
Fast Fault Injection and Sensitivity Analysis for Collective Communications

Kun Feng† Manjunath Gorentla Venkata‡ Dong Li∗ Xian-He Sun†

Oak Ridge National Laboratory‡ University of California, Merced∗ Illinois Institute of Technology†

manjugv@ornl.gov dli35@ucmerced.edu kfeng1@hawk.iit.edu, sun@iit.edu

Abstract—The collective communication operations, which
are widely used in parallel applications for global commu-
nication and synchronization are critical for application’s
performance and scalability. However, how faulty collective
communications impact the application and how errors prop-
agate between the application processes is largely unexplored.
One of the critical reasons for this situation is the lack of fast
evaluation method to investigate the impacts of faulty collective
operations. The traditional random fault injection methods
relying on a large amount of fault injection tests to ensure
statistical significance require a significant amount of resources
and time. These methods result in prohibitive evaluation cost
when applied to the collectives.

In this paper, we introduce a novel tool named Fast Fault
Injection and Sensitivity Analysis Tool (FastFIT) to conduct
fast fault injection and characterize the application sensitivity
to faulty collectives. The tool achieves fast exploration by
reducing the exploration space and predicting the application
sensitivity using Machine Learning (ML) techniques. A basis
for these techniques are implicit correlations between MPI
semantics, application context, critical application features,
and application responses to faulty collective communications.
The experimental results show that our approach reduces
the fault injection points and tests by 97% for represen-
tative benchmarks (NAS Parallel Benchmarks (NPB)) and a
realistic application (Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS)) on a production supercomputer.
Further, we statistically generalize the application sensitivity
to faulty collective communications for these workloads, and
present correlation between application features and the sen-
sitivity.

I. INTRODUCTION

Collective communications such as MPI Allreduce,
MPI Bcast, and MPI Alltoall, are widely employed by
Message Passing Interface (MPI) applications (commonly
used class of scientific simulations) for exchanging data
and synchronization. They are known to have a signifi-
cant impact on the application performance and scalability
because of their global nature [1], [2]. An error in col-
lective communication can have a cascading effect on the
application reliability because of its global nature. Hence,
understanding the application sensitivity to faulty collective

The United States Government retains and the publisher, by accepting
the article for publication, acknowledges that the United States Govern-
ment retains a non-exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this manuscript, or allow
others to do so, for United States Government purposes. The Depart-
ment of Energy will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doepublic- accessplan).

communication and improving them is key to improving
application reliability.

Although there is a strong motivation to improve the
reliability of collective communications (especially in MPI
community [3]), we still do not have sufficient knowledge
of how faulty collective communications impact the appli-
cations, and how errors propagate between the processes
during execution. The lack of knowledge is a major obstacle
to arrive at an effective fault-tolerant mechanism.

One of the critical reasons for this situation is lack of
effective method that enables fast evaluation of application
sensitivity to faulty collective communications. The random
fault injection [4], [5], [6], [7], [8], [9], the most common
practice of evaluating application vulnerability is generally
slow. This method relies on injecting faults into a large
amount of fault injection points to ensure statistical sig-
nificance, which requires a significant amount of resources
and time. Sometimes, it can take days to evaluate the
vulnerability of a single program element (e.g., a data
structure) for an individual application. Given the global
nature and frequent usage of the collectives by applications,
a random fault injection method exacerbates the evaluation
cost because of large numbers of fault injection points for the
collectives. For a High Performance Computing (HPC) sys-
tem, particularly production and leadership supercomputers,
it is not practical to make available the hardware resources
for resiliency research for an extended period, because of
negative productivity implications. Hence, the fast evaluation
methods are paramount to study the application sensitivity
to faulty collective communications.

In this paper, we present techniques to address these
challenges, and employ them to study and characterize
application and benchmarks’ sensitivity to faulty collectives.

The major contributions of the paper are as follows:
• We introduce a novel and fast fault injection method to

study the impact of faulty collective communications
on applications. This method significantly reduces the
exploration space for fault injection, hence providing a
practical and efficient solution for resilience research.

• We reveal implicit correlations between the collec-
tive semantics, application context, critical application
features, and application response to faulty collective
communications. The discovery of these correlations
opens new opportunities to enable fast exploration of
application sensitivity to faults. To the best of our



knowledge, this is the first exploration of using implicit
application information to derive application sensitivity.

• We introduce a supervised learning ML approach based
on the implicit correlations between collective oper-
ations and application features to predict the fault
sensitivity. Besides predicting the fault sensitivity, this
approach also reveals the application features affecting
the application sensitivity.

• We develop a fault injection tool, FastFIT, to implement
our fault injection method. Using FastFIT, we study the
sensitivity of representative benchmarks and petascale
capable application to faulty collectives. The results
show that we can eliminate more than 97% of fault
injection points while not sacrificing the quality of
sensitivity results.

• We statistically generalize the application sensitivity to
faulty collective communications, and provide a corre-
lation between application features and fault sensitivity
of applications.

II. BASIC FAULT INJECTION METHODOLOGY

To inject faults into collective communications, we follow
the traditional random fault injection methodology [4], [5],
[7], [8] and statistically quantify the application sensitiv-
ity. In particular, we inject the faults randomly into the
input parameters of the collective interface. For each fault
injection test, the injected fault is manifested by one bit
flip in one of the input parameters. The input parameters
for MPI collectives typically include the send/receive buffer
address, number of data elements, data type, communication
destination, message tag, and communicator. To emulate the
fault occurrence in the data buffer of the collectives, we flip
one random bit in the data buffer. We do not inject faults into
the data buffer address as the sensitivity to these faults are
obvious. These faults can easily cause catastrophic results
(e.g., segmentation fault, or application abort).

