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IN 2006,  JEANNETTE M. Wing45 proposed the concept 
of “computational thinking,” which has produced 
significant worldwide impacts on the education, 
research, and development of computer science. After 
more than a decade, we reexamine computational 
thinking, and find that a more general-thinking 
paradigm is urgently needed to address new challenges.

A couple of recent commentaries12,41 regarding 
computational thinking attracted our interests and 
inspired us to reflect further. More than that, we want to 
summarize and generalize the rationale of our solutions, 

for instance, the Labeled von Neu-
mann Architecture (LvNA)1,28 and the 
Layered Performance Matching (LPM) 
methodology.26,27

Nurtured by Moore’s Law, the num-
ber of transistors available on a single 
chip increases exponentially. Mean-
while, due to architectural innova-
tions, transistors are organized more 
effectively and utilized more vigorously. 
As a result of the combined efforts, 
computers have witnessed a signifi-
cant performance advancement dur-
ing their 70-year history. However, the 
new age, characterized by the slow-
down of Moore’s Law and Dennard 
scaling,44 and by the rise of big data ap-
plications, brings serious challenges 
that computer scientists must face.

The scaling of on-chip transistors 
impacts microprocessor performance 
significantly. However, further im-
provements to transistor density and 
power become more difficult due to 
the limits of semiconductor physics.44 
As a result, architectural innovations 
become increasingly crucial for perfor-
mance breakthroughs, and the epoch 
we are entering is “a new golden age for 
computer architecture.”14

The rise of big data has caused an un-
precedented shift, where the memory 
system, rather than the computational 
core, plays a more vital role. According-
ly, the memory access limitation de-

HCDA: 
From 
Computational 
Thinking to  
a Generalized 
Thinking 
Paradigm

DOI:10.1145/3418291

As a new era in computing emerges, so too 
must our fundamental thinking patterns.

BY YUHANG LIU, XIAN-HE SUN, YANG WANG, AND YUNGANG BAO

 key insights
 ˽ Architecturally organizing the computing 

system and exploiting the available 
transistors more effectively can reduce 
the number of transistors required, and 
the labeling and matching are crucial in 
architectural design.

 ˽ Computing history is a growing 
warehouse that has not been well 
utilized, and the evolution of computing 
technology is not always linear but  
has lots of “reuses” or “rising from  
the ashes,” and hence historical  
thinking is needed.

 ˽ Memory access can become a killer 
performance bottleneck for high 
performance computing, and simply 
adding more on chip memories is not 
a feasible solution to the memory-wall 
problem.
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trinsic bottleneck of the von Neumann 
architecture.

Before turning to non von Neumann 
architectures (for example, quantum 
computing20 and DNA computing6), we 
should determine whether it is possi-
ble to design new von Neumann archi-
tectures that are still transistor-based 
but can overcome the memory wall. Af-
ter examining the original representa-
tion of von Neumann,42,43 we found 
that von Neumann preserves neutrali-
ty between computation and memory. 
That is, data processing and data ac-
cess are equally important according 
to the von Neumann architecture. 
Computation and data are two sides of 
the same coin. They are the premises 
of each other. Therefore, equilibrium 
(a.k.a. balanced) design is the must 
without any room for maneuver.

The traditional computation-cen-
tric architectural design is due to his-
torical reasons. In the beginning, CPUs 
were very slow and expensive com-
pared to memory. As a result, computer 
systems are computation-centric, fo-
cusing on the speed of computing 
components. Later, due to the mis-
match in advancement of processor 
and memory technologies, computer 
systems became increasingly memory-
centric where data was treated as a 
first-class citizen. From a historical 
perspective, the later memory-centric 
focus counteracts the former computa-
tion-centric focus.

More specifically, as shown in Fig-

ure 1, the memory hierarchy is the 
counterpart of the computational hier-
archy, memory-level-parallelism (MLP) 
is the counterpart of instruction-level-
parallelism (ILP), and processor in 
memory (PIM) is the counterpart of 
memory in processor (MIP).a There-
fore, in this study, we propose a frame-
work that allows computational think-
ing and data-centric thinking to 
naturally coexist.

The thought process of a computer 
system designer is dynamic, but it has 
patterns. Wing introduced the impor-
tant concept of “computational think-
ing” in 2006.45 In this study, we build 
on her ideas to extend the concept of 
computational thinking and present a 
paradigm of thinking patterns for com-
puter researchers and practitioners in 
the new era of computing.

