
66 COMMUNICATIONS OF THE ACM | MAY 2021 | VOL. 64 | NO. 5

contributed articles

I
M

A
G

E
 B

Y
 A

N
D

R
E

W
 K

R
A

S
O

V
I

T
C

K
I

I

IN 2006, JEANNETTE M. Wing45 proposed the concept
of “computational thinking,” which has produced
significant worldwide impacts on the education,
research, and development of computer science. After
more than a decade, we reexamine computational
thinking, and find that a more general-thinking
paradigm is urgently needed to address new challenges.

A couple of recent commentaries12,41 regarding
computational thinking attracted our interests and
inspired us to reflect further. More than that, we want to
summarize and generalize the rationale of our solutions,

for instance, the Labeled von Neu-
mann Architecture (LvNA)1,28 and the
Layered Performance Matching (LPM)
methodology.26,27

Nurtured by Moore’s Law, the num-
ber of transistors available on a single
chip increases exponentially. Mean-
while, due to architectural innova-
tions, transistors are organized more
effectively and utilized more vigorously.
As a result of the combined efforts,
computers have witnessed a signifi-
cant performance advancement dur-
ing their 70-year history. However, the
new age, characterized by the slow-
down of Moore’s Law and Dennard
scaling,44 and by the rise of big data ap-
plications, brings serious challenges
that computer scientists must face.

The scaling of on-chip transistors
impacts microprocessor performance
significantly. However, further im-
provements to transistor density and
power become more difficult due to
the limits of semiconductor physics.44
As a result, architectural innovations
become increasingly crucial for perfor-
mance breakthroughs, and the epoch
we are entering is “a new golden age for
computer architecture.”14

The rise of big data has caused an un-
precedented shift, where the memory
system, rather than the computational
core, plays a more vital role. According-
ly, the memory access limitation de-

HCDA:
From
Computational
Thinking to
a Generalized
Thinking
Paradigm

DOI:10.1145/3418291

As a new era in computing emerges, so too
must our fundamental thinking patterns.

BY YUHANG LIU, XIAN-HE SUN, YANG WANG, AND YUNGANG BAO

 key insights
 ˽ Architecturally organizing the computing

system and exploiting the available
transistors more effectively can reduce
the number of transistors required, and
the labeling and matching are crucial in
architectural design.

 ˽ Computing history is a growing
warehouse that has not been well
utilized, and the evolution of computing
technology is not always linear but
has lots of “reuses” or “rising from
the ashes,” and hence historical
thinking is needed.

 ˽ Memory access can become a killer
performance bottleneck for high
performance computing, and simply
adding more on chip memories is not
a feasible solution to the memory-wall
problem.

http://dx.doi.org/10.1145/3418291

MAY 2021 | VOL. 64 | NO. 5 | COMMUNICATIONS OF THE ACM 67

68 COMMUNICATIONS OF THE ACM | MAY 2021 | VOL. 64 | NO. 5

contributed articles

trinsic bottleneck of the von Neumann
architecture.

Before turning to non von Neumann
architectures (for example, quantum
computing20 and DNA computing6), we
should determine whether it is possi-
ble to design new von Neumann archi-
tectures that are still transistor-based
but can overcome the memory wall. Af-
ter examining the original representa-
tion of von Neumann,42,43 we found
that von Neumann preserves neutrali-
ty between computation and memory.
That is, data processing and data ac-
cess are equally important according
to the von Neumann architecture.
Computation and data are two sides of
the same coin. They are the premises
of each other. Therefore, equilibrium
(a.k.a. balanced) design is the must
without any room for maneuver.

The traditional computation-cen-
tric architectural design is due to his-
torical reasons. In the beginning, CPUs
were very slow and expensive com-
pared to memory. As a result, computer
systems are computation-centric, fo-
cusing on the speed of computing
components. Later, due to the mis-
match in advancement of processor
and memory technologies, computer
systems became increasingly memory-
centric where data was treated as a
first-class citizen. From a historical
perspective, the later memory-centric
focus counteracts the former computa-
tion-centric focus.

More specifically, as shown in Fig-

ure 1, the memory hierarchy is the
counterpart of the computational hier-
archy, memory-level-parallelism (MLP)
is the counterpart of instruction-level-
parallelism (ILP), and processor in
memory (PIM) is the counterpart of
memory in processor (MIP).a There-
fore, in this study, we propose a frame-
work that allows computational think-
ing and data-centric thinking to
naturally coexist.

The thought process of a computer
system designer is dynamic, but it has
patterns. Wing introduced the impor-
tant concept of “computational think-
ing” in 2006.45 In this study, we build
on her ideas to extend the concept of
computational thinking and present a
paradigm of thinking patterns for com-
puter researchers and practitioners in
the new era of computing.

More generally, we identify four
foundational thinking patterns that
will foster computer system innova-
tions: historical thinking, computational
thinking, data-centric thinking, and ar-
chitectural thinking (HDCA). The com-
bination of these four patterns forms a
regular tetrahedron thinking para-
digm, where history is the source of ref-
erences and lessons, computation is
the functionality provided by the com-
puting systems, data is the processing
objects of computing systems, and ar-
chitecture is the hardware mechanism
to physically execute operations. The
four thinking patterns are four dimen-
sions that are logically connected, pro-
viding a unified framework for comput-
er design innovations. This thinking
paradigm will provide a reference mod-
el for researchers and practitioners to
guide and boost the next wave of inno-
vations in computer systems.

Historical Thinking
Historical thinking is the first point of
the regular tetrahedron. Present inno-
vations are based on past innovations.
Revolutionary innovations are based
on the accumulation of knowledge.
Historical thinking explores solutions
and methodologies from past results,
lessons and experiences.

a State-of-the-art processors usually have mul-
tiple levels of cache on a single chip. For in-
stance, Fujitsu’s 48-core A64FX processor
used in Fugaku supercomputer has 32MB L2
cache.40

scribed by Sun-Ni’s Law38 is becoming a
performance killer for many applica-
tions. Thus, data-centric innovations of
computer system design are urgently
needed to address the issues of data
storage and access. Both the emergence
of big data and the slowdown of Moore’s
Law have changed the landscape of
computer systems and require us to ex-
amine past solutions to pave a new path
for future innovations and for address-
ing new challenges.