The application response to a faulty collective communi-
cation is classified into six types as summarized in Table I.
Except for INF LOOP, we do not consider the performance
impact caused by the faulty collective communication. This
means that SUCCESS does not have any performance in-
dication. Hence, our fault injection study is focused on the
impact of faults on application execution correctness without
any performance concerns. In addition, except SUCCESS, all
other five types of responses are regarded as an error. In the
rest of the paper, the term error rate counts the occurrence
frequency of these five types of responses. It needs to be
noted that we only focus on the soft errors, and we do not
focus on fault recovery as it is not within the focus of the
paper.

A typical deployment of scientific applications in extreme
scale systems can involve a huge number of MPI processes.
It is quite common that the application has many MPI
call sites, and each site is invoked multiple times during

Table I: Application response to the fault injection in col-
lective communications

Abbreviation Notes
SUCCESS The program exits without error and generates the same

result as the execution without fault injection

APP DETECTED The program exits with error reported by the program itself

MPI ERR The program exits with error reported by the MPI envi-
ronment

SEG FAULT The program exits with segmentation fault error

WRONG ANS The program exits but generates results different from
those of the execution without fault injection

INF LOOP The program does not exit and is killed because of timeout

the application execution for collective communication and
synchronization. Each invocation of an MPI collective call
site is a potential fault injection point. Given a large amount
of MPI processes, MPI call sites and invocations, we have
to explore a huge fault injection space to study the ap-
plication sensitivity to faulty collectives. For example, for
a small-scale LAMMPS deployment (molecular dynamics
simulation) [10] with 1024 processes and an input problem
of rhodopsin protein simulation, there are 618,496 fault
injection points. For each fault injection point, we need to
perform a large number of fault injection tests to ensure
statistical significance. In our case, we use at least 100 fault
injection tests at each fault injection point. This translates
to at least 61,849,600 fault injection tests for LAMMPS.
Hence, reducing fault injection points can significantly ac-
celerate the application sensitivity evaluation.

III. FAST FAULT INJECTION AND SENSITIVITY
ANALYSIS

The goal of FastFIT is to reduce the fault injection points
for fault injection study, in addition to aiding application
sensitivity study. Towards this goal, we use the following
three methods to prune fault injection points and enable fast
sensitivity analysis.

A. Semantic Driven Fault Injection

This method leverages MPI collective operations’ se-
mantics to reduce potential fault injection points. An MPI
collective operation is a group communication operation,
with all MPI processes of the communicator participating
in the communication. The communication pattern of each
of this process is not necessarily the same. In the case
of rooted collectives such as MPI Bcast, MPI Reduce,
and MPI Scatter, one process acts as a root process and
other processes act as non-root process. The root process
is either source (MPI Bcast, MPI Scatter) or destination
(MPI Reduce) of the data. It sends the data to all non-
root processes and waits for an acknowledgment from the
non-root processes, or receives the data from all non-root
processes. The root process has a different communication
pattern compared to the non-root MPI process, while all non-
root MPI processes have the same communication pattern.
Leveraging this semantics for MPI Reduce, MPI Scatter,



and MPI Bcast, we inject faults into root process and one
representative non-root process for each participating com-
municator. This observation eliminates the need for injecting
faults in non-root processes, except one. In the case of non-
rooted operations such as MPI Allreduce, MPI Allgather,
MPI Alltoall/v/w, all processes have the same communica-
tion pattern. So, we inject faults only into one representative
process for each participating communicator.

Employing the above methodology to study the applica-
tion sensitivity to faulty collectives is not sufficient. The
application can still respond differently even if the commu-
nication patterns of MPI processes are the same, because
the MPI processes can have differences in computation
patterns leading to the collective communication. To address
this issue, we collect application function call graphs and
communication traces for each MPI process throughout the
application, and then compare their similarity. If two MPI
processes have the same call graphs and traces, then they
are empirically treated as equivalent. Among a group of
MPI processes, only if they have the same computation
and communication pattern, we choose one of them as a
representative for the sensitivity study.

Figures 1 and 2 justify the effectiveness of our method-
ology with two NAS parallel benchmarks, LU and FT. LU
and FT are configured with a problem class of B and 32
MPI processes. In each run, one bitwise fault is injected
into an input parameter of MPI collective. We repeat the
same procedure for all parameters of all MPI collectives.
For each fault injection point, we perform this random fault
injection tests for 100 times. The location of the faulty bit is
selected randomly and uniformly in memory of the injected
parameter. 100 random fault injection tests are sufficient to
cover as many cases as it might appear.

Figure 1 shows the fault injection results for an
MPI Allreduce in LU. For MPI Allreduce in LU, all MPI
processes are regarded as equivalent, and we randomly
choose two MPI processes (labeled as rand1 and rand2 in
the figure). The figure shows that the application displays
very similar sensitivity between the two MPI processes.
Figure 2 shows the sensitivity for MPI Reduce in FT, which
shows a different behavior compared to MPI Allreduce. For
MPI Reduce, we choose the root process and a random
non-root process. The figure reveals a different sensitivity
between these two MPI processes.

B. Application Context Driven Fault Injection

This method leverages the application context information
at fault injection points to further reduce the fault injection
points. The method is based on the following observation. A
specific MPI collective call site can be repeatedly invoked,
and the call stacks of different invocations can vary greatly.
However, the invocations with the same call stack, once
corrupted, can result in the similar application response. The
call stack here refers to the active functions of an application

0%

20%

40%

60%

80%

100%

rand1 rand2 rand1 rand2

sendbuf count

P
er

ce
n

ta
g

e 
E

rr
o

r 
T

y
p

e

SUCCESS APP_DETECTED MPI_ERR SEG_FAULT INF_LOOP

Figure 1: Results of injecting faults into two “equivalent”
MPI processes of an MPI Allreduce collective in LU.