More generally, we identify four 
foundational thinking patterns that 
will foster computer system innova-
tions: historical thinking, computational 
thinking, data-centric thinking, and ar-
chitectural thinking (HDCA). The com-
bination of these four patterns forms a 
regular tetrahedron thinking para-
digm, where history is the source of ref-
erences and lessons, computation is 
the functionality provided by the com-
puting systems, data is the processing 
objects of computing systems, and ar-
chitecture is the hardware mechanism 
to physically execute operations. The 
four thinking patterns are four dimen-
sions that are logically connected, pro-
viding a unified framework for comput-
er design innovations. This thinking 
paradigm will provide a reference mod-
el for researchers and practitioners to 
guide and boost the next wave of inno-
vations in computer systems.

Historical Thinking
Historical thinking is the first point of 
the regular tetrahedron. Present inno-
vations are based on past innovations. 
Revolutionary innovations are based 
on the accumulation of knowledge. 
Historical thinking explores solutions 
and methodologies from past results, 
lessons and experiences.

a State-of-the-art processors usually have mul-
tiple levels of cache on a single chip. For in-
stance, Fujitsu’s 48-core A64FX processor 
used in Fugaku supercomputer has 32MB L2 
cache.40

scribed by Sun-Ni’s Law38 is becoming a 
performance killer for many applica-
tions. Thus, data-centric innovations of 
computer system design are urgently 
needed to address the issues of data 
storage and access. Both the emergence 
of big data and the slowdown of Moore’s 
Law have changed the landscape of 
computer systems and require us to ex-
amine past solutions to pave a new path 
for future innovations and for address-
ing new challenges.

The first step to learn from extant 
innovations is to find commonalities 
and patterns within them. In the semi-
nal literature “The Art of Scientific Re-
search,”3 Beveridge summarized the re-
search methods adopted by classical 
natural scientists and found common-
alities, routines and regularities in the 
innovation process, which was previous-
ly thought to be accidental. By follow-
ing Beveridge’s analysis methodology, 
from a thinking pattern perspective, 
we try to summarize and therefore pro-
vide some useful hints for the art of 
computer science research.

One interesting observation that 
motivates us in this study is the sym-
metry between computation (data pro-
cessing) and memory (data access). 
The name “computer” is somewhat 
misleading, leaving an impression that 
the only focus of “computer” is compu-
tation. In contrast to the traditional 
computation-centric design, the newly 
emerged memory-centric computer 
system design views memory as the in-

Figure 1. The symmetry between memory and computation from a hierarchy perspective.
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features could date back to the early 
1980s: systolic arrays23,24 decoupled-ac-
cess/execute,35 and Complex Instruc-
tion Set Computer (CISC) instruc-
tions.32 These features are historical 
“re-runs.” Some of them did not be-
come the mainstream when they were 
first introduced, but they are effective 
and valuable in the TPU’s design.

Based on historical thinking, we can 
focus on computation and data separate-
ly, to develop computational thinking 
and data-centric thinking, respectively.

Computational Thinking
Computational thinking (aka compu-
tation-centric thinking) is the second 
point of the regular tetrahedron. Com-
putational thinking has two different 
meanings from the perspectives of 
mechanism and behaviorism, respec-
tively. Mechanism focuses on “how” 
and “performance”, while behaviorism 
is concerned with “what” and “func-
tionality.” Therefore, computational 
thinking focuses on making the ma-
chine more functional (for example, 
via AI) and more quickly (for example, 
via parallel computing).

From a mechanism perspective, 
computational thinking implies com-
putation-centric design, making the 
speed of computing components as 
fast as possible. Pursuing high peak 
performance of a computer is such an 
example. On the other hand, from a be-
haviorism perspective, computational 
thinking implies solving problems via 
computation.

In the sense of mechanism, an es-
sential feature of computational think-
ing is the creation of microarchitectures 
and the design of computational struc-
tures to assist data processing with re-

As Grier noted,13 many researchers 
seldom read literature published over 
five years ago. They only pay attention to 
the immediate concerns but miss the 
wealth of important ideas and method-
ologies accumulated in the field of com-
puting for many years. That limits their 
vision and often leads to researchers “re-
inventing the wheel.” One instance is 
“The Computer and the Brain,” an un-
finished book written by John von Neu-
mann more than 60 years ago, which in-
cludes many valuable ideas that today’s 
researchers could benefit from. Unfor-
tunately, many have not read it.

Historical thinking urges us to re-
flect on the successful innovations 
from the past by reading more histori-
cal literature in the field, and to learn 
more from others’ experiences to facil-
itate our research. This kind of reading 
and “casual” study will extend our hori-
zons and stimulate our imaginations, 
further motivating us to think outside 
the box and start on solid ground.