The first step to learn from extant
innovations is to find commonalities
and patterns within them. In the semi-
nal literature “The Art of Scientific Re-
search,”3 Beveridge summarized the re-
search methods adopted by classical
natural scientists and found common-
alities, routines and regularities in the
innovation process, which was previous-
ly thought to be accidental. By follow-
ing Beveridge’s analysis methodology,
from a thinking pattern perspective,
we try to summarize and therefore pro-
vide some useful hints for the art of
computer science research.

One interesting observation that
motivates us in this study is the sym-
metry between computation (data pro-
cessing) and memory (data access).
The name “computer” is somewhat
misleading, leaving an impression that
the only focus of “computer” is compu-
tation. In contrast to the traditional
computation-centric design, the newly
emerged memory-centric computer
system design views memory as the in-

Figure 1. The symmetry between memory and computation from a hierarchy perspective.

L1
Cache

L2 Cache

L1 PU (Processing Unit)

L2 PU

L3 PU L3 Cache

L4 PU

L5 PU

L6
PU

L4 DRAM

L5 NVM

L6 Disk

Computing
Hierarchy

Memory
Hierarchy

MAY 2021 | VOL. 64 | NO. 5 | COMMUNICATIONS OF THE ACM 69

contributed articles

features could date back to the early
1980s: systolic arrays23,24 decoupled-ac-
cess/execute,35 and Complex Instruc-
tion Set Computer (CISC) instruc-
tions.32 These features are historical
“re-runs.” Some of them did not be-
come the mainstream when they were
first introduced, but they are effective
and valuable in the TPU’s design.

Based on historical thinking, we can
focus on computation and data separate-
ly, to develop computational thinking
and data-centric thinking, respectively.

Computational Thinking
Computational thinking (aka compu-
tation-centric thinking) is the second
point of the regular tetrahedron. Com-
putational thinking has two different
meanings from the perspectives of
mechanism and behaviorism, respec-
tively. Mechanism focuses on “how”
and “performance”, while behaviorism
is concerned with “what” and “func-
tionality.” Therefore, computational
thinking focuses on making the ma-
chine more functional (for example,
via AI) and more quickly (for example,
via parallel computing).

From a mechanism perspective,
computational thinking implies com-
putation-centric design, making the
speed of computing components as
fast as possible. Pursuing high peak
performance of a computer is such an
example. On the other hand, from a be-
haviorism perspective, computational
thinking implies solving problems via
computation.

In the sense of mechanism, an es-
sential feature of computational think-
ing is the creation of microarchitectures
and the design of computational struc-
tures to assist data processing with re-

As Grier noted,13 many researchers
seldom read literature published over
five years ago. They only pay attention to
the immediate concerns but miss the
wealth of important ideas and method-
ologies accumulated in the field of com-
puting for many years. That limits their
vision and often leads to researchers “re-
inventing the wheel.” One instance is
“The Computer and the Brain,” an un-
finished book written by John von Neu-
mann more than 60 years ago, which in-
cludes many valuable ideas that today’s
researchers could benefit from. Unfor-
tunately, many have not read it.

Historical thinking urges us to re-
flect on the successful innovations
from the past by reading more histori-
cal literature in the field, and to learn
more from others’ experiences to facil-
itate our research. This kind of reading
and “casual” study will extend our hori-
zons and stimulate our imaginations,
further motivating us to think outside
the box and start on solid ground.

Historical thinking is a necessity
rather than a luxury, and it plays sever-
al vital roles in scientific innovation.
Armed with a rich historical perspec-
tive, computer scientists could frame
their work within the broader advance-
ment of human civilization and give
them insight into the innovation pro-
cess. The contributions of computer
science research toward the well-being
of mankind should be fully recognized
and emphasized historically.

Through historical thinking, we can
discover new opportunities on the
ground of past experiences. The cre-
ativity of individual scientists undoubt-
edly plays an important role in their
success. However, the impact and ne-
cessity of joint efforts that usually last
for a long time and cross geographic
lines should not be ignored. History
shows that a scientific discovery is gen-
erally the result of many scientists’
continuous efforts. Scientists rarely
work from scratch; instead, they usual-
ly extend and follow up others’ work.

Taking one example of our work, by
taking inspiration from Amdahl’s Law
in 1967 and Gustafson’s Law in 1988,
Sun and Ni developed the memory-
bounded speedup model (often re-
ferred to as Sun-Ni’s Law) in 1990,
which not only extends and unifies Am-
dahl’s Law and Gustafson’s Law, but
also sheds light on the trade-off be-

tween computation and memory for
scalable computing.38 These three laws
have been incorporated into many text-
books and taken as classic principles
in the field of supercomputing. As an-
other example, by extending the well-
known memory performance model,
AMAT (Average Memory Access Time),
we proposed C-AMAT (Concurrent
AMAT) in 201439 to characterize the
memory access delay in modern com-
puting systems where data access con-
currency is pervasive. Furthermore, by
combining Sun-Ni’s law and C-AMAT, a
new performance model, C2-bound
(the square bound of memory capacity
and concurrency), was proposed to
show the combined effects of memory
capacity and concurrency in 2015.25

Figure 2 depicts a historical progres-
sion of memory modeling with respect
to changing architectures, from AMAT
to C-AMAT, from Amdahl’s Law to Sun-
Ni’s Law, and from Moore’s Law to Hill-
Marty’s model.15 These new models are
technology driven. For instance, the
introduction of CAMAT is due to the
prevalence of concurrent data access
in modern computing systems. The
Hill-Marty’s model is an extension of
Amdahl’s Law to multi-core design
(please note, though not listed in Fig-
ure 2, paired with Hill and Marty, Sun
and Chen also extended the scalable
computing concept to multicore de-
sign37). With the advancement of tech-
nologies, each of the models has its
own historical significance.