0%

20%

40%

60%

80%

100%

root rand root rand

sendbuf count

P
er

ce
n
ta

g
e 

E
rr

o
r 

T
y
p

e

SUCCESS APP_DETECTED MPI_ERR SEG_FAULT INF_LOOP

Figure 2: Results of injecting faults into the root and a non-
root MPI process of an MPI Reduce in FT kernel

at a fault injection point. The same call stack means that the
active functions are the same and called in the same order,
but their function parameters may not necessarily the same.

Our observation is clearly pronounced in our wide fault
injection tests. Figure 3 shows the results for some of these
tests. We choose one MPI Allreduce call site in an MPI
process of LAMMPS. This call site is invoked 107 times,
and we choose 100 of them which have the same call
stack. For each fault injection test, we inject one bit fault
into the data buffer. We perform 100 fault injection tests
for one invocation and 10,000 overall for 100 invocations.
The figure shows the error rate distribution for those 100
invocations. We can see that the error rate for most of these
100 invocations is focused in a limited range - 25%-35%.
This demonstrates that for 100 invocations the application
sensitivity is similar. If we use a Gaussian function to
emulate the distribution of error rate, we find that the
distribution follows a Gaussian distribution with an average
error rate of 29.58 with a relatively low standard deviation
7.69. This further justifies the feasibility of our approach.

The rationale behind our methodology and above test

0

1

2

3

4

5

6

7

8

9

10

0% 8% 16% 24% 32% 40% 48% 56% 64% 72% 80% 88% 96%

O
cc

u
ra

n
ce

 o
f 

S
am

e 
E

rr
o

r 
R

at
e

Error Rate

Real Count Gaussian Regression Average

Figure 3: Error rate distribution for 100 invocations of
MPI Allreduce with the same call stack in LAMMPS



results is that the same call stack between different invo-
cations may indicate the same application context. The fault
occurred in any two application contexts that are similar
often results in the same application response. Based on this
methodology, we can significantly reduce the fault injection
points. In particular, we can just choose one representative
invocation to represent all other invocations that share the
same call stack. Our results show that we can reduce 87.6%
of fault injection points for LAMMPS by just leveraging the
application context information.

C. Machine Learning Driven Fault Injection

We employ a ML based approach to predict the ap-
plication sensitivity to specific fault injection points. This
approach is based on our observation that the application
features at the fault injection point have implicit correlations
with application sensitivity. The rest of the section provides
details of the methodology and the ML algorithm. A thor-
ough study to reveal the correlations between application
features and application sensitivity will be shown in Sec-
tion V-D. The prediction accuracy will also be shown in
that section.

Our ML approach works as follows. We use Random
Forest (an ML algorithm) to train and establish the prediction
model. The prediction model is constructed by performing
only a limited number of fault injection tests. During the
tests, we collect the application features and application
responses, and feed them into the random forest algorithm
to build the model. Then, with few more tests, we verify
the model prediction accuracy by comparing the model
prediction results and measured application responses. If the
model prediction accuracy does not achieve an expected
target threshold, we repeat this process until we reach
the target threshold. Once the model is established, for a
specific fault injection point, we collect a set of application
features at the fault injection point as input and predict the
application response using the prediction model.

Application features : We use the following application
features to train the model and make the prediction.

1) MPI Collective Type (Type): The communication pat-
tern impacts the application sensitivity to faults. For exam-
ple, root versus non-root, data source versus data destination,
and so on.

2) Execution Phase (Phase): The execution of an appli-
cation usually consists of multiple phases, such as input,
initialization, compute and finalization. Depending on the lo-
cation of fault injection, the application can display different
sensitivity. This correlation between the execution phase and
application sensitivity is also revealed in a previous work [7].

3) Error handling code (ErrHal): The collective com-
munication is widely employed for error handling, espe-
cially to examine if some critical variables have a consis-
tent value across all MPI ranks. For example, LAMMPS
uses MPI Allreduce frequently to check if errors happen

between the MPI processes. In fact, over 40.32% of all
MPI Allreduce calls in LAMMPS are used for error han-
dling. The faulty collective communication in the error
handling code has a drastically different impact on the
application sensitivity than those in the regular application
code.

4) Number of invocations (nInv): The number of invoca-
tions of a particular MPI collective indicates the importance
of that collective communication. A large number could
mean that the application is highly sensitive to the correct-
ness of this collective communication.

5) Average call stack depth (StackDep): The call stack
depth at an MPI communication call site is defined by the
depth of nested functions starting from the main function.
When the call stack goes deeper, the application runs into
a more complicated stage which frequently causes higher
sensitivity. Hence, the call stack depth can work as an
indicator to application sensitivity.

6) Number of different call stacks (nDiffStack): An MPI
communication call site can be invoked many times, and
each site can have a different call stack. The number of
different call stacks is an indicator of varying application
behaviors, hence impacting the application sensitivity.

ML algorithm : The random forest is an ensemble
learning algorithm that uses a multitude of decision trees.
The decision tree is a predictive model that maps an ob-
servation (the application features in our case) about an
item (the application sensitivity in our case) to a conclusion
about the item’s target value (the qualification of application
sensitivity in our case). A decision tree can be used to
explicitly describe the data and represent decision making.
The decision of a random forest is a majority decision based
on its decision trees’ decisions.