Historical thinking is a necessity 
rather than a luxury, and it plays sever-
al vital roles in scientific innovation. 
Armed with a rich historical perspec-
tive, computer scientists could frame 
their work within the broader advance-
ment of human civilization and give 
them insight into the innovation pro-
cess. The contributions of computer 
science research toward the well-being 
of mankind should be fully recognized 
and emphasized historically.

Through historical thinking, we can 
discover new opportunities on the 
ground of past experiences. The cre-
ativity of individual scientists undoubt-
edly plays an important role in their 
success. However, the impact and ne-
cessity of joint efforts that usually last 
for a long time and cross geographic 
lines should not be ignored. History 
shows that a scientific discovery is gen-
erally the result of many scientists’ 
continuous efforts. Scientists rarely 
work from scratch; instead, they usual-
ly extend and follow up others’ work.

Taking one example of our work, by 
taking inspiration from Amdahl’s Law 
in 1967 and Gustafson’s Law in 1988, 
Sun and Ni developed the memory-
bounded speedup model (often re-
ferred to as Sun-Ni’s Law) in 1990, 
which not only extends and unifies Am-
dahl’s Law and Gustafson’s Law, but 
also sheds light on the trade-off be-

tween computation and memory for 
scalable computing.38 These three laws 
have been incorporated into many text-
books and taken as classic principles 
in the field of supercomputing. As an-
other example, by extending the well-
known memory performance model, 
AMAT (Average Memory Access Time), 
we proposed C-AMAT (Concurrent 
AMAT) in 201439 to characterize the 
memory access delay in modern com-
puting systems where data access con-
currency is pervasive. Furthermore, by 
combining Sun-Ni’s law and C-AMAT, a 
new performance model, C2-bound 
(the square bound of memory capacity 
and concurrency), was proposed to 
show the combined effects of memory 
capacity and concurrency in 2015.25

Figure 2 depicts a historical progres-
sion of memory modeling with respect 
to changing architectures, from AMAT 
to C-AMAT, from Amdahl’s Law to Sun-
Ni’s Law, and from Moore’s Law to Hill-
Marty’s model.15 These new models are 
technology driven. For instance, the 
introduction of CAMAT is due to the 
prevalence of concurrent data access 
in modern computing systems. The 
Hill-Marty’s model is an extension of 
Amdahl’s Law to multi-core design 
(please note, though not listed in Fig-
ure 2, paired with Hill and Marty, Sun 
and Chen also extended the scalable 
computing concept to multicore de-
sign37). With the advancement of tech-
nologies, each of the models has its 
own historical significance.

The evolution of technology is not 
always linear but has lots of “reuses” or 
“rising from the ashes.” For example, 
the contemporary Google TPU is the re-
sult of a team of history-aware archi-
tects.18 Three important architectural 

Figure 2. An instance of historical thinking that shows the machines, laws, and models 
related to the memory wall problem.
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example, biology, chemistry and phys-
ics), rather than just computer scientists.

Jeannette M. Wing described com-
putational thinking as using abstrac-
tion and decomposition when solving 
real problems and designing large com-
plex systems.45 Thinking like a comput-
er scientist means more than being able 
to program a computer. Instead, it re-
quires thinking at multiple levels of ab-
straction and examining what comput-
ers and automated processes can do. In 
this way, scientists in diverse fields can 
extend the functionality of computers 
to solve more problems.

Computational thinking can greatly 
improve the level of machine automa-
tion and relieve humans of performing 
tedious computational processes. To 
illustrate, recall that computers based 
on the von Neumann architecture take 
an instruction sequence (program) as a 
generalized stream of data items, then 
executes the stream sequentially, guid-
ed by the program counter. Computers 
are powerful and accurate but can only 
run executable programs. The ability to 
transform scientific problems into 
computable mathematical models is 
essential to computational thinking 
and must be trained and learned.

Data-Centric Thinking
Data-centric thinking (aka data think-
ing) is the third point of the regular 
tetrahedron. Like computational 
thinking, data-centric thinking also 
has behavioral and mechanistic 
meanings in the view of external and 
internal characteristics of data, re-
spectively. From a behaviorism per-
spective, data-centric thinking im-
plies solving problems via data. From 
a mechanism perspective, data-cen-
tric thinking implies memory-centric 
design, making the impact of data ac-
cess delay as small as possible.

As massive data becomes available, 
the interests and feasibility of knowl-
edge discovery are also increased. For 
instance, Google found that if the num-
ber of Internet searchers for “flu” sud-
denly peaked in a region, that region 
might be experiencing a flu epidemic. 
Internet search activity can be consid-
ered as one form of knowledge discov-
ery, while discovery of the link between 
search activity and the flu epidemic can 
be treated as another form.