The evolution of technology is not
always linear but has lots of “reuses” or
“rising from the ashes.” For example,
the contemporary Google TPU is the re-
sult of a team of history-aware archi-
tects.18 Three important architectural

Figure 2. An instance of historical thinking that shows the machines, laws, and models
related to the memory wall problem.

Fi
rs

t p
ro

gr
am

-s
to

re

co
m

pu
te

r AM
AT

M
oo

re
’s

La
w

Am
da

hl
’s

La
w

Fi
rs

t m
ic

ro
pr

oc
es

so
r

Gu
st

af
so

n’
s

La
w

Su
n-

N
i’s

 L
aw

M
em

or
y

W
al

l P
ro

bl
em

Fi
rs

t c
hi

p
m

ul
tip

le

pr
oc

es
so

r M
LP

H
ill

-M
ar

ty
’s

M
od

el

C-
AM

AT
C

2 -b
ou

nd

19
4

6

19
60

19
65

19
67

19
71

19
88

19
90

19
94

20
0

2

20
0

4

20
0

8

20
12

20
15

70 COMMUNICATIONS OF THE ACM | MAY 2021 | VOL. 64 | NO. 5

contributed articles

example, biology, chemistry and phys-
ics), rather than just computer scientists.

Jeannette M. Wing described com-
putational thinking as using abstrac-
tion and decomposition when solving
real problems and designing large com-
plex systems.45 Thinking like a comput-
er scientist means more than being able
to program a computer. Instead, it re-
quires thinking at multiple levels of ab-
straction and examining what comput-
ers and automated processes can do. In
this way, scientists in diverse fields can
extend the functionality of computers
to solve more problems.

Computational thinking can greatly
improve the level of machine automa-
tion and relieve humans of performing
tedious computational processes. To
illustrate, recall that computers based
on the von Neumann architecture take
an instruction sequence (program) as a
generalized stream of data items, then
executes the stream sequentially, guid-
ed by the program counter. Computers
are powerful and accurate but can only
run executable programs. The ability to
transform scientific problems into
computable mathematical models is
essential to computational thinking
and must be trained and learned.

Data-Centric Thinking
Data-centric thinking (aka data think-
ing) is the third point of the regular
tetrahedron. Like computational
thinking, data-centric thinking also
has behavioral and mechanistic
meanings in the view of external and
internal characteristics of data, re-
spectively. From a behaviorism per-
spective, data-centric thinking im-
plies solving problems via data. From
a mechanism perspective, data-cen-
tric thinking implies memory-centric
design, making the impact of data ac-
cess delay as small as possible.

As massive data becomes available,
the interests and feasibility of knowl-
edge discovery are also increased. For
instance, Google found that if the num-
ber of Internet searchers for “flu” sud-
denly peaked in a region, that region
might be experiencing a flu epidemic.
Internet search activity can be consid-
ered as one form of knowledge discov-
ery, while discovery of the link between
search activity and the flu epidemic can
be treated as another form.

Data-centric thinking solves prob-

gards to the performance of a problem
solver. Time and patience are scarce re-
sources for mankind, so we want to
make computers faster and faster, and
make the turn-around time of problem-
solving as small as possible.

In the sense of behaviorism, the
goal of computational thinking is to
make the computer more versatile by
increasing its utility for an ever-ex-
panding set of applications. Comput-
ers are intelligent and powerful ma-
chines that can execute different
programs for different purposes. For
instance, the 2013 Nobel Prize in
chemistry was awarded to three scien-
tists due to their contributions to the
computational model.33 As the Nobel
committee pointed out, “computer
models mirroring real life have be-
come crucial for most advances made
in chemistry today, and computers un-
veil chemical processes, such as a cata-
lyst’s purification of exhaust fumes or
the photosynthesis in green leaves.”30
It is simply more difficult and time-
consuming to obtain the same results
that one would with a simulation via
traditional experimental methods,
that is, in a wet laboratory.

Computational thinking enables us
to understand computation across
multiple phases of human history.
Computational thinking existed far be-
fore the birth of modern computers.
For example, humans had a tool to con-
duct decimal multiplication as early as
305 BC.32 The 2,300- year-old matrix
hidden in Chinese bamboo strips was
found to be the world’s oldest decimal
multiplication table. Before modern
computers were invented, a variety of
computational tools had already been
developed, including ropes, rods and
abacuses. Computation is already a
crucial part of our daily life, with a pro-
found impact on production and living
quality. With computation as a tool,
mankind can pursue activities that
would be impossible without it. More-
over, with high performance comput-
ing, mankind can solve problems that
would be prohibitive with traditional
computational methods.

Computational thinking also re-
quires us to understand computation in
a multidisciplinary manner. The useful-
ness and broad application of comput-
ers benefit from the involvement of do-
main experts from other fields (for

Both the emergence
of big data and
the slowdown
of Moore’s Law
have changed
the landscape of
computer systems
and require us
to examine past
solutions to pave
a new path for
future innovations
and for addressing
new challenges.

MAY 2021 | VOL. 64 | NO. 5 | COMMUNICATIONS OF THE ACM 71

contributed articles

Figure 3. Analogy between data mining and ore smelting.

Increasing
volumes of

raw material
to be handled

Easier to be
understood

by human brains
or more responsive

to human needs

Intelligence

Knowledge

Information

Data

Data Mining

Vanadium
pentoxide

Vanadium
cast iron

Vanadium concentrate

Vanadium titano-magnetite

Ore Smelting

vidual ecosystems. Since data access is
as important as data processing (that is,
computing), big data infrastructures
and supercomputers will coexist for a
long time, and need to support and
complement one another, resulting in a
converged unified eco-system.