Figure 4 displays an example of a decision tree. This
decision tree is established by our practical fault injection
tests and model training procedure. The leaf nodes of the
decision tree are the application sensitivity decisions (i.e.,
low, medium-low, medium-high, and high). These four levels
of application sensitivity correspond to four different error
rate levels - e.g., Low - 0%~25%, Medium-low - 25%~50%,
Medium-high - 50%~75% and High -75%~100%. We do not
use a single number to quantify the application sensitivity.
Instead, we use the four levels to qualify it for the following
two reasons: (1) It is challenging to use a ML approach to ac-
curately predict the error rate because of the statistical nature
of these algorithms. Based on our own experience with ML
algorithms, the prediction accuracy cannot reliably indicate
a specific error rate, but can indicate the error rate level
very well. (2) We often take the decision of using a fault-
tolerant mechanism based on the qualification of application
sensitivity. For example, if an MPI communication is very
critical and also results in more than 20% error rate, then
we decide to enforce fault-tolerance. Hence, the qualification
instead of quantification is more helpful for the decision



high

med-high

med-low

med-high highlow

low high

high low

nDiffStack<=5.5

nInv<=1.5 Type<=3

ErrHdl=N Phase<=2 nDiffStack<=2.5

Type<=1

Phase<=3

nInv<=6.5

Figure 4: An example of a decision tree

making (i.e., a resilient system design). Note that, although
we target at predicting the application responses in terms of
four levels of application sensitivity in this subsection, our
methodology is applicable to make prediction for any levels
of application sensitivity.

The non-leaf nodes of the decision tree represent the ap-
plication features (i.e., Type, Phase, ErrHal, nInv, nDiffStack,
and StackDep). The application feature must be represented
by numerical values to facilitate the tree construction. For
the features Type, Phase, and ErroHal, we assign specific
numerical values to each possible type, phase, and error
handling code. Based on the numerical values of the non-
leaf nodes and given a set of input application features, we
decide the application sensitivity. For example, an input with
nDiffStack = 8, Type = 2 and Phase = 1 will result in a
conclusion of low in Figure 4.

Prediction accuracy threshold : As described at the
beginning of this section, the training of prediction model is
controlled by the prediction accuracy threshold. The fault
injection test results are fed into the model for training
and verification, until the prediction accuracy reaches the
threshold. In the worst case, we could run out of all fault
injection points to train the model without reaching the
desired prediction accuracy. In this case, our method training
and verification is equivalent to the tradition fault injection
method. As a matter of fact, in all our fault injection studies,
the model can reach our desired prediction accuracy before
we run out of the fault injection points.

Furthermore, there is a tradeoff between the prediction
accuracy and pruning of fault injection points. A high
accuracy threshold means that we need more fault injection
results to train the model. On the other hand, a smaller
accuracy threshold can lead to faster model training and
require fewer fault injection results. The tradeoff relation
between accuracy and reduction in fault injection points is
shown in Figure 6 and discussed in Section V-D.

It is noticeable that the reduction of fault injection points
brought by the ML is a bonus to its key contribution
of revealing the implicit correlation between application
features and its sensitivity. We only explore the tradeoff
when users’ threshold is satisfied.

IV. FASTFIT IMPLEMENTATION

A. Architecture

The application sensitivity study based on FastFIT has
three main phases i.e., profiling, learning, and injection.

Figure 5 shows various components of FastFIT and their
interaction during a typical fault injection test.

During the profiling phase, FastFIT collects the applica-
tion information required for fault injection and required by
Semantic Driven Fault Injection (Section III-A) to eliminate
unnecessary fault injection points.

The learning and injection phases of FastFIT together
constitutes the implementation of Machine Learning Driven
Fault Injection (Section III-C) method. The feedback loop
in Figure 5 shows the coordination. During the injection
phase, FastFIT randomly chooses the fault injection points
and performs the fault injection. The results are then used
in the learning phase to train the prediction model. These
two phases are repeated until the prediction model reaches
a user-expected accuracy threshold or until it runs out of
fault injection points. If the prediction model is accurate
enough and we still have untested fault injection points,
we will use the prediction model to estimate application
sensitivity for those untested fault injection points. More
detailed descriptions for these three phases are as follows:

B. Profiling Phase

During the profiling phase, FastFIT profiles the
application. The problem used for profiling is same as
the problem used for fault injection test. This ensures
the application features are consistent between a profiling
run and fault injection run of application. The profiling
overhead is a one time cost as the collected information
can be used for any number of fault injection campaigns.
FastFIT collects three different types of profiles.

• Communication Profile: The communication profile in-
formation such as collective call sites, collective types,
how often the collectives are used, and number of
collective invocations are obtained using mpiP [11].
This profile is used to identify and potentially eliminate
the fault injection points.

• Call Graph Profile: The call graph of the application
represents the control path taken by the application.
It is obtained using the profiling tools such as vanilla
Callgrind and gprof.

• Call Stack Profile: After collecting the call graph,
FastFIT uses the backtrace() function available in the
standard C library to obtain the call stacks at fault
injection points. Based on the similarity of call stacks,
it chooses a representative fault injection point.

Using the above profile information, the application code
is transformed to enable fault injection at those points, which
is performed during the injection phase.

C. Injection Phase

The injection phase includes two modules, Config Genera-
tion and Fault Injection, shown in Figure 5. The two modules
are controlled by a set of environment variables listed in



Learning PhaseInjection PhaseProfiling Phase

Communication 
Pattern Tracing

Call 
Stack 

Tracing

Injection 
Points

Selection

Config 
Generation

ML 
Algorithms

Accurate 
enough

Output

N

Fault 
Injection

Y
Code 

Transform

Profile
Data

Training 
model

Initial
Results

Transformed
Code

Figure 5: Various components of FastFIT and the interaction of components during a profiling and fault injection campaign

Table II: Configurable parameters for FastFIT

Abbreviation Width Notes
NUM INJ unlimited Number of injected faults

INV ID 3 Id of injected invocation

CALL ID 3 Id of MPI collective

RANK ID unlimited Id of injected rank

PARAM ID 1 Id of injected parameter

Table II. At runtime, the Config Generation module reads
the environment variables and drives the Fault Injection
module to perform random bit flips on the representative
fault injection points.

