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Abstract—As data volumes of high-performance computing applications continuously increase, low I/O performance becomes a fatal

bottleneck of these data-intensive applications. Data replication is a promising approach to improve parallel I/O performance. However,

most existing strategies are designed based on the assumption that contiguous requests are being served more efficiently than

non-contiguous requests, which is not necessarily true in a parallel I/O system. The reason is that the multiple-server data distribution

makes the favorable accesses between contiguous requests and non-contiguous ones indeterminate. In this study, we propose CEDA,

a cost-effective distribution-aware data replication scheme to better support parallel I/O systems. As logical file access information is

inefficient to make replication decisions in a parallel environment, CEDA considers physical data accesses on servers in both data

selection and data placement during a parallel replication process. Specifically, CEDA first proposes a distribution-aware cost model to

evaluate the file request time with a given data layout, and then it carries out cost-effective data replication based on replication benefit

analysis. We have implemented CEDA as a part of the MPI I/O library in light of high portability on top of the OrangeFS file system.

By replaying representative benchmarks and a real application, we collected comprehensive experimental results on both HDD- and

SSD-based servers and conclude that CEDA can significantly improve parallel I/O system performance.

Index Terms—Parallel I/O system, parallel file system, data layout, data replication, data reorganization
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1 INTRODUCTION

IN the big data era, high-performance computing (HPC)
applications in scientific and engineering fields are

becoming extremely data-intensive. For example, many of
the INCITE applications at Argonne Leadership Computing
Facility (ALCF) generate more than one petabyte (PB)
of data in a single run [1]. The data generated by the U.S.
Department of Energy (DOE) leadership-computing facili-
ties is projected to exceed one exabyte (EB) per year
by 2018 [2]. With the ever increasing data requirements,
I/O performance has become the fatal bottleneck of many
data-intensive HPC applications [3], [4], [5].

To overcome this I/O bottleneck issue, modern HPC clus-
ters deploy parallel I/O systems to provide data storage serv-
ices. As shown in Fig. 1, parallel I/O system often includes
several layers, such as application (App), I/O middleware,
parallel file system (PFS), and storage hardware layer. The
PFS, such as OrangeFS [6], Lustre [7], and GPFS [8], usually
distributes user data on multiple servers, physically connect-
ing each via network. By exploiting the parallelism of multi-
ple storage devices, a parallel I/O system can provide largely
increased storage capacity and I/O bandwidth.

Although parallel I/O systems promise decent peak perfor-
mance for large requests, they do not always deliver desirable
performance even for some commonly-used access patterns.
For example, when facing non-contiguous small requests, a
PFS usually performs poorly [3], [9], [10], [11]. Even with con-
tiguous large requests, the performance of a PFS can be seri-
ously downgraded due to the I/O interference when a large
number of processes concurrently access data [12].

Data replication has emerged as a promising method to
improve I/O system performance. By replicating user data
in the unused storage space (replica space) with reorgan-
ized layouts, original I/O requests can be redirected to new
locations with optimized access patterns. There are two crit-
ical issues for data replication: (1) deciding which data need
to be replicated, and (2) how to place them efficiently in the
replica space. As sequential access on disk usually leads to
higher I/O efficiency, most existing strategies select non-
contiguously accessed data and contiguously place them in
the replica space to improve I/O system performance [13],
[14], [15], [16], [17]. For example, PDLA [15] selects non-con-
tiguously accessed data on a file and distributes them con-
tiguously in the replica files. RADAR [16] and Dynamic
Reorganization [17] create one or multiple replicas for sub-
region accesses and element selections.

Despite various advantages of these data replication
schemes, all the strategies are designed based on the assump-
tion that contiguous requests are being served more effi-
ciently than non-contiguous ones. However, this assumption
is usually true in a serial I/O system with a single disk. For a
parallel I/O system consisting ofmultiple disks, this assump-
tion does not always hold true due to the following reason.

In a parallel I/O system, a logical file is usually distributed
on multiple servers with a specific data layout, in terms of
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stripe size, stripe factor, and number of servers. Thismultiple-
server distributionmakes the favorable accesses between con-
tiguous and non-contiguous file requests uncertain. On the
one hand, as non-contiguous file requests may be mapped to
a single sever and be accessed sequentially on disks, the I/O
performance of non-contiguous file requests can be largely
enhanced. On the other hand, contiguous file requests may be
divided into multiple non-contiguous sub-requests on serv-
ers, which will largely decrease the efficiencies of disks as the
physical data access continuity is not maintained. As a conse-
quence, traditional data replication schemes that based on the
above assumption will experience considerable performance
inefficiencies in a parallel I/O system.