Data-centric thinking solves prob-

gards to the performance of a problem 
solver. Time and patience are scarce re-
sources for mankind, so we want to 
make computers faster and faster, and 
make the turn-around time of problem-
solving as small as possible.

In the sense of behaviorism, the 
goal of computational thinking is to 
make the computer more versatile by 
increasing its utility for an ever-ex-
panding set of applications. Comput-
ers are intelligent and powerful ma-
chines that can execute different 
programs for different purposes. For 
instance, the 2013 Nobel Prize in 
chemistry was awarded to three scien-
tists due to their contributions to the 
computational model.33 As the Nobel 
committee pointed out, “computer 
models mirroring real life have be-
come crucial for most advances made 
in chemistry today, and computers un-
veil chemical processes, such as a cata-
lyst’s purification of exhaust fumes or 
the photosynthesis in green leaves.”30 
It is simply more difficult and time-
consuming to obtain the same results 
that one would with a simulation via 
traditional experimental methods, 
that is, in a wet laboratory.

Computational thinking enables us 
to understand computation across 
multiple phases of human history. 
Computational thinking existed far be-
fore the birth of modern computers. 
For example, humans had a tool to con-
duct decimal multiplication as early as 
305 BC.32 The 2,300- year-old matrix 
hidden in Chinese bamboo strips was 
found to be the world’s oldest decimal 
multiplication table. Before modern 
computers were invented, a variety of 
computational tools had already been 
developed, including ropes, rods and 
abacuses. Computation is already a 
crucial part of our daily life, with a pro-
found impact on production and living 
quality. With computation as a tool, 
mankind can pursue activities that 
would be impossible without it. More-
over, with high performance comput-
ing, mankind can solve problems that 
would be prohibitive with traditional 
computational methods.

Computational thinking also re-
quires us to understand computation in 
a multidisciplinary manner. The useful-
ness and broad application of comput-
ers benefit from the involvement of do-
main experts from other fields (for 

Both the emergence 
of big data and 
the slowdown 
of Moore’s Law 
have changed 
the landscape of 
computer systems 
and require us 
to examine past 
solutions to pave  
a new path for 
future innovations 
and for addressing 
new challenges.
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Figure 3. Analogy between data mining and ore smelting.
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vidual ecosystems. Since data access is 
as important as data processing (that is, 
computing), big data infrastructures 
and supercomputers will coexist for a 
long time, and need to support and 
complement one another, resulting in a 
converged unified eco-system.

Architectural Thinking
Architectural thinking is the fourth point 
of the regular tetrahedron. Architectural 
thinking refers to utilizing existing tran-
sistors to build optimized computer sys-
tems through hardware and firmware 
designs. In general, the term “computer 
system” could mean a hardware system, 
a software system or a combination of 
the two. Architectural thinking focuses 
on hardware systems. The emphasis on 
utilizing existing transistors implies that 
we no longer merely call for more tran-
sistors but focus squarely on their opti-
mal organization and configuration.

Architectural thinking can be con-
ducted at different levels, the highest of 
which is the system level, which in-
cludes processor, memory, network, 
and input and output (I/O). For in-
stance, the choice of adopting MC-
DRAM36 and NVRAM11 has revolution-
ized the organization of memory 
systems. This organization and config-
uration can be extended to the chip lev-
el and component level as well. For ex-
ample, the number and connection of 
cores, the capacity of on-chip caches, 
the cache management (insertion, pro-
motion and replacement), and the de-
sign of solid-state drives (SSDs) all in-
volve architectural thinking.

Computer architecture is facing 
many new challenges. First, conven-
tionally, the “best” system is measured 
in CPU performance; now, as dis-
cussed, to optimize CPU performance 

lems by means of collecting and utiliz-
ing data. While computational thinking 
focuses on formulating a problem to 
make it computationally solvable, data-
centric thinking is for gathering and ex-
ploiting data to provide insights.2,29,24 For 
instance, suppose we want to provide a 
set of travel plans for users. Using com-
putational thinking, we might identify 
the shortest path along a graph (repre-
senting cities and routes) with Dijkstra’s 
algorithm or the Bellman-Ford algo-
rithm. Here, the graph is the abstract 
mathematical model of the travel plan-
ning. Creating this graph mathematical 
model is a process of computational 
thinking, as well as the shortest-path al-
gorithms. On the other hand, with data-
centric thinking, we no longer need to 
focus on computation. Instead, we focus 
on collecting historical route data, ana-
lyzing, and exploring the data, and final-
ly making a recommendation to users 
based on the data. If the recommenda-
tion is generated based on deep learning 
or other AI methods, we often do not 
know exactly the reasoning behind the 
recommendations. In other words, data 
thinking solutions are weak in “causality 
and interpretability” than mathematical 
model-based solutions, as stated in Liu 
et al.,29 while they may be more effective 
or even the only way to find a solution.