Architectural Thinking
Architectural thinking is the fourth point
of the regular tetrahedron. Architectural
thinking refers to utilizing existing tran-
sistors to build optimized computer sys-
tems through hardware and firmware
designs. In general, the term “computer
system” could mean a hardware system,
a software system or a combination of
the two. Architectural thinking focuses
on hardware systems. The emphasis on
utilizing existing transistors implies that
we no longer merely call for more tran-
sistors but focus squarely on their opti-
mal organization and configuration.

Architectural thinking can be con-
ducted at different levels, the highest of
which is the system level, which in-
cludes processor, memory, network,
and input and output (I/O). For in-
stance, the choice of adopting MC-
DRAM36 and NVRAM11 has revolution-
ized the organization of memory
systems. This organization and config-
uration can be extended to the chip lev-
el and component level as well. For ex-
ample, the number and connection of
cores, the capacity of on-chip caches,
the cache management (insertion, pro-
motion and replacement), and the de-
sign of solid-state drives (SSDs) all in-
volve architectural thinking.

Computer architecture is facing
many new challenges. First, conven-
tionally, the “best” system is measured
in CPU performance; now, as dis-
cussed, to optimize CPU performance

lems by means of collecting and utiliz-
ing data. While computational thinking
focuses on formulating a problem to
make it computationally solvable, data-
centric thinking is for gathering and ex-
ploiting data to provide insights.2,29,24 For
instance, suppose we want to provide a
set of travel plans for users. Using com-
putational thinking, we might identify
the shortest path along a graph (repre-
senting cities and routes) with Dijkstra’s
algorithm or the Bellman-Ford algo-
rithm. Here, the graph is the abstract
mathematical model of the travel plan-
ning. Creating this graph mathematical
model is a process of computational
thinking, as well as the shortest-path al-
gorithms. On the other hand, with data-
centric thinking, we no longer need to
focus on computation. Instead, we focus
on collecting historical route data, ana-
lyzing, and exploring the data, and final-
ly making a recommendation to users
based on the data. If the recommenda-
tion is generated based on deep learning
or other AI methods, we often do not
know exactly the reasoning behind the
recommendations. In other words, data
thinking solutions are weak in “causality
and interpretability” than mathematical
model-based solutions, as stated in Liu
et al.,29 while they may be more effective
or even the only way to find a solution.

As shown in Figure 3, data-centric
thinking is needed to address the chal-
lenges of knowledge discovery (aka
data mining), which is a daunting task
similar to ore smelting, because it is dif-
ficult to decide what kinds of data
should be collected and how to exploit
knowledge from a large amount of data.

The 4V (that is, Volume, Variety, Ve-
locity, and Veracity)4,17 characteristics
of big data applications have a signifi-
cant impact on memory localities and
have changed the landscape of com-
puting. Big data applications usually
have a large quantity of data with poor
locality. They are nightmares for the
modern memory hierarchy, leading to
data starvation that causes processor
pipeline stall, known as the memory-
wall problem. Local disks and inter-
connection networks for remote access
also can be considered a layer of a more
generalized memory hierarchy

The Fugaku supercomputer, cur-
rently the world’s fastest computer,
only had a peak efficiency of 80.86%
when it was first released.5 Notably,

for a supercomputer, that is a remark-
able achievement, and was the result
of a long and labor-intensive perfor-
mance tuning effort for a particular
application (that is, LINPACK). In
practice, a high system utilization is
very difficult to reach, and the
achieved sustained efficiency is often
in the single-digit range.

Data access can become a killer per-
formance bottleneck for high perfor-
mance computing. Simply adding more
on-chip memories is not a feasible solu-
tion to the memory-wall problem. Deep
multi-level cache hierarchy involves
more than 80% of the microprocessor
on-chip transistors, while studies show
that on average these cache blocks are
never used during more than 80% of
their lifetime.19 These unutilized cache
blocks not only waste power consump-
tion and die spaces, but also increase
data searching time. We need to have
data-centric thinking toward both the
hardware and system designs, to in-
crease system efficiency, and to reduce
memory stall time at the same time.

Data-centric thinking for system de-
sign involves the whole life cycle of
data processing, from data collection,
data storage, to data movement and
operation. It places the memory sys-
tem at the highest priority, at least at
the same level as the CPU. As early as
1990, we revealed that memory is a ma-
jor constraint of scalable computing
and introduced the memory-bounded
speedup model.38 More recently, we es-
tablished the C-AMAT model to pro-
mote and utilize concurrent data ac-
cess.39 These models are embodiments
of data-centric thinking for computer
system designs. Big data infrastructures
and supercomputers have different de-
sign considerations and are with indi-

72 COMMUNICATIONS OF THE ACM | MAY 2021 | VOL. 64 | NO. 5

contributed articles

slowdown, the requirement for archi-
tectural improvement will grow from
120% to 136.9% as n increases from 18
to 36 (see Figure 4). This is a new chal-
lenge for architectural design.

Architecture is the hardware skele-
ton for running algorithms, impacting
the efficiency of computer systems and
the quality of user experience. For ex-
ample, an 8-core processor developed
by our colleagues has attained a 35% im-
provement in efficiency compared with
its predecessor.16 The significant perfor-
mance improvement is mainly attribut-
ed to the innovations of its architecture:
the input/output structure and the asso-
ciated bandwidth and latency are im-
proved by upgrading the interconnect
and the memory interface.

From the early mainframe comput-
ers to the millions of processor cores in
present supercomputers, there is an
analogy to the “few but giant” and “small
but many.”By this analogy, as shown in
Figure 5, several dimensions need to be
considered for the trade-off between the
components in a computer system, in-
cluding uni-core vs. multi-core, reduced
vs. complex, shared vs. private, distrib-
uted vs. centralized, latency vs. band-
width, locality vs. concurrency, homoge-
neous vs. heterogeneous, synchronous
vs. asynchronous, general purpose vs.
special purpose, and so on. Many works
published on top conferences and jour-
nals on computer architecture can be
mapped onto different positions in the
huge design space shown in Figure 5.
For instance, domain-specific hardware
accelerators8 realized by ASICs, FPGAs,
or GPUs are for special-purpose comput-
ing, conventional CPUs are for general
purpose computing, and architecture
design choices are laying between the
two extremes.