In this paper, we propose CEDA, a cost-effective distri-
bution-aware data replication scheme to boost parallel I/O
system performance. As logical file access information
remains inefficient to make replication decisions in a paral-
lel I/O system, CEDA considers physical data accesses on
servers in both data selection and data placement decisions
during a parallel replication process. More specifically, to
make the approach truly effective, CEDA first introduces a
data cost model that considers physical data distribution to
evaluate the access time of a file request with a given data
layout. Then with this model, CEDA makes data replication
decisions based on data access cost analysis: as the size of
replica space is limited, CEDA only carries out the cost-
effective data replication that can obtain performance bene-
fits to maximize the system I/O performance. Furthermore,
CEDA resides in the I/O middleware layer and is transpar-
ent to applications and file system(s), thereby it requires no
or minimal modification to parallel I/O stack implementa-
tions and can be applied to several parallel file systems.

Specifically, we make the following contributions.

� We find that contiguous file requests do not neces-
sarily lead to optimized I/O performance over non-
contiguous file requests in a parallel I/O system.
Instead, physical data access continuity on server
and inter-server load balance do.

� We introduce a distribution-aware cost model for par-
allel I/O systems, which can evaluate the I/O access
times of file requests by considering physical data
accesses on serverswith a given file systemdata layout.

� We propose a cost-effective data replication scheme,
which first evaluates whether a potential data repli-
cation is beneficial based on the proposed cost
model, and then only carries out the cost-effective

data replication that can actually boost I/O system
performance.

� We implement CEDA under MPICH2 I/O library
[18] on top of OrangeFS PFS. Our extensive experi-
ments on both HDD- and SSD-based I/O systems
with well-known benchmarks, such as IOR, HPIO
and BTIO, and a real application confirm the perfor-
mance and scalability benefits of CEDA.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the background and motivation. Section 3
introduces the data access cost model. The design and
implementation of CEDA are described in Sections 4 and 5.
Section 6 presents the performance evaluation. Section 7 dis-
cusses the related work. Finally, we conclude this paper in
Section 8.

2 BACKGROUND AND MOTIVATION

2.1 Logical Continuity-Based Data Replication

To address the I/O bottleneck issue, data replication has
emerged as a promising method to speed up I/O accesses.
Fig. 2 illustrates the idea of traditional data replication
scheme [15], [16], [19], which usually chooses the non-con-
tiguously accessed data from the original file system and
places them continuously in the replica space, so that origi-
nal non-contiguous file requests can be transformed to con-
tiguous file requests. As we have mentioned previously,
although this approach can help to improve I/O perfor-
mance in certain cases, it may suffer from considerable inef-
ficiencies in a parallel I/O system, as we will illustrate in
the following Section 2.2.

2.2 A Motivating Example

To demonstrate this problem, we run IOR [20] with sequen-
tial I/O requests and strided I/O requests on an OrangeFS
file system on four servers. For both access patterns, IOR
runs with four processes, and the request size ranges from 4
to 64 KB. For the sequential I/O pattern, each process issues
sequential I/O requests to access the 1=n space of a shared
file, where n is the number of the processes. For the strided
I/O pattern, the stride size is (n� 1) times of the request size.

Fig. 3 shows the I/O bandwidth of the system with
sequential I/O patterns and strided I/O patterns at various
request sizes. The bandwidth is measured as the aggregated
data amount of IOR divided by the I/O completion time. As

Fig. 1. Architecture of a typical parallel I/O system. Fig. 2. Traditional data replication scheme, which usually selects the
non-contiguously accessed file requests and concatenates them
together in the replica space.
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expected, with sequential requests, increasing the request
size leads to increased bandwidth. This is also true for strided
I/O requests. However, although sequential requests have
better bandwidths over strided requests at some request
sizes, e.g., 4, 8, and 16 KB, we find that the bandwidth for
strided requests is much higher than that for sequential
requests at some other request sizes, e.g., 32 and 64 KB. This
appears to be inconsistent with the assumption that contigu-
ous I/O requests will be more efficiently serviced than non-
contiguous I/O requests.