As shown in Figure 3, data-centric 
thinking is needed to address the chal-
lenges of knowledge discovery (aka 
data mining), which is a daunting task 
similar to ore smelting, because it is dif-
ficult to decide what kinds of data 
should be collected and how to exploit 
knowledge from a large amount of data.

The 4V (that is, Volume, Variety, Ve-
locity, and Veracity)4,17 characteristics 
of big data applications have a signifi-
cant impact on memory localities and 
have changed the landscape of com-
puting. Big data applications usually 
have a large quantity of data with poor 
locality. They are nightmares for the 
modern memory hierarchy, leading to 
data starvation that causes processor 
pipeline stall, known as the memory-
wall problem. Local disks and inter-
connection networks for remote access 
also can be considered a layer of a more 
generalized memory hierarchy

The Fugaku supercomputer, cur-
rently the world’s fastest computer, 
only had a peak efficiency of 80.86% 
when it was first released.5 Notably, 

for a supercomputer, that is a remark-
able achievement, and was the result 
of a long and labor-intensive perfor-
mance tuning effort for a particular 
application (that is, LINPACK). In 
practice, a high system utilization is 
very difficult to reach, and the 
achieved sustained efficiency is often 
in the single-digit range.

Data access can become a killer per-
formance bottleneck for high perfor-
mance computing. Simply adding more 
on-chip memories is not a feasible solu-
tion to the memory-wall problem. Deep 
multi-level cache hierarchy involves 
more than 80% of the microprocessor 
on-chip transistors, while studies show 
that on average these cache blocks are 
never used during more than 80% of 
their lifetime.19 These unutilized cache 
blocks not only waste power consump-
tion and die spaces, but also increase 
data searching time. We need to have 
data-centric thinking toward both the 
hardware and system designs, to in-
crease system efficiency, and to reduce 
memory stall time at the same time.

Data-centric thinking for system de-
sign involves the whole life cycle of 
data processing, from data collection, 
data storage, to data movement and 
operation. It places the memory sys-
tem at the highest priority, at least at 
the same level as the CPU. As early as 
1990, we revealed that memory is a ma-
jor constraint of scalable computing 
and introduced the memory-bounded 
speedup model.38 More recently, we es-
tablished the C-AMAT model to pro-
mote and utilize concurrent data ac-
cess.39 These models are embodiments 
of data-centric thinking for computer 
system designs. Big data infrastructures 
and supercomputers have different de-
sign considerations and are with indi-
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slowdown, the requirement for archi-
tectural improvement will grow from 
120% to 136.9% as n increases from 18 
to 36 (see Figure 4). This is a new chal-
lenge for architectural design.

Architecture is the hardware skele-
ton for running algorithms, impacting 
the efficiency of computer systems and 
the quality of user experience. For ex-
ample, an 8-core processor developed 
by our colleagues has attained a 35% im-
provement in efficiency compared with 
its predecessor.16 The significant perfor-
mance improvement is mainly attribut-
ed to the innovations of its architecture: 
the input/output structure and the asso-
ciated bandwidth and latency are im-
proved by upgrading the interconnect 
and the memory interface.

From the early mainframe comput-
ers to the millions of processor cores in 
present supercomputers, there is an 
analogy to the “few but giant” and “small 
but many.”By this analogy, as shown in 
Figure 5, several dimensions need to be 
considered for the trade-off between the 
components in a computer system, in-
cluding uni-core vs. multi-core, reduced 
vs. complex, shared vs. private, distrib-
uted vs. centralized, latency vs. band-
width, locality vs. concurrency, homoge-
neous vs. heterogeneous, synchronous 
vs. asynchronous, general purpose vs. 
special purpose, and so on. Many works 
published on top conferences and jour-
nals on computer architecture can be 
mapped onto different positions in the 
huge design space shown in Figure 5. 
For instance, domain-specific hardware 
accelerators8 realized by ASICs, FPGAs, 
or GPUs are for special-purpose comput-
ing, conventional CPUs are for general 
purpose computing, and architecture 
design choices are laying between the 
two extremes.