D. Learning Phase

During the learning phase, the random forest module uses
the fault injection results to train the prediction model. With
additional tests, the model’s prediction accuracy is verified.
If the desired accuracy is not achieved, the injection phase
is triggered continuing the cycle until the desired accuracy
for results is achieved or all fault injection points are tested.
FastFIT is not tied to the random forest algorithm. It can be
replaced by other machine learning algorithms, if required.

V. EVALUATION

In this section, we evaluate how effectively our methods
can reduce the fault injection points, characterize the ap-
plication sensitivity, and evaluate the prediction accuracy of
our methods.

A. Setup

The experiments were conducted on Titan housed at
Oak Ridge Leadership Computing Facility (OLCF). Each
compute node of Titan includes one 16-core 2.2GHz AMD
Opteron 6274 (Interlagos) processor. It uses a 3D torus
network built from Gemini application-specific integrated
circuits (ASICs).

We perform fault injection tests and sensitivity analy-
sis with NPB suite, and a realistic scientific application
LAMMPS. We use 32 MPI processes in all tests. For
experiments with NPB, we use IS, FT, MG and LU with
input class B. For LAMMPS, we use the rhodopsin protein
simulation as an input problem.

B. Reduction of Fault Injection Points and Fault Injection
Tests

By exploring the equivalence between fault injection
points and taking advantage of correlations between the

application features, we effectively reduce the exploration
space for fault injection. Table III summarizes the reduction
of fault injection points for NPB and LAMMPS. The evalua-
tion of the prediction accuracy is shown in Section V-D. For
NPB, we only apply the Semantic Driven Fault Injection and
Application Context Driven Fault Injection methods, as the
number of injection points are already small after applying
the two methods.

For LAMMPS, we employ Semantic Driven Fault Injec-
tion and Application Context Driven Fault Injection methods
to reduce the fault injection points and conduct the fault
injection campaign. Further, we reduce the fault injection
tests required for the fault injection campaign by using
Machine Learning Driven Fault Injection. ML techniques
predict the fault impact using the fault model trained by the
fault injection campaign results, rather than requiring the
need to conduct fault injection experiments on all points.
With ML, we reduced the fault injection tests required
by half (53.33%). Overall, we reduce the fault injection
points by over 97%. The ML algorithm takes only several
seconds to learn in all our experiments. Thus, the overhead
of learning phase is negligible compared to the time taken
by fault injection tests.

As discussed in Section III-C, the prediction accuracy
threshold is directly related to the reduction of fault injection
points with ML. To investigate this relation, we vary the
prediction accuracy threshold during the model training, and
calculate the reduction of fault injection points after applying
the model. The results for LAMMPS are shown in Figure 6.
In the figure, the prediction accuracy threshold is represented
by a percentage number, which refers to the percentage of
expected correct prediction cases. As shown in the figure,
the reduction of fault injection points goes down as we use
a higher prediction accuracy threshold. In the best case (the
threshold is 45%), we can reduce the fault injection points
by more than 80%.

In general, there is a balance between fault injection
reduction and prediction accuracy. A higher prediction accu-
racy threshold, though results in a more accurate prediction
model, requires more fault injection tests for model training
and has less opportunities to reduce fault injection. We
choose 65% in our fault injection campaign as it strikes
a good balance between reducing the fault tolerance points
and prediction accuracy.



Table III: Reduction ratio after applying the three techniques
with FastFIT

MPI App ML Total
IS 96.88% 90.00% NA 99.69%

FT 96.31% 95.24% NA 99.78%

MG 96.09% 90.70% NA 99.64%

LU 96.35% 40.00% NA 97.81%

LAMMPS 97.24% 87.58% 53.33% 99.84%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

45% 50% 55% 60% 65% 70% 75%

R
ed

u
ct

io
n

 R
at

io

Accuracy Threshold

Error Rate Level Error Type

Figure 6: The relationship between prediction accuracy
threshold and reduction in fault injection points.

C. Fault Injection Results

In this section, we present fault injection results using
FastFIT. The goal is to statistically generalize application
sensitivity to faults in collective communications and pro-
vide guidance for designing the resilient collectives. During
the fault injection tests, we inject faults into the data buffer
of collective communications (if there is any data buffer),
unless indicated otherwise.

Impacts of Fault Injection on NPB Benchmarks (Gen-
eral Results): Figure 7 shows the fault injection results for
all collective communications in four NPB kernel bench-
marks. In this experiment, we inject the faults into the
kernels, and learn the error type response of the benchmark.

We can see that INF LOOP has the least occurrence
in all benchmarks. This is consistent with the results of
LAMMPS shown later. Also, a significant portion of errors
are MPI ERR, which are the errors reported by the MPI
implementation. This is especially true for FT (46% of all
injected faults). This indicates that a resilient communica-
tion library implementation is very important for achieving
application resilience. Further, we can observe that the
application only detects a small percentage of faults as in-
dicated by APP DETECTED. This may suggest that NPB’s
error handling code is not effective at capturing the errors
caused by faulty collective operations. Last, we observe
that SEG FAULT is a very common application response,
only second to SUCCESS. The IS (44%), MG (28%), and
LU (24%) kernels exhibit this behavior. We expect that a
mechanism that effectively responds to SEG FAULT can
significantly improve the application resilience.

