m0 term of Equation 2. Statistical results

and general inspection show strong variations with problem size in HYDRO on

the Origin 2000. Less uctuations, although signi�cant occur for the same code

on the PowerChallenge. This indicates that unpredictable variations are present

in the memory performance for HYDRO. As problem size scales, the m0 term

uctuates indicating memory accesses do not achieve a steady state to allow

performance prediction for larger problem sizes. Performing the somewhat costly

linear �tting required by the empirical model supports the conclusions as shown

in Figures 1 and 2. In these �gures, problem size represents the y � axis and

calculatedm0 values have been plotted. The scalability of HYDRO is in question

since the rate at which latency overlap contributes to performance uctuates.

Fig. 1. m0 values calculated on the Origin 2000.

On the other hand HEAT, HYDROT, and SWEEP show indications of pre-

dictability on the PowerChallenge. Statististical analysis of m0 for problem sizes

achieving some indication of steady state (greater than 50 for these codes - neces-

sary to compensate for cold misses, counter accuracy, etc.) reveals little variance

in m0. For problem sizes [50,100], [75,300], and [50,200] respectively, m0 is close

to constant indicating the percentage of contribution to overlapped performance

is steady. This is indicative of a code that both scales well and is somewhat

predictable in nature over these machines. For these same codes on the Origin



Fig. 2. m0 values calculated on the PowerChallenge.

2000, larger problem sizes are necessary to achieve little variance in m0. Respec-

tively, this occurs at sizes of [75,100], [100,300], and [100,200]. The shift this time

is due to the cache size di�erence on the Origin 2000. It takes larger problem

sizes to achieve the steady state of memory behavior with respect to the latency

tolerating features previously mentioned. For both machines, these three codes

exhibit predictable behavior and generally good scalability.

For two codes, HEAT and HYDROT, the uctuations in the di�erences be-

tween m0 values are minimal. This can be con�rmed visually in a �gure not

presented in this paper due to space. Such results indicate scaling between ma-

chines for these two codes over these two machines is somewhat predictable as

well. HYDRO and SWEEP show larger amounts of variance for di�erences in

m0 values conversely. The scalability across the two machines for these codes

should be analyzed further.

Finally, we must address the rejected hypothesis of machine-code interaction.

Identifying this characteristic is suitable for analysis by level 2 of the original

statistical method since it is not clear whether the memory architecture inuence

is the sole contributor to such performance variance. The statistical method

re�ned for individual code performance [3], shows that the variance is caused by

performance variations in 2 codes. Further investigation reveals that these two

codes are statistically the same, allowing us to discount this rejected hypothesis.

4 Conclusions and Future Work

We have shown that the hybrid approach provides a useful analysis technique

for performance evaluation of scienti�c codes. The technique provides insight

previously not available to the stand-alone statistical method and the empirical

memory model. Results indicate that 3 of the 4 codes measured show promising

signs of scaled predictability. We further show that scaled performance of latency

overlap is good for these same three codes. Further extensions to multi-processors



and other empirical/analytical models are future directions of this research. The

authors wish to thank the referees for their suggestions regarding earlier versions

of this paper. The �rst author was supported in part by NSF under grants ASC-

9720215 and CCR-9972251.

References

1. R. Carl and J. E. Smith, Modeling superscalar processors via statistical simulation,

Workshop on Performance Analysis and its Impact on Design (PAID), Barcelona,

Spain, 1998.

2. D. B. Noonburg and J. P. Shen, A framework for statistical modeling of super-

scalar processor performance, 3rd International Symposium on High Performance

Computer Architecture, San Antonio, TX, 1997.

3. X. -H. Sun, D. He, K. W. Cameron, and Y. Luo, A Factorial Performance Evalu-

ation for Hierarchical Memory Systems, Proceedings of IPPS/SPDP 1999, April,

1999.

4. Y. Luo, O. M. Lubeck, H. Wasserman, F. Bassetti and K. W. Cameron, Devel-

opment and Validation of a Hierarchical Memory Model Incorporating CPU- and

Memory-operation Overlap, Proceedings of WOSP '98, October, 1998.

5. D. Patterson and J. Hennessy, Computer Architecture: A Quantitative Approach,

Prentice Hall, pp.35-39 ,1998.

6. P. G. Emma, Understanding some simple processor-performance limits, IBM Jour-

nal of Research and Development, vol. 41, 1997.

7. K. Cameron, and Y. Luo, Instruction-level microprocessor modeling of scienti�c

applications, Lecture Notes in Computer Science 1615, pp. 29{40, May 1999.

8. K. C. Yeager, The MIPS R10000 Superscalar Microprocessor, IEEE Micro, April,

1996, pp. 28{40.

9. M. Zagha, B. Larson, S. Turner, and M. Itzkowitz, Performance Analysis Using the

MIPS R10000 Performance Counters, Proc. Supercomputing '96, IEEE Computer

Society, Los Alamitos, CA, 1996.

10. Y. Luo, O. M. Lubeck, and H. J. Wasserman, Preliminary Performance Study of

the SGI Origin2000, Los Alamos National Laboratory Unclassi�ed Release LAUR

97-334, 1997.