The reason for this phenomenon lies in the fact that a file
will be distributed on multiple servers, so that the order in
which the requests arrive at servers is different from the orig-
inal file request order. Fig. 4 illustrates the different orders
when strided I/O requests (Fig. 4a) and sequential I/O
requests (Fig. 4b) are issued to the PFS at request size 64 KB.
When strided I/O pattern is used, each process sends four
non-contiguous requests in the order of their offsets in the
logical file space. Because both request size and stripe size
are 64 KB, the four non-contiguous logical requests issued by
a process are sent to a particular server. Because the local file
system generally allocates data on the disk in an order that is
consistent with their offsets in logical file space, the conse-
quent sequential service order at a server leads to an effective
sequential data access at the server, which leads to high I/O
performance. On the contrary, when sequential I/O pattern
is used, the four requests at each server are from four concur-
rent processes and arrive in an order determined by the rela-
tive progress of the processes, which is unpredictable [12].
Therefore, a server usually serves requests in a random
order, substantially degrading the server performance.

These observations indicate that contiguous file requests
are not always more efficient than non-contiguous ones in
parallel I/O systems, thus blindly choosing non-contiguous
file requests and replicating them contiguously in the rep-
lica space may experience considerable inefficiencies. As
can be seen from Fig. 4, the physical data access continuity
on each disk and inter-server load balance can actually
affect the I/O system performance. This motivates us to
propose our cost-effective distribution-aware data replica-
tion scheme to better support parallel I/O systems.

2.3 Pattern-Based Data Replication

Several previous studies replicate all file system data with
one or multiple copies [21], [22]. Although the space cost is

not a big deal for a small file system, it may be a severe con-
cern for a large-scale parallel file system due to the ever
increasing data sizes. For example, the data amount of the
Quantum Chromodynamics application in ALCF [1] exceeds 1
PB. This means that 200 10TB additional disks are needed if
we adopt a 3-way replication policy. The acquisition cost
and power management overhead will put high pressure
for most HPC systems.

An alternate approach is to avoid the full file system data
replication. Fortunately, many data-intensive applications
in HPC domains have predictable I/O access patterns [15],
[23], [24], [25], [26], which enables partial data replication.
This is because HPC applications often run multiple times,
and their data access patterns are mostly determined by
their inherited numerical methods, not input data. For
example, the BTIO application [27] that solves block-tridiag-
onal matrices has this feature. Once the parameters, such as
size of the array, number of time steps, etc., are given, the
I/O behaviors of BTIO can be accurately predicted. Due to
the iterative loops of program codes, many applications
have repeated data access patterns in one execution [28].
Furthermore, the checkpointing technique that is widely-
used in HPC machines to improve system reliability also
has repetitive access patterns [29].

Based on these observations, it is reasonable for CEDA
to perform pattern-based partial data replication rather
than replicating all the data in file system. Similar appro-
aches, which utilize I/O access patterns to optimize I/O
system performance, have been successfully used many
times in data partition [30], data replication [15], and data
prefetching [31].

Fig. 3. Bandwidths of IOR with strided requests and sequential requests.
This figure shows non-contiguous requests may be more efficient than
contiguous ones.

Fig. 4. Illustration of how data are accessed on multiple servers in a par-
allel I/O system.
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3 DISTRIBUTION-AWARE DATA ACCESS TIME

COST MODEL

As logical file access information may mislead replication
decisions in parallel I/O systems, we propose a cost model
to evaluate the data access time of a file request by consider-
ing physical data distribution on servers. The correspond-
ing parameters are listed in Table 1. This model is inspired
by the previous work [21], but with two differences. First,
the file request does not need to be uniformly distributed on
multiple servers, so that it can accommodate more general
access patterns. Second, it considers data accesses on each
single server and load balance among multiple servers, so
that it can efficiently evaluate I/O system performance.

As a parallel file request may involve multiple sub-
requests, we first describe the data access cost of a single
sub-request, then derive the access time of a single server
by considering the sub-requests distributed on them, and
finally calculate the data access cost of all file requests.