Impacts of Collective Communication Diversity on
NPB Benchmarks: We further look into the fault injection

0%

20%

40%

60%

80%

100%

IS FT MG LU

P
er

ce
n

ta
g

e 
E

rr
o

r 
T

y
p

e

SUCCESS APP_DETECTED MPI_ERR SEG_FAULT INF_LOOP

Figure 7: NPB benchmark’s response in error types, when
faults are injected into NPB’s MPI collectives

0%

20%

40%

60%

80%

100%

MPI_Allreduce MPI_Reduce MPI_Barrier MPI_Alltoall MPI_Alltoallv

P
er

ce
n

ta
g

e 
E

rr
o

r 
R

at
e 

L
ev

el

low med high

Figure 8: NPB benchmark’s response in error rate levels,
when faults are injected into NPB’s MPI collectives

results and analyze the error rate level distribution for
different collective communications. Figure 8 shows the
results. There are three error rate levels (i.e., low, med, and
high) in the figure. Given an MPI collective communication
in a benchmark, the error rate level is defined according to
how many instances of this communication causes appli-
cation error responses (i.e., APP DETECTED, MPI ERR,
SEG FAULT, WRONG ANS, and INF LOOP). The low,
med, and high error rates correspond to 15%, 15%-85%,
and 85% of the communication instances respectively.

The results show that faulty MPI Reduce and
MPI Barrier have more negative impact on the application
than the faults in other collectives. MPI Alltoallv causes the
least damage to the applications. This sensitivity variance
indicates that there is a need for adaptive fault-tolerance
mechanism rather than a single uniform fault-tolerant
mechanism across all collectives.

Impacts of Erroneous Input Parameters of Collective
Communications on NPB Benchmarks: The MPI collec-
tive communication interface has many input parameters. To
study the impact of faults in different parameters of the col-
lective operations, we inject faults into each parameter and
measure the application response. Figure 9 shows the results
for a specific collective, MPI Allreduce. MPI Allreduce
has 6 input parameters including sendbuf, recvbuf, count,
datatype, op, and comm. The errors in recvbuf have a little
impact on the application, as faults are injected before the
collective call is enforced, and it is likely that the fault bits
are overwritten by the communication library. The appli-
cation is more sensitive to faults in sendbuf compared to
faults in recvbuf. However, a majority of faults is detected by
the application. Furthermore, the faults in other parameters



0%

20%

40%

60%

80%

100%

sendbuf recvbuf count datatype op comm

P
er

ce
n

ta
g

e 
E

rr
o

r 
T

y
p

e

SUCCESS APP_DETECTED MPI_ERR SEG_FAULT INF_LOOP

Figure 9: NPB benchmark’s response in error types, when
faults are injected into the parameters of NPB’s MPI collec-
tives.

0%

20%

40%

60%

80%

100%

P
er

ce
n

ta
g

e 
E

rr
o

r 
T

y
p

e

SUCCESS APP_DETECTED SEG_FAULT WRONG_ANS INF_LOOP

0% 20% 40% 60%

Percentage Error Type

Figure 10: LAMMPS benchmark’s response in error types,
when faults are injected into LAMMPS’ MPI collectives

(count, datatype, op and comm) have a high impact on
the application as they often cause SEG FAULT. Hence,
those parameters demand stronger protection to improve the
application resilience.

Impact of Fault Injection on LAMMPS (Gen-
eral Results): Figure 10 shows the fault injection re-
sults for all collectives in LAMMPS. LAMMPS fre-
quently uses MPI Allreduce, MPI Bcast, MPI Barrier, and
MPI Allgather. When faults are injected into these col-
lectives, SUCCESS is the most common application re-
sponse. About 65% of fault injection tests does not cause
the negative application response. APP DETECTED is the
second most common response of the application. This
indicates that LAMMPS has more mature error handling
code compared to NPB, where lower percentage of errors
are APP DETECTED. Though SEG FAULT is not very
common (about 10%) in LAMMPS comparing with NPB, it
is still very significant. This also demonstrates the necessity
for protection against SEG FAULT. INF LOOP has the
least occurrence, which is consistent with the NPB results.
WRONG ANS is also not a common response in case of
LAMMPS. Given the fact that LAMMPS employs a Monte
Carlo model which is a statistical-based approach, this may
not be a surprising result.

Impact of Collective Communication Diversity on
LAMMPS: Figure 11 shows the error rate level distribution
for all collectives in LAMMPS. Similar to NPB, the faulty
MPI Barrier has a lethal effect on LAMMPS: the faults
injected in MPI Barrier result in large percentages of high
and med error rates. However, the error rate levels for other

0%

20%

40%

60%

80%

100%

MPI_Allreduce MPI_Bcast MPI_Barrier MPI_Allgather

P
er

ce
n

ta
g

e 
E

rr
o

r 
R

at
e 

L
ev

el

low med high

Figure 11: LAMMPS benchmark’s response in error rate lev-
els, when faults are injected into LAMMPS’ MPI collectives

collectives are not skewed towards one direction. Also, we
observe that MPI Allreduce has a low error rate. This is a
surprise, given that MPI Allreduce is frequently used (more
than 84% of collectives) by LAMMPS. This low error rate
for MPI Allreduce is also pronounced in NPB results, where
more than 63% of collectives are MPI Allreduce.

D. Accuracy Evaluation of Machine Learning-Based Sensi-
tivity Prediction

To evaluate the effectiveness of our ML approach, we train
our ML model using some fault injection tests as a training
set. We randomly divide the training set into two class - one
class for training and the other for testing. We repeat the
random division of the training set for five times to get the
average results.