Architectural thinking has several 
dimensions, each having many choices. 
We assume an architecture A including 
n different components ranging from 
computation, to memory access and 
communication. For any component pi 
in a computer system, there exist mul-
tiple (Ni) design choices. According to 
the combinatorics, all the combina-
tions of choices constitute a huge de-
sign space, which is of size  Ni. Even 
if the design space only has 10 dimen-
sions and each dimension only has 10 
different options, there would be 10 bil-
lion (1010) possible configurations.

ditional 120% performance improve-
ment to fulfill the 146% per year re-
quirement. However, the speed of 
density increase has slowed down, and 
the density of transistors has been dou-
bled every three years since 2010, 
which is only 50% of what Moore’s Law 
predicted.

Assuming the number of transistors 
in a unit area doubles every n months, 
and the annual rate of growth is a, we 
then have

Therefore, according to Pollack’s 
rule, the increase in the number of 
transistors can be converted into per-
formance improvement by b-fold,

By combining Eq. (1) and Eq. (2), we 
have

By Eq. (3), as n increases, the perfor-
mance improvement due to non-archi-
tectural innovation, b, is decreasing. 
Assume the performance improve-
ment that needs to be contributed by 
architectural innovation is x, where 
the sum of x and b is expected to be 
146% (that is, the total performance 
improvement is 146%), then by Eq. (3) 
we can obtain

By Eq. (4), x increases with n, and 
the relation between x and n is shown 
in Figure 4. As Moore’s Law begins to 

we first need to consider memory per-
formance in addition to memory power 
consumption. Second, even for conven-
tional CPU-centric architectural de-
sign, we cannot merely rely on Moore’s 
Law to improve CPU performance.

The International Technology Road-
map for Semiconductors (ITRS) has 
called off the pursuit of Moore’s Law 
and stopped the half-century prac-
tice.44 Note that the fastest supercom-
puter, Fugaku, reached 415.5 petaflops 
of performance in June 2020.40 Assume 
the number of compute nodes in a su-
percomputer is fixed.b If we want to 
achieve exascale (1,024 petaflops) com-
pute speed before June 2021, we have 
only one year and require a 2.46-fold 
(1024/415.5) speedup. In other words, 
on average about 146% performance 
improvement per year is required.

Realizing 146% per year perfor-
mance improvement is a daunting 
challenge. According to Moore’s Law, 
the density of transistors is doubled ev-
ery 18 months, which amounts to a 58% 
density increase per year. According to 
Pollack’s Rule,5 the performance is 
proportional to the square root of the 
number of transistors, and therefore 
58% density increase can be restated as 
26% performance improvement. As a 
result, even with the contribution of 
Moore’s Law, we still must have an ad-

b This assumption is intended to save resources 
and maintain system size, but in practice peo-
ple tend to increase the overall performance of 
the supercomputer by increasing system size. 
For instance, as the fastest supercomputer in 
the top500 list, Fugaku’s performance is 2.8 
times that of the runner-up (Summit), but the 
former has 3.02 times more processor cores 
than the latter.40

Figure 4. Architectural innovation x needs to be increased with the slowdown of Moore’s 
Law (Assume the number of transistors in a unit area doubles every n month, and the 
performance improvement that must be contributed by architectural innovation is x).
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tween application data access patterns 
and memory system architectures. To 
this end, we proposed an architectural 
optimization methodology—Layered 
Performance Matching (LPM)26,27 to 
achieve the desired matching.

With architectural thinking, we de-
signed light-weight hardware struc-
tures to quantify and detect the data 
request-reply matching degree and uti-
lized diverse hardware economically to 
explore data access concurrency and lo-
cality until the mismatch is eliminated. 
As with Jason Cong7 in examining the 
customized computation, we believe 
this matching is a representative direc-
tion of architectural innovations.

Architectural thinking urges us to 
consider whether to address issues in a 
codesigned manner. Notice that be-
sides the hardware approach, the LPM 
optimization also can be achieved in a 
software approach. Generally, a match-
ing of A and B can be achieved by reorga-
nizing A to match B, or reorganizing B to 
match A, or simultaneously reorganiz-
ing A and B to agree with each other. Fig-
ure 6 depicts these three methods.

In practice, for layered performance 
matching, if the architecture configura-
tion is A, and the application data access 
pattern is B, there will exist three differ-
ent optimization approaches. The meth-

What makes the issue even more 
challenging is the effectiveness of archi-
tectural design is application depen-
dent. The huge space of applications/
workloads must be considered in an ar-
chitectural design. In addition, there are 
a series of constraints in terms of energy 
consumption, temperature, area, as well 
as cost and performance. An architec-
tural innovation must satisfy these con-
straints under current technologies, 
while optimized to serve a variety of ap-
plications. However, it is difficult for a 
single architecture to fit all applications 
to deliver the highest performance. A 
feasible way to achieve this goal is to dis-
cover an elastic and flexible structure, 
which can dynamically map application 
workloads onto the architectural design 
space. Given the size of the design space, 
an exhaustive search of architectural 
and application pairings is extremely 
difficult, if not impossible.