Sub-Request Access Cost. For each sub-request served by a
file server, the access cost is defined as the I/O completion
time of the sub-request, which can be represented as

Tsub ¼ Ts þ Tt; (1)

where Ts denotes the storage startup time before an actual
I/O operation, and Tt stands for the storage transfer time
spent on actual data read/write operation on the device [3].

Ts is mainly determined by the number of seeks and soft-
ware overhead on the device. If the data access is a contigu-
ous operation, then the startup time can be omitted, i.e.,
Ts ¼ 0. Otherwise, the access requires one disk seek opera-
tion, thus Ts ¼ a. Tt is proportional to the data size of the
sub-request on the server. Given the logical file access and
data layout information in Table 1, we can obtain the sub-
request size on each server as follows.

Assuming that the file is distributed on server 0 to n� 1
in a round-robin fashion, the offset and the length of the ith
file request are o and length l, then the serial number of the
involved beginning and ending server are J ¼ b o

strc%n and
K ¼ boþlstrc%n. The file request may also incur fragments, and
the size of the beginning and ending stripe fragment are
b ¼ str� l%str and e ¼ ðoþ lÞ%str. According to the frag-
ment distribution on server j, Fig. 5 shows the five possible

sub-request distribution cases on servers. Let 4 ¼ boþlstrc�
b o
strc, then the sub-request size of the ith file request on
server j can be calculated as follows:

sij ¼

0; j < J and 4 < n
bþ4=n � str; j ¼ J and j 6¼ K
eþ4=n � str; j 6¼ J and j ¼ K
bþ eþ4=n � str; j ¼ J ¼ K
d4=ne � str; otherwise:

8
>>>><

>>>>:

(2)

The sij is calculated with the simple round-robin layout.
For other given data layouts, the calculation is similar but
with a different value.Weomit it here due to space limitations.

Based on the value of sij, the storage transfer time of the
sub-request can be calculated as Tt ¼ sij � b.

Server Access Cost. The data access time on server relies
on the overall access time of all sub-requests on the server.

The startup time is determined by the overall startup
time of all sub-requests. If there is only one process, then
the number of seeks equals the number of non-contiguous
sub-requests from the process. Assume that the number is
denoted by k, then Ts ¼ ka. Otherwise, it is a random vari-
able as all sub-requests will arrive at the server in a random
order. Assuming that p is the number of processes and q is
the number of sub-requests on the server, then in the worst
case each sub-request involves one seek operation and in
the best case each process needs one seek. It is reasonable to
assume that the number of seeks has a uniform distribution
between the two cases. That is, Ts ¼ 1

2 ðpþ qÞa.
The data transfer time on server is determined by the

overall data size on that server. Assuming that the system
has N file requests, then the overall data transfer time on
the jth server is

PN
i¼1 sij � b.

Putting it all together, the access cost of server j is

Tj
ser ¼

kaþPN
i¼1 sij � b; p ¼ 1

1
2 ðpþ qÞaþPN

i¼1 sij � b; otherwise:

(

(3)

File System Access Cost.As all file requests are concurrently
served bymultiple servers, the data access time of the file sys-
tem is determined by the slowest server. Assuming that the
access cost of each server is Tj

ser, where 0 4 j 4 ðn� 1Þ, then
the data access cost of the file system is described as follows:

Tsys ¼ maxfT 0
ser; T

1
ser; . . . ; T

n�1
ser g: (4)

TABLE 1
Parameters in the Cost Analysis Model

System Parameters

m Number of servers in the system
a Average startup time of one I/O operation
b Data transfer time of one unit of data

Application Pattern Parameters

p Number of client processes
o Offset of file request
l Length of file request

Data Layout Parameters

str Stripe size on each server
g Number of groups to divide the servers
f Stripe factor
n Number of servers used to store file (n � m)

Fig. 5. Five possible sub-request distribution cases on servers. (1):
There is no sub-request on server j; (2): Only the beginning fragment is
on server j; (3): Only the ending fragment is on server j; (4): Both the
beginning and ending fragment are on server j; (5) There is no fragment
on server j.
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Note that the cost model applies to both HDD- and SSD-
based file servers. In both cases, the model is similar except
the startup time and the data transfer time for HDD and
SSD will change, as we discussed in our previous work [25],
[26]. Generally, HDD has much larger startup time and data
transfer time compared to SSD, due to their different storage
characteristics.