We employ our model to predict error type (SUC-
CESS, APP DETECTED, SEG FAULT, WRONG ANS,
INF LOOP) and error rate level (e.g., low, med, or
high). Figure 12, shows the prediction accuracy of ML
for predicting the error type. In the figure, we can ob-
serve the prediction accuracy for error type SUCCESS,
APP DETECTED, SEG FAULT, and WRONG ANS is 86%,
80%, 47%, and 75%, respectively. The model predicts
SUCCESS, APP DETECTED, and WRONG ANS with high
accuracy. However, it has a low prediction accuracy for error
type SEG FAULT. We suspect that SEG FAULT has weak
correlation with the chosen application features. To improve
prediction accuracy, we have to include more application
features in the ML model.

Figure 13 shows the prediction accuracy for the prediction
of 2 or 3 error rate levels. We divide the error rate range
evenly into 2 or 3 levels for the two cases respectively. For
the prediction with 2 error rate levels the ML model correctly
classifies over 80% of fault injection points as either highly
sensitive or not highly sensitive. For the prediction with 3
error rate levels, the ML model can correctly predict over
76% of fault injection points as low sensitive and over 66%
as high sensitivity. Although we only show prediction results
for 2 or 3 error rate levels, our model can support prediction
for any number of error rate levels.

Quantifying Sensitivity of Application Features:
This section justifies that there are implicit correlations

between application features and application sensitivity.



0%

20%

40%

60%

80%

100%

SUCCESS APP_DETECTED SEG_FAULT WRONG_ANS

E
rr

o
r 

R
at

e 
L

ev
el

 A
cc

u
ra

cy

Figure 12: Error type prediction accuracy

0%

20%

40%

60%

80%

100%

low high

E
rr

o
r 

R
at

e 
L

ev
el

 A
cc

u
ra

cy

(a) Two levels

0%

20%

40%

60%

80%

low med high

E
rr

o
r 

R
at

e 
L

ev
el

 A
cc

u
ra

cy

(b) Three levels

Figure 13: Error rate level prediction accuracy

Those correlations lay foundation for our machine learning-
based prediction. We quantify the correlation based on a well
established equation (Equation 1). This equation calculates
the correlations between each of application feature (see
Section III-C) and error rate level.

Correlation(X,Y ) =
1

2
(

∑
(x− x̄)(y − ȳ)√∑
(x− x̄)2(y − ȳ)2

+ 1) (1)

The variables X and Y represent quantified application
feature and error rate level respectively. x and y are the
examples in series X and Y , and x̄ and ȳ are the averages
of X and Y . A correlation value close to 1 means that
application sensitivity and the corresponding application
feature vary similarly. Hence the application feature has a
strong indication to the application sensitivity. A value close
to 0 means that they vary in an opposite way. A value of
0.5 means that the application feature does not affect the
application sensitivity.

Table IV shows the correlation results. We can see that the
features such as application phases (e.g., initial phase and in-
put phase) and error handling code have a strong correlation
with the application sensitivity. This result makes sense. In
particular, the initial phase and input phase determines the
application input problems and configurations, hence they
are vital to the correctness of application execution. The
error handling code also has a direct impact on application
tolerance to the errors, hence they are also well correlated
with application correctness. Although the other application
features are less correlated, we include them for training
the model as including them can maximize the prediction
accuracy. Note that including them does not increase the
model training cost, because all of those features can be
collected at the profiling phase together.

VI. EVALUATION SUMMARY

FastFIT significantly reduces the number of fault injection
points. For NPB and LAMMPS, it reduces the fault points
by 99.23% and 99.84%, respectively as shown in Table III.
We use three salient techniques in FastFIT, and verify their
effectiveness in Figures 1 to 3, and Figures 12 and 13, and
Table IV.

Further, we use FastFIT to study the sensitivity of NPB
and LAMMPS to faults in collective operations. Some of
the important results are summarized as follows:

NPB: The NPB kernels have varying responses to faults
in collectives as seen in Figure 7. IS mostly crashes in
the presence of faults. However in the case of FT, a high
percentage of errors caused by faults are detected by the MPI
implementation. For MG and LU, the results show that a
high percentage of faults either crash the kernels or the errors
caused by faults are detected by the MPI implementation.
The difference in response is partially because of difference
in how different collective operations respond to faults.
Figure 1 and Figure 2 shows the response of MPI Allreduce
and MPI Reduce to faults. Also, as seen in the Figure 9,
where the fault occurs in the collective parameters also
impacts the fault response.

LAMMPS: A large percentage of fault seems to have
no impact on the application execution. Rest of faults
(4̃0%), LAMMPS either crashes the application, produces
wrong result, or results in an application abort because of
application detected errors. Some of the faults (21.24%) are
detected by the application’s error handling code.

ML Techniques: For LAMMPS and NPB, using ML
techniques, with high accuracy, FastFIT predicted the error
rates and error types, when a fault is injected into the
collective operations used by these kernels. The prediction
accuracy was summarized in Figure 12 and Figure 13.
Further, the ML techniques revealed the correlation between
application features and fault sensitivity. The results are
summarized in Table IV. It reveals that faults in applications
phases and error handling code have a strong impact on fault
sensitivity.