Architectural thinking has several
dimensions, each having many choices.
We assume an architecture A including
n different components ranging from
computation, to memory access and
communication. For any component pi
in a computer system, there exist mul-
tiple (Ni) design choices. According to
the combinatorics, all the combina-
tions of choices constitute a huge de-
sign space, which is of size Ni. Even
if the design space only has 10 dimen-
sions and each dimension only has 10
different options, there would be 10 bil-
lion (1010) possible configurations.

ditional 120% performance improve-
ment to fulfill the 146% per year re-
quirement. However, the speed of
density increase has slowed down, and
the density of transistors has been dou-
bled every three years since 2010,
which is only 50% of what Moore’s Law
predicted.

Assuming the number of transistors
in a unit area doubles every n months,
and the annual rate of growth is a, we
then have

Therefore, according to Pollack’s
rule, the increase in the number of
transistors can be converted into per-
formance improvement by b-fold,

By combining Eq. (1) and Eq. (2), we
have

By Eq. (3), as n increases, the perfor-
mance improvement due to non-archi-
tectural innovation, b, is decreasing.
Assume the performance improve-
ment that needs to be contributed by
architectural innovation is x, where
the sum of x and b is expected to be
146% (that is, the total performance
improvement is 146%), then by Eq. (3)
we can obtain

By Eq. (4), x increases with n, and
the relation between x and n is shown
in Figure 4. As Moore’s Law begins to

we first need to consider memory per-
formance in addition to memory power
consumption. Second, even for conven-
tional CPU-centric architectural de-
sign, we cannot merely rely on Moore’s
Law to improve CPU performance.

The International Technology Road-
map for Semiconductors (ITRS) has
called off the pursuit of Moore’s Law
and stopped the half-century prac-
tice.44 Note that the fastest supercom-
puter, Fugaku, reached 415.5 petaflops
of performance in June 2020.40 Assume
the number of compute nodes in a su-
percomputer is fixed.b If we want to
achieve exascale (1,024 petaflops) com-
pute speed before June 2021, we have
only one year and require a 2.46-fold
(1024/415.5) speedup. In other words,
on average about 146% performance
improvement per year is required.

Realizing 146% per year perfor-
mance improvement is a daunting
challenge. According to Moore’s Law,
the density of transistors is doubled ev-
ery 18 months, which amounts to a 58%
density increase per year. According to
Pollack’s Rule,5 the performance is
proportional to the square root of the
number of transistors, and therefore
58% density increase can be restated as
26% performance improvement. As a
result, even with the contribution of
Moore’s Law, we still must have an ad-

b This assumption is intended to save resources
and maintain system size, but in practice peo-
ple tend to increase the overall performance of
the supercomputer by increasing system size.
For instance, as the fastest supercomputer in
the top500 list, Fugaku’s performance is 2.8
times that of the runner-up (Summit), but the
former has 3.02 times more processor cores
than the latter.40

Figure 4. Architectural innovation x needs to be increased with the slowdown of Moore’s
Law (Assume the number of transistors in a unit area doubles every n month, and the
performance improvement that must be contributed by architectural innovation is x).

140%

135%

130%

125%

120%

115%

110%
18

x

n months

120.0%

127.1%

131.1%
133.8%

135.6% 136.9%

24 30 36 42 48

MAY 2021 | VOL. 64 | NO. 5 | COMMUNICATIONS OF THE ACM 73

contributed articles

tween application data access patterns
and memory system architectures. To
this end, we proposed an architectural
optimization methodology—Layered
Performance Matching (LPM)26,27 to
achieve the desired matching.

With architectural thinking, we de-
signed light-weight hardware struc-
tures to quantify and detect the data
request-reply matching degree and uti-
lized diverse hardware economically to
explore data access concurrency and lo-
cality until the mismatch is eliminated.
As with Jason Cong7 in examining the
customized computation, we believe
this matching is a representative direc-
tion of architectural innovations.

Architectural thinking urges us to
consider whether to address issues in a
codesigned manner. Notice that be-
sides the hardware approach, the LPM
optimization also can be achieved in a
software approach. Generally, a match-
ing of A and B can be achieved by reorga-
nizing A to match B, or reorganizing B to
match A, or simultaneously reorganiz-
ing A and B to agree with each other. Fig-
ure 6 depicts these three methods.

In practice, for layered performance
matching, if the architecture configura-
tion is A, and the application data access
pattern is B, there will exist three differ-
ent optimization approaches. The meth-

What makes the issue even more
challenging is the effectiveness of archi-
tectural design is application depen-
dent. The huge space of applications/
workloads must be considered in an ar-
chitectural design. In addition, there are
a series of constraints in terms of energy
consumption, temperature, area, as well
as cost and performance. An architec-
tural innovation must satisfy these con-
straints under current technologies,
while optimized to serve a variety of ap-
plications. However, it is difficult for a
single architecture to fit all applications
to deliver the highest performance. A
feasible way to achieve this goal is to dis-
cover an elastic and flexible structure,
which can dynamically map application
workloads onto the architectural design
space. Given the size of the design space,
an exhaustive search of architectural
and application pairings is extremely
difficult, if not impossible.

Discussion on Solutions
Thinking paradigm can guide us to ad-
dress research issues more effectively.
In the following, we give some exam-
ples on how our thinking paradigm
helped us in research:

We start with historical thinking.
First, after investigating and examining a
large number of solutions and literature,
we find two keywords that can summa-
rize the commonalities of the solutions
of memory system optimization. They
are “labeling”1,21,28 and “matching.”26,27

Then we apply computational think-
ing and data-centric thinking to reason
about the necessity of “labeling” and
“matching.”