Discussion and Guideline. From the analysis of the cost
model, we can see that the file system performance depends
on the data access patterns and the data distribution man-
ners. Generally, data access patterns and data distribution
manners have an interrelated effect on I/O system perfor-
mance. Hence, we can obtain some brief guidelines for data
replication as an effective approach to reorganize data layout.

� If the number of non-contiguous sub-requests on a
server, namely the value of k is reduced, the overall
cost can be benefited.

� Decreasing the number of processes involved in a
single server would also be helpful for the overall
system performance.

� Distributing the accesses evenly on multiple servers
could mitigate the risk of an over-loaded server lim-
iting system performance.

4 DESIGN OF CEDA

With the proposed model, we can calculate the I/O time of
file requests with a given data layout. If we have some prior
knowledge about application’s file requests, then we can
evaluate whether the new data layout created by the data
replication scheme can improve the original I/O system
performance. Fortunately many applications have predict-
able data access patterns [15], [23], as previously discussed
in Section 2.3. Based on this fact, CEDA first identify the
I/O access patterns of an application in its first run, and
then it performs cost-effective data replication based on the
model to speed up the application in its subsequent runs.

4.1 Overview of CEDA

Fig. 6 shows the system architecture of CEDA. In these sys-
tems, application processes on compute nodes access
the data on file servers by calling the middleware library

(MPI-IO). CEDA resides in the MPI-IO library; it is not only
responsible for selecting data from the original file system,
but also replicating them in the replica space that is within
the same file system. By applying cost-effective distribu-
tion-aware data replication, CEDA can improve parallel
I/O system performance.

Data replication can be built at different levels in the paral-
lel I/O stack, we position CEDA in the middleware layer for
the following reasons. First, key global access information,
such as file-level, process-level, andMPI Rank-level attributes
are accessible. This enables I/O optimization with global
access information. Second, the middleware layer is indepen-
dent of the underlying layer, allowing the solution to support
multiple parallel file systems, such as PVFS [32], OrangeFS [6],
and Lustre [7]. Third, the design is transparent to applica-
tions, therefore no or minimal modification is required for
user programs to utilize the increased performance.

The whole procedure of CEDA consists of four phases. In
the “profiling phase”, the profiler collects the I/O access
information of the application and stores them into traces
during the application’s first run. In the “decision phase”,
the identifier takes the traces as inputs and exacts access pat-
terns of the application. Then, the planner creates a planning
data layout to store the replica data of each identified access
pattern. Next, with the original and the planning data lay-
out, the analyzer evaluates the performance benefit of each
data replication based on the proposed cost model. Once
the replication is cost-effective, in the “replication phase”
the replicator carries out the actual data movement for each
access pattern, by copying selected data from the original
files to their replicas. Finally, in the “redirection phase” the
redirector directs I/O requests either to the original files or
the replicas based on the specifics of the requests during the
subsequent runs of the application.

4.2 I/O Pattern Identifying

I/O patterns refer to the access behaviors of applications in
multiple dimensions. The spatial pattern defines the access
distance between successive requests, and the temporal pat-
tern represents the time intervals between two requests. There
are also other patterns can be defined in our scheme. Themost
important pattern is the spatial pattern, as it has a great poten-
tial to improve I/O system performance. Hence, in this study
we focus on but are not limited to the spatial patterns.

To obtain user’s access patterns, the profiler captures the
I/O activities of the application in the first run. Although a
number of tools can be used, we use IOSIG [31] to profile
applications because it can serve our purpose and only
introduce acceptable overhead [33]. IOSIG stores the I/O
access information, such as process ID, MPI rank, file
descriptor, type of operation, offset, request size, and time
stamp information in several traces.

The identifier takes the traces as input to generate the
access patterns. It first separates the trace entries by MPI
rank, each for one process. Then, it scans the I/O traces
chronologically and attempts to derive the access patterns
by utilizing a template matching approach. More details
about the pattern identification can be found in the prior
work [31]. Finally, once the analyzing process finishes, the
obtained access patterns are stored in a global pattern data-
base for further use.