VII. RELATED WORK

Random fault injection has been used as an approach to
explore the impact of errors to HPC applications. Bron-
evetsky and de Supinski [4] perform fault injection in
random locations of memory stack or heap based on manual
instrumentation. Debardeleben et al. [8] attempt to study the
applications’ sensitivities at the instruction level. They take
advantage of the QEMU virtual machine to achieve injection
at specific assembly instructions. Naughton et al. [9] propose
a fault injection framework targeting at API-level failures for
memory (slab errors and page allocation errors) and disk I/O
errors. Casas et al. [12] inject faults into instructions’ output
according to the LLVL typed byte code of algebraic multi-
grid solver. Li et al. [7] use a binary instrumentation-based



Table IV: Correlation between application specific features and error rate level

Init Phase Input Phase Compute Phase End Phase ErrHdl Non-ErrHdl nInv nDiffGraph StackDepth
LAMMPS 0.56 0.69 0.3 0.49 0.64 0.36 0.41 0.47 0.37

mechanism to inject faults randomly into data structures at
various data segments.

Our work is different from the above work from three
perspectives. First, we focus on reducing fault injection
points and enabling fast evaluation instead of just focusing
on studying application vulnerability. Second, we predict the
application sensitivity to faults, reducing the amount of fault
injection tests. Also, this approach enables understanding
the co-relation between the application features and fault
sensitivity. Third, we particularly study collective communi-
cations, which is different from those research targets in the
previous work. They are particularly challenging because of
their global nature.

Sastry et al. [13] and Xu et al. [14] also aim to reduce the
fault injection points. They choose a small subset of injection
points to inject faults after static and dynamic program
analyses. Our method is different from them, since we rely
on implicit application information and statistical correlation
to prune fault injection points. Our method is general and
portable, and does not require extensive compiler support.

VIII. CONCLUSIONS

This paper presents FastFIT, a fast fault injection and
sensitivity analysis tool, and studies the sensitivity of a
petascale capable application and benchmarks to faulty col-
lective communications. We also present a series of methods
that explores the use of implicit application information to
significantly reduce the potential fault injection points. The
experimental results show that FastFIT, which is based on
these methods, can reduce more than 97% fault injection
points required for a fault injection study for representative
benchmarks and a scientific application. Our ML techniques,
with high accuracy, predicted the error types and error rates
of applications in presence of faulty collectives. Further,
using FastFIT, we statistically generalize the application
sensitivity to faulty collective communications, and present
correlation between faults and application features. Even
though these techniques were tested only on the collective
operations in this paper, it can be applied to other program-
ming elements of an HPC application, which is a part of our
future work.

IX. ACKNOWLEDGEMENT

This research used resources of the Center for Compu-
tational Sciences at Oak Ridge National Laboratory, which
is supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC05-00OR22725.
This research is also partially supported by UC Merced
Startup Fund, and is supported in part by a research grant

from Huawei Technologies Co, Ltd., the US National Sci-
ence Foundation under Grant No. CCF-0937877 and CNS-
1162540.

REFERENCES

[1] R. Rabenseifner, “Automatic Profiling of MPI Applications
with Hardware Performance Counters,” in Proceedings of the
6th European PVM/MPI Users’ Group Meeting on Recent
Advances in Parallel Virtual Machine and Message Passing
Interface, 1999.

[2] ——, “Optimization of Collective Reduction Operations,”
in International Conference on Computational Science 2004
Springer-Verlag LNCS 3036, 2004.

[3] J. Hursey and R. L. Graham, “Preserving Collective Per-
formance across Process Failure for a Fault Tolerant MPI,”
in 2011 IEEE International Symposium on Parallel and
Distributed Processing Workshops and Phd Forum, 2011.

[4] G. Bronevetsky and B. de Supinski, “Soft error vulnerability
of iterative linear algebra methods,” in Proceedings of the
22nd Annual International Conference on Supercomputing,
2008.

[5] M. Shantharam, S. Srinivasmurthy, and P. Raghavan, “Char-
acterizing the impact of soft errors on iterative methods in
scientific computing,” in Proceedings of the International
Conference on Supercomputing, 2011.

[6] M. Casas, B. R. de Supinski, G. Bronevetsky, and M. Schulz,
“Fault Resilience of the Algebraic Multi-grid Solver,” in Pro-
ceedings of the International Conference on Supercomputing,
2012.

[7] D. Li, J. S. Vetter, and W. Yu, “Classifying Soft Error Vul-
nerabilities in Extreme-Scale Scientific Applications Using
a Binary Instrumentation Tool,” in International Conference
for High Performance Computing, Networking, Storage and
Analysis, 2012.

[8] N. DeBardeleben, S. Blanchard, Q. Guan, Z. Zhang, and
S. Fu, “Experimental Framework for Injecting Logic Errors
in a Virtual Machine to Profile Applications for Soft Error
Resilience,” in Workshop on Resilience in High Performance
Computing in Clusters, Clouds and Grids, 2011.

[9] T. Naughton, W. Bland, G. Vallee, C. Engelmann, and
S. Scott, “Fault injection framework for system resilience
evaluation: fake faults for finding future failures,” in Pro-
ceedings of the Workshop on Resiliency in High Performance
Computing, 2009.

[10] “LAMMPS Molecular Dynamics Simulator,” http://lammps.
sandia.gov/bench.html.

[11] “mpiP,” http://mpip.sourceforge.net/.
[12] M. Casas, B. R. de Supinski, G. Bronevetsky, and M. Schulz,

“Fault resilience of the algebraic multi-grid solver,” in Pro-
ceedings of International Conference on Supercomputing,
2012.

[13] S. K. S. Hari, S. V. Adve, H. Naeimi, and P. Ramachandran,
“Relyzer: exploiting application-level fault equivalence to
analyze application resiliency to transient faults,” in ACM
SIGARCH Computer Architecture News, 2012.

[14] Xin Xu and Man-Lap Li, “Understanding soft error propa-
gation using Efficient vulnerability-driven fault injection,” in
IEEE/IFIP International Conference on Dependable Systems
and Networks, 2012.