Discussion on Solutions
Thinking paradigm can guide us to ad-
dress research issues more effectively. 
In the following, we give some exam-
ples on how our thinking paradigm 
helped us in research:

We start with historical thinking. 
First, after investigating and examining a 
large number of solutions and literature, 
we find two keywords that can summa-
rize the commonalities of the solutions 
of memory system optimization. They 
are “labeling”1,21,28 and “matching.”26,27

Then we apply computational think-
ing and data-centric thinking to reason 
about the necessity of “labeling” and 
“matching.”

Memory accesses are the ties be-
tween computing components and 
data components. Without memory ac-
cesses, there would be no computer 
systems but only separated compo-
nents. While many computer nodes 
form a network, the inside of each 
computer node is also a network in 
which hardware components commu-
nicate via network packets (for exam-
ple, over the NoC or PCIe).

Finally, inspired by the above obser-
vations, with architectural thinking, we 
proposed the labeled von Neumann ar-
chitecture.1,28,46 The architecture has and 
only needs to have three features Exis-
tence, Simplicity, and Utilization re-
ferred to as ESU with regards to labeling:

 ˲ Existence. Each memory or I/O ac-

cess is attached a high-level semantic la-
bel (for example, a virtual machine or 
thread ID) to explicitly convey high-level 
information to the underlying hardware.

 ˲ Simplicity. Labels should be as 
simple as possible to travel across the 
data path of a machine in which differ-
ent hardware components can identify 
labels and fulfill control policies based 
on labels.

 ˲ Utilization. Control logic is intro-
duced on the data paths for leveraging 
labels to achieve specific goals such as 
quality-of-service and security to in-
crease the utility of the hardware.

For ESU, the first two features that 
are about the label representation pro-
vide the foundation for the third fea-
ture to achieve the matching between 
computation and data. The ESU prin-
ciple is to efficiently enable a comput-
ing system to have three abilities: Dis-
tinguishing, Isolation, and Prioritizing, 
referred to as DIP.46 A computing sys-
tem with DIP can handle the resource 
contention among concurrent tasks 
and can eliminate the uncertainty 
around data access latency to guaran-
tee user experience.

Also, with computational thinking 
and data-centric thinking, we notice 
that the symmetry between computa-
tion and data requires the matching be-

Figure 5. Dimensions of Architectural Design Trade-off.
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Figure 7. A Framework of the Four Thinking 
Patterns (“H” represents “Historical thinking,” 
“A” represents “Architectural thinking,” “D” 
represents “Data-centric thinking,” and “C” 
represents “Computational thinking”).
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architecture,” while B denotes “application data access pattern”).
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edges are 12 directions. For example, 
the dimension “H-A” can be separated 
into “H→A” and “A→H”. “H→A” means 
using historical knowledge and experi-
ence to boost architectural innovation. 
“A→H” denotes examining and viewing 
current architectural innovation from a 
historical perspective. It is not uncom-
mon that a long-existing, warehoused 
technology resurged from the past his-
tory to become modern success. A good 
example is the deep learning technolo-
gy. It was first proposed in 1986,10 and 
only found its stunning success more 
than 20 years later.22

For edge H-A, H-D and H-C, histori-
cal thinking provides inspiration and 
foundation for the other three thinking 
patterns. We can learn from history to 
explore solutions following the archi-
tectural, data-centric and computation-
al thinking patterns. For instance, Dan-
owitz et al developed a CPU database, 
which allows designers to mine micro-
processor trends over the past 40 years.9 
In general, we can build databases and 
conduct corresponding data mining 
from the perspective of the relationship 
H-A, H-D and H-C, respectively.

For the connections of A-C and A-D, 
computational thinking and data-cen-
tric thinking can be implemented 
physically through architectural think-
ing. The dimensions in Figure 5 can be 
applied in either compute components 
or memory components. For example, 
the dimension of sequential vs. paral-
lel that applies to compute compo-
nents includes techniques from pipe-
lining, superscalar organization, 
multithreading, and multi-core. Simi-
larly, all levels of the cache hierarchy 
also support multiple concurrent data 
accesses by multiple banks, multiple 
ports and multiple channels.