Fig. 6. System architecture of the cost-effective distribution-aware data
replication scheme.
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4.3 Pattern-Based Replica Layout Plan

The planner is responsible for creating data layout plan for
identified data access patterns before they are actually repli-
cated. As logical file access does not ultimately determine
the parallel I/O performance, the goal of the planner
includes three enhancements: (1) physical access continuity
on each disk, (2) I/O parallelism on servers, (3) inter-server
load balance.

Algorithm 1 shows the detailed procedure to generate
the planning data layout for each access pattern. It first con-
catenates the requested data of each process into a contigu-
ous logical object, no matter whether the access pattern is
contiguous or not. Next, it creates n replica files, each on a
separated server, to store the objects from all processes,
where n is the number of the servers. Finally, it uses a mod-
ulo operation to determine file l where an object i resides
(l = i mod n). If multiple objects are mapped into the same
file, then the objects are distributed into the file in an
ascending order of MPI Rank where the object belongs.
With these efforts, the planning data layout tries to achieve
the goal of the planer.

Algorithm 1. The Planning Layout Generating
Algorithm

1: procedure LAYOUT_PLANNER(Seq; RGT;RMT )
2: for each sequence in Seq do " Create objects
3: Create an object oi for the ith process
4: for each request rj in Seq½i� do
5: if rj is =2 oi then
6: Append reqi to the end of oi
7: end if
8: end for
9: end for
10: for each server Sk in S½1; n� do " Create replicas
11: Create a file fk on Sk

12: end for
13: for each object oi do " Place objects on replicas
14: l imodn
15: Append object oi to the end of fl
16: end for
17: end procedure

Fig. 7 is an illustrative example to show how the planner
generates the planning data layout for one access pattern. In
this example, there are four processes, each sending two
non-contiguous requests to a shared file f0. The planner
gathers requests from the same process and sequentially
rearranges them into an object for each process. Then the
four objects o1 to o4 are placed into four replica files f1 to
f4, each residing on one server. Compared to the case
before replication, the new data layout makes the disk on
each server serve less process’ requests in a more continu-
ous order. At the same time, the I/O load on each server is
largely balanced, which also benefits the I/O performance.

4.4 Data Replication Benefit Analysis

With the planning data layout for replicas, the analyzer can
determine whether an actual data replication can improve
I/O system performance. This is conducted by executing
replication benefit analysis based on the proposed cost
model. It considers two data layouts for each access pattern.
The first one is the original data layout, which distributes
the file data over multiple servers in the original file system.
The second one is the planning data layout obtained by the
planner. The analyzer first calculates the data access cost (TO)
for all file requests under the original data layout according
to Equation (1). Then it obtains the data access cost (TN )
under the new (planning) data layout. Once these two costs
are obtained, the replication benefit for the access pattern
can be defined as follows:

B ¼ TO � TN: (5)

If B is larger than zero, then it is beneficial to carry out the
actual replication with the planning data layout. Otherwise,
serving the requests from the original layout helps I/O per-
formance and there is no need to replicate. The higher per-
formance benefit that the scheme can potentially achieve,
the higher priority the access pattern should be replicated.
In order to make the ultimate data replication decisions, the
analyzer stores the replication benefits of all identified access
patterns in a global pattern benefit table PBT, which will be
lately used by the replicator.

4.5 Cost-Effective Data Replication

As the replica space is usually limited, the replicator ulti-
mately carries out cost-effective data replication based on
three factors: (1) the available free space in the parallel file
system, indicating whether the system can accommodate the
new replicas; (2) the performance benefit in the PBT table for
an access pattern, indicating whether the I/O performance
can be improved if it is replicated; (3) the rank of the perfor-
mance benefit, indicating whether it incurs more perfor-
mance benefit than other access patterns if it is chosen.

Algorithm 2 shows the data replication process for all
access patterns. First, a global replica mapping table RMT,
which keeps the data location information of the replicas, is
initialized. The RMT is empty at the beginning, and will be
continuously updated as new replicas are created in the rep-
lica space. For each access pattern, the algorithm checks if
the requests fall into the replicas that have been created and
allocated by consulting the RMT. If not, a new replica file
will be created to hold the requests, and the location of the

Fig. 7. An example of the data layout before and after replication. In the
original layout, each server has non-continuous accesses and the I/O
load of each server is three, two, one, and two blocks, respectively; in
the planning layout, each server has two contiguous accesses, each
with one block. The planning layout provides enhanced physical data
access continuity on disks and inter-server load balance.
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replica file is stored in the corresponding entry of the RMT.
Supposing that there are csys free replica space and the data
size of the current access pattern pat is cp, then the algorithm
will perform the actual data replication only when all the
following conditions are true: (1) the system has enough
free replica space, (2) the performance gain of the access pat-
tern is positive, (3) the pattern belongs to the top-n unallo-
cated patterns in the descending order of their performance
gains. Otherwise, the algorithm will not carry out the data
replication.