Memory accesses are the ties be-
tween computing components and
data components. Without memory ac-
cesses, there would be no computer
systems but only separated compo-
nents. While many computer nodes
form a network, the inside of each
computer node is also a network in
which hardware components commu-
nicate via network packets (for exam-
ple, over the NoC or PCIe).

Finally, inspired by the above obser-
vations, with architectural thinking, we
proposed the labeled von Neumann ar-
chitecture.1,28,46 The architecture has and
only needs to have three features Exis-
tence, Simplicity, and Utilization re-
ferred to as ESU with regards to labeling:

 ˲ Existence. Each memory or I/O ac-

cess is attached a high-level semantic la-
bel (for example, a virtual machine or
thread ID) to explicitly convey high-level
information to the underlying hardware.

 ˲ Simplicity. Labels should be as
simple as possible to travel across the
data path of a machine in which differ-
ent hardware components can identify
labels and fulfill control policies based
on labels.

 ˲ Utilization. Control logic is intro-
duced on the data paths for leveraging
labels to achieve specific goals such as
quality-of-service and security to in-
crease the utility of the hardware.

For ESU, the first two features that
are about the label representation pro-
vide the foundation for the third fea-
ture to achieve the matching between
computation and data. The ESU prin-
ciple is to efficiently enable a comput-
ing system to have three abilities: Dis-
tinguishing, Isolation, and Prioritizing,
referred to as DIP.46 A computing sys-
tem with DIP can handle the resource
contention among concurrent tasks
and can eliminate the uncertainty
around data access latency to guaran-
tee user experience.

Also, with computational thinking
and data-centric thinking, we notice
that the symmetry between computa-
tion and data requires the matching be-

Figure 5. Dimensions of Architectural Design Trade-off.

S
eq

u
en

ti
al

P
ar

al
le

l

RISC

Uni-core

Shared

Distributed

Latency

Homogeneous

Synchronous

General Purpose

Locality

Performance

CISC

Multi-core

Private

Centralized

Bandwidth

Heterogeneous

Asynchronous

Special Purpose

Concurrency

Energy

74 COMMUNICATIONS OF THE ACM | MAY 2021 | VOL. 64 | NO. 5

contributed articles

Figure 7. A Framework of the Four Thinking
Patterns (“H” represents “Historical thinking,”
“A” represents “Architectural thinking,” “D”
represents “Data-centric thinking,” and “C”
represents “Computational thinking”).

H

D C

A

Figure 6. Three different matching methods (A is the “the underlying memory system
architecture,” while B denotes “application data access pattern”).

B

A

B

A

B

A

B

A

Original
mismatch state

Optimize A
method

Optimize B
method

Optimize both A and B
method

edges are 12 directions. For example,
the dimension “H-A” can be separated
into “H→A” and “A→H”. “H→A” means
using historical knowledge and experi-
ence to boost architectural innovation.
“A→H” denotes examining and viewing
current architectural innovation from a
historical perspective. It is not uncom-
mon that a long-existing, warehoused
technology resurged from the past his-
tory to become modern success. A good
example is the deep learning technolo-
gy. It was first proposed in 1986,10 and
only found its stunning success more
than 20 years later.22

For edge H-A, H-D and H-C, histori-
cal thinking provides inspiration and
foundation for the other three thinking
patterns. We can learn from history to
explore solutions following the archi-
tectural, data-centric and computation-
al thinking patterns. For instance, Dan-
owitz et al developed a CPU database,
which allows designers to mine micro-
processor trends over the past 40 years.9
In general, we can build databases and
conduct corresponding data mining
from the perspective of the relationship
H-A, H-D and H-C, respectively.

For the connections of A-C and A-D,
computational thinking and data-cen-
tric thinking can be implemented
physically through architectural think-
ing. The dimensions in Figure 5 can be
applied in either compute components
or memory components. For example,
the dimension of sequential vs. paral-
lel that applies to compute compo-
nents includes techniques from pipe-
lining, superscalar organization,
multithreading, and multi-core. Simi-
larly, all levels of the cache hierarchy
also support multiple concurrent data
accesses by multiple banks, multiple
ports and multiple channels.

For the link of C-D, computational
thinking and data-centric thinking
should coexist and be conducted simul-
taneously. When we consider how to
solve a problem by computation, we also
need to consider how to address the
problem via data collection, mining and
discovery, in addition to the consider-
ation of data access delay and cost. Com-
putational thinking and data-centric
thinking have different focuses. This is
one of the reasons why high-perfor-
mance computing (HPC) and big data
currently have different ecosystems and
form two partially isolated communities.

For A-C, A-D, and C-D, we need to
notice the interactions between com-
pute components and the memory sys-
tem, which have two distinguishing
characteristics. First, regardless of
whether the memory system has or
does not have computing capabilities,
the combined computing-memory sys-
tem can be seen as a filtering process. A
stream of access requests, as seen by
lower-level cache, has been filtered by
the higher-level caches.

Meanwhile, data access can influ-
ence computation in a way with nega-
tive feedback. When the memory sys-
tem can quickly deliver data, the
computing component is able to issue
more data requests. However, when
the number of outstanding memory re-
quests increases beyond the memory
system’s handling capacity, queue de-
lays and bus contention will become
inevitable, and therefore the memory
system can no longer feed data on
time. As a result, computing compo-
nents will slow down (partially or com-
pletely stall) due to data starvation, and
consequently will reduce data requests.

Due to the combined impact of filter-
ing and feedbacking, CPU performance

od optimizing A is a hardware approach,
the method optimizing B is a software
approach, and the method optimizing
both A and B is a mixed approach. For
the hardware approach, the architecture
configuration can be adapted online to
the data access patterns of applications.
On the other hand, for the software ap-
proach, the architecture configuration is
fixed but with heterogeneity, and
through scheduling we also can achieve
a better match of the underlying memo-
ry systems for a better performance. The
scheduling can be implemented in two
ways. We can schedule across heteroge-
neous processors to allocate application
data to the underlying hardware accord-
ing to its data access pattern. Alterna-
tively, we can reorder data accesses at
the memory controllers to reshape ap-
plication data access patterns to adapt
to the underlying hardware.