For the link of C-D, computational 
thinking and data-centric thinking 
should coexist and be conducted simul-
taneously. When we consider how to 
solve a problem by computation, we also 
need to consider how to address the 
problem via data collection, mining and 
discovery, in addition to the consider-
ation of data access delay and cost. Com-
putational thinking and data-centric 
thinking have different focuses. This is 
one of the reasons why high-perfor-
mance computing (HPC) and big data 
currently have different ecosystems and 
form two partially isolated communities.

For A-C, A-D, and C-D, we need to 
notice the interactions between com-
pute components and the memory sys-
tem, which have two distinguishing 
characteristics. First, regardless of 
whether the memory system has or 
does not have computing capabilities, 
the combined computing-memory sys-
tem can be seen as a filtering process. A 
stream of access requests, as seen by 
lower-level cache, has been filtered by 
the higher-level caches.

Meanwhile, data access can influ-
ence computation in a way with nega-
tive feedback. When the memory sys-
tem can quickly deliver data, the 
computing component is able to issue 
more data requests. However, when 
the number of outstanding memory re-
quests increases beyond the memory 
system’s handling capacity, queue de-
lays and bus contention will become 
inevitable, and therefore the memory 
system can no longer feed data on 
time. As a result, computing compo-
nents will slow down (partially or com-
pletely stall) due to data starvation, and 
consequently will reduce data requests.

Due to the combined impact of filter-
ing and feedbacking, CPU performance 

od optimizing A is a hardware approach, 
the method optimizing B is a software 
approach, and the method optimizing 
both A and B is a mixed approach. For 
the hardware approach, the architecture 
configuration can be adapted online to 
the data access patterns of applications. 
On the other hand, for the software ap-
proach, the architecture configuration is 
fixed but with heterogeneity, and 
through scheduling we also can achieve 
a better match of the underlying memo-
ry systems for a better performance. The 
scheduling can be implemented in two 
ways. We can schedule across heteroge-
neous processors to allocate application 
data to the underlying hardware accord-
ing to its data access pattern. Alterna-
tively, we can reorder data accesses at 
the memory controllers to reshape ap-
plication data access patterns to adapt 
to the underlying hardware.

We have illustrated how the general-
ized thinking paradigm helped us in 
our research, which includes the label-
ing and matching designs for comput-
ing systems. The formal identification 
and recognition of the thinking para-
digm certainly will boost innovation 
and productivity.

Discussion on Relations
As shown in Figure 7, the four think-
ing patterns make up a triangular pyr-
amid, which has six undirected edges 
(12 directed edges) that correspond to 
six relationships, that is, H-A (History-
Architecture), H-D (History-Data), HC 
(History-Computation), A-C (Architec-
ture-Computation), A-D (Architecture-
Data), and C-D (Computation-Data).

In HCDA, the six undirected edges 
are six dimensions of the paradigm we 
can follow. In each dimension, there 
are two directions, thus the 12 directed 
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and memory performance are entangled 
and mutually influenced by one another. 
Therefore, they need to be matched and 
considered in parallel. High-speed com-
putation requires rapid data movement, 
and data movement is a critical factor 
for next-generation architectural de-
sign, either from computational think-
ing or from data-centric thinking per-
spective. As examples of the HCDA 
thinking paradigm, the labeled von Neu-
mann architecture and the layered per-
formance matching are general and 
have their significance in system design.

Conclusion
Modern computers have been devel-
oped for more than seventy years. 
Moore’s Law, which has guided the chip 
design for more than five decades, is ap-
proaching its end. The 25-year-old 
memory wall problem is becoming in-
creasingly problematic. The landscape 
of computers is changing from compu-
tation-centric to data-centric. Literally, 
the term “computer” cannot convey the 
full meanings we intend it to. Therefore, 
to adapt to the changing landscape, we 
need to explore new ways of thinking 
and new directions for innovation.

While new computing models such 
as quantum computing and DNA com-
puting under continued development, 
this article holds that the conventional 
von Neumann architecture also can be 
further developed for a great future. We 
propose a tetrahedron “historical, com-
putational, data, and architectural” 
thinking paradigm, referred to as HCDA, 
to extend the computation thinking in 
the big data era. Enriching computer sci-
entists with historical thinking, compu-
tational thinking, data-centric thinking, 
and architectural thinking, will boost in-
novation and provide corresponding ac-
tions that enhance the impact of tech-
nology on our rapidly evolving society. 
The four patterns of thinking and their 
corresponding actions41 constitute an ef-
fective paradigm that can facilitate the 
advance of computer technologies in the 
new age of computing.
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