We have illustrated how the general-
ized thinking paradigm helped us in
our research, which includes the label-
ing and matching designs for comput-
ing systems. The formal identification
and recognition of the thinking para-
digm certainly will boost innovation
and productivity.

Discussion on Relations
As shown in Figure 7, the four think-
ing patterns make up a triangular pyr-
amid, which has six undirected edges
(12 directed edges) that correspond to
six relationships, that is, H-A (History-
Architecture), H-D (History-Data), HC
(History-Computation), A-C (Architec-
ture-Computation), A-D (Architecture-
Data), and C-D (Computation-Data).

In HCDA, the six undirected edges
are six dimensions of the paradigm we
can follow. In each dimension, there
are two directions, thus the 12 directed

MAY 2021 | VOL. 64 | NO. 5 | COMMUNICATIONS OF THE ACM 75

contributed articles

26. Liu, Y. and Sun, X.-H. LPM: A systematic methodology
for concurrent data access pattern optimization from
a matching perspective. IEEE Trans. on Parallel and
Distributed Systems 30, 11 (2019), 1–16.

27. Liu, Y. and Sun, X.-H. LPM: Concurrency-driven layered
performance matching. In Proceedings of the 44th
Intern. Conf. Parallel Processing. ACM/IEEE (Beijing,
China, 2015), 879–888.

28. Ma, J. et al. Supporting Differentiated Services in
Computers via Programmable Architecture for
Resourcing-on-Demand. In Proceedings of the 20th
Intern. Conf. Architectural Support for Programming
Languages and Operating Systems (2015), 131–143.

29. Mayer-Schnberger, V. and Cukier, K. Big Data: A
Revolution that Will Transform How We Live, Work,
and Think. Houghton Mifflin Harcourt Publishing Co.,
Boston, New York, 2013.

30. Norwegian Nobel Committee. Nobel prize in
chemistry; http://www.nobelprize. org/nobel

31. Patterson, D.A. and Ditzel, D.R. The case for the
Reduced Instruction Set Compute. ACM SIGARCH
Computer Architecture News 8, 6, (1980), 25–33.

32. Qiu, J. “Ancient Times Table Hidden in Chinese
Bamboo Strip. Nature News, Jan. 2014.

33. Reed, D.A. and Dongarra, J. Exascale computing and
big data. Commun. ACM 58, 7 (2015), 56–68.

34. Reshef, D.N. et al. Detecting novel associations in large
data sets. Science 334, 6062, (2008), 1518–1524.

35. Smith, J. Decoupled access/execute computer
architectures. In Proceedings of the 9th Annual Symp.
Computer Architecture (Austin, TX, 1982), 26–29.

36. Smith, S., Park, J., and Karypis, G. Sparse tensor
factorization on many-core processors with high-
bandwidth memory. In Proceedings of the 2017 IEEE
Intern. of Parallel and Distributed Processing Symp.
IEEE, 2017, 1058–1067.

37. Sun, X.-H. and Chen, Y. Reevaluating Amdahl’s Law
in the multicore era. J. Parallel and Distributed
Computing 70, 2, (2010), 183–188.

38. Sun, X.-H. and Ni, L. Another view on parallel speedup.
In Proceedings of Intern. Conf. for High Performance
Computing, Networking, Storage and Analysis. IEEE/
ACM, New York, (1990), 324–333.

39. Sun, X.-H. and Wang, D. Concurrent average memory
access time. Computer 47, 5 (2014), 74–80.

40. Supercomputer top 500 list; https: //www.top500.org/
lists/2020/06/

41. Tissenbaum, M.J., Sheldon, J., and Abelson, H. From
computational thinking to computational action.
Commun. ACM 62, 3 (Mar. 2019), 34–36.

42. Von Neumann, J. The Computer and the Brain. Yale
University Press, 1958.

43. Von Neumann, J. First draft of a report on the EDVAC.
IEEE Annals of the History of Computing 15, 4, (1993),
27–75.

44. Waldrop, M. The chips are down for Moore’s Law.
Nature 530 (Feb. 2016), 144–147.

45. Wing, J.M. Computational thinking. Commun. ACM 49,
3 (2006), 33–35.

46. Xu, Z. and Li, C. Low-entropy cloud computing
systems. Scientia Sinica Informationis 47, 9, (2017),
1149–1163.

Yuhang Liu (liuyuhang@ict.ac.cn) is an associate
professor at the State Key Laboratory of Computer
Architecture, University of Chinese Academy of Sciences,
and Institute of Computing Technology, Chinese Academy
of Sciences, Beijing, China.

X.-H. Sun is a distinguished professor with the
Department of Computer Science, Illinois Institute of
Technology, Chicago, IL, USA.

Yang Wang is a professor at the Shenzhen Institutes
of Advanced Technology, Chinese Academy of Sciences,
Shenzhen, China.

Yungang Bao is a professor at the State Key Laboratory
of Computer Architecture, University of Chinese Academy
of Sciences, and Institute of Computing Technology,
Chinese Academy of Sciences, Beijing, China.

© 2021 ACM 0001-0782/21/5

and memory performance are entangled
and mutually influenced by one another.
Therefore, they need to be matched and
considered in parallel. High-speed com-
putation requires rapid data movement,
and data movement is a critical factor
for next-generation architectural de-
sign, either from computational think-
ing or from data-centric thinking per-
spective. As examples of the HCDA
thinking paradigm, the labeled von Neu-
mann architecture and the layered per-
formance matching are general and
have their significance in system design.

Conclusion
Modern computers have been devel-
oped for more than seventy years.
Moore’s Law, which has guided the chip
design for more than five decades, is ap-
proaching its end. The 25-year-old
memory wall problem is becoming in-
creasingly problematic. The landscape
of computers is changing from compu-
tation-centric to data-centric. Literally,
the term “computer” cannot convey the
full meanings we intend it to. Therefore,
to adapt to the changing landscape, we
need to explore new ways of thinking
and new directions for innovation.

While new computing models such
as quantum computing and DNA com-
puting under continued development,
this article holds that the conventional
von Neumann architecture also can be
further developed for a great future. We
propose a tetrahedron “historical, com-
putational, data, and architectural”
thinking paradigm, referred to as HCDA,
to extend the computation thinking in
the big data era. Enriching computer sci-
entists with historical thinking, compu-
tational thinking, data-centric thinking,
and architectural thinking, will boost in-
novation and provide corresponding ac-
tions that enhance the impact of tech-
nology on our rapidly evolving society.
The four patterns of thinking and their
corresponding actions41 constitute an ef-
fective paradigm that can facilitate the
advance of computer technologies in the
new age of computing.

Acknowledgments. This work is
supported in part by the National Natu-
ral Science Foundation of China (No.
61772497, 61672513), National Key
R&D Program of China (No.
2016YFB1000201), Strategic Priority
Research Program of Chinese Academy
of Sciences (XDC05030100), YIPA-CAS,

BAAI, PCL, and the U.S. National Sci-
ence Foundation under NSF CCF-
1536079 and CNS-1730488. We thank
the anonymous reviewers for their
feedback and Kyle Hale for their assis-
tance. The first author thanks Mingfa
Zhu for his guidance.

References
1. Bao, Y.-G. and Wang, S. Labeled von Neumann

architecture for software-defined cloud. J. Computer
Science and Technology 32, 2 (2017), 219–223.

2. Berman, F. et al. Realizing the potential of data
science. Commun. ACM 61, 4 (Apr.) 67–72.

3. Beveridge, W. The Art of Scientific Investigation.
Vintage Books, 1954.

4. Beyer, M. Gartner says solving big data challenge
involves more than just managing volumes of data;
http://www.gartner.com/it/page.jsp?id=1731916.

5. Borkar, S. Thousand core chips: a technology
perspective. In Proceedings of the 54th IEEE Annual
Design Automation Conf. (San Diego, CA),746–749.

6. Carell, T. Molecular computing: DNA as a logic
operator. Nature 469, 7328, 45–46.

7. Cong, J., Wei, P., Yu, C. H., and Zhou, P. Bandwidth
optimization through on-chip memory restructuring
for HLS. In Proceedings of the 54th IEEE Annual
Design Automation Conf. (Austin, TX), 1–6.

8. Dally, W.J., Turakhia, Y., and Han, S. Domain-specific
hardware accelerators. Commun. ACM 63, 7 (July
2020), 48–57.

9. Danowitz, A., Kelley, K., Mao, J., Stevenson, J.P., and
Horowitz, M. CPU DB: Recording microprocessor
history. Queue 10, 4, (2012), 10–27.

10. Dechter, R. Learning while searching in constraint-
satisfaction problems. In Proceedings of the 5th
National Conf. Artificial Intelligence (Philadelphia, PA,
USA, Aug. 11–15, 1986).

11. Fernando, P., Kannan, S., Gavrilovska, A., and Schwan,
K. Phoenix: Memory speed HPC I/O with NVM. In
Proceedings IEEE 23rd Intern. Conf. High Performance
Computing (Hyderabad, India, 2017).

12. Grier, D.A. How to think from the perspective of
computing? Commun. Chinese Computing Federation
15, 4, (2019), 36–38.

13. Grier, D.A. Old and new: The computer and the brain.
Commun. Chinese Computing Federation 13, 3 (2017),
67–68.

14. Hennessy, J.L. and Patterson, D.A. A new golden
age for computer architecture. Commun. ACM 62, 2
(2018), 48–60.

15. Hill, M.D. and Marty, M.D. Amdahl’s law in the
multicore era. Computer 41, 7 (2008), 33–38.

16. Hu, W., Zhang, Y., Yang, L., and Fan, B. Godson-3b1500:
A 32nm 1.35ghz 40w 172.8gflops 8-core processor.
In Proceedings of Intern. Solid-State Circuits Conf.
IEEE, 54–55.

17. IBM big data hub; http://www. ibmbigdatahub.com/
infographic/fourvs-big-data.

18. Jouppi, N.P. et al. In datacenter performance analysis
of a tensor processing unit. In Proceedings of the 44th
Annual Intern. Symp. Computer Architecture, 2017,
1–12.

19. Khan, S.M., Tian, Y., and Jimenez, D.A. Sampling dead
block prediction for last-level caches. In Proceedings
of the 43rd Annual IEEE/ACM Intern. Symp. on
Microarchitecture. IEEE, 2010, 175–186.

20. Knill, E. Physics: Quantum computing. Nature 463,
7280 (2010), 441–443.

21. Kougkas, A., Devarajan, H., Lofstead, J., and Sun,
X.-H. Labios: A distributed label-based I/O system.
In Proceedings in the 28th ACM Intern. Symp. High-
Performance Parallel and Distributed Computing
(Phoenix, AZ, USA).

22. Krizhevsky, A., Sutskever, I, Hinton, G.E. Imagenet
classification with deep convolutional neural
networks. Advances in Neural Information Processing
Systems 25, 2, 1–9.

23. Kung, H. Why systolic architectures? IEEE Computer
15, 1 (1982), 37–46.

24. Kung, H. and Leiserson, C. Algorithms for VLSI
Processor Arrays. Introduction to VLSI Systems, 1980.

25. Liu, Y. and Sun, X.-H. C2 -bound: A Capacity and
Concurrency Driven Analytical Model for Many-core
Design. In Proceedings of Intern. Conf. for High
Performance Computing, Networking, Storage and
Analysis. IEEE/ACM (Austin, TX, 2015), 1–11.

Watch the authors discuss
this work in the exclusive
Communications video.
https://cacm.acm.org/videos/hcda