Algorithm 2. The Cost-Effective Data Replication
Algorithm

1: procedure CEDR(PBT;RMT )
2: replica RMT lookupðpatÞ
3: if reglica = NULL then
4: csys  Data size of free replica space
5: cp  Data size of access pattern pat
6: Pat½n�  top_n( x : x 2 PBT ^ x 62 RMTf g)
7: for each pattern in Pat½n� do
8: if cp < csys and pattern:benefit > 0 and

pat = pattern then
9: Create replica files
10: for each data access in the pat do
11: Copy data from the original file to the replica

files
12: Add entries of replicas into RMT
13: end for
14: end if
15: end for
16: end if
17: end procedure

The actual data replication operations are complex
because of overhead and consistency issues. To reduce the
overhead, namely the interference with the normal I/O
activities, the replicator is designed as a light-weight daemon
that performs background data movements. It monitors a
queue that contains all the selected access patterns that
need to be replicated. Once the system has unused comput-
ing and storage resource, it will de-queue the queue and
starts to replicate if the queue is not empty. After that, the
replicator will read data from the original file and write
them to the replica files according to the planning layout
generated by the planner.

To maintain data consistency, the RMT table is used to
keep data mapping information between original files and
their replica files. As shown in Fig. 8, each entry of the RMT
includes six fields. O_file and O_offset are the file name and
offset for the data in the original file, R_file and R_offset are
the file name and offset for the data in the replica file.
Length is the size of requested data, and R_flag is a flag that

indicates whether the replicated data is dirty. The R_flag is
set when the data in the replica file is newly updated and it
indicates that the data needs to be synchronized to the origi-
nal file when the program ends. The RMT table is updated
each time a new data block is copied to the replica files,
ensuring that the up-to-date data is always maintained by
the I/O system.

4.6 Data Redirection

The redirector is responsible for redirecting user’s I/O
requests to the original files or the replica files. Once redir-
ected upon a file request, the redirectorwill look up the RMT
to check if the request has a corresponding replica. Usually
an application issues a request with three parameters: the
identifier of the original file, the data offset, and the request
size. If the corresponding entry is found, the redirector will
obtain the new identifier, offset, and size in terms of the rep-
lica file, and send the request to the replica with the new
request information. Otherwise, the request will be proc-
essed to the original file as usual.

The redirector resides in the MPI-IO library and runs only
in the later runs of the applications. To redirect requests to
the proper locations, applications need to be relinked to the
library before its run without other modification.

5 IMPLEMENTATION

We implement CEDA within MPICH2 [18] on top of
OrangeFS [6]. In the following, we discuss the primary chal-
lenges in the implementation.

5.1 Replication Mapping Table

The RMT table is a critical structure to save the data map-
ping information between original files and replica files. As
it is frequently accessed by the redirector and shared by mul-
tiple processes of the program, the effectiveness of RMT is a
significant challenge. Inspired by the technique in the previ-
ous work [15], we use Berkeley DB [34] to implement RMT
as a database file stored in the same directory as the MPI
program. The Berkeley DB is configured as a hash table, and
each record is a key-value pair. We generate mapID by
encoding the following information: the program name,
number of process, rank of the process, and the original file
name. Each record in the hash table is a key-value pair; the
key is the mapID and the value contains the data access
information. By leveraging the advantage of the light-
weighted database, the access contention and metadata
operations are performed in an efficient way.

Furthermore, we use a list to maintain the most fre-
quently accessed mapping entries to further reduce the in-
memory mapping table size for efficient lookup. Changes to
the mapping entries in memory are synchronously written
to the storage in order to survive power failures. We modify
the MPI library so that the mapping table is loaded with
MPI_Init() and unloaded with MPI_Finalize().

5.2 I/O Redirection Implementation

To redirect I/O requests to replica files with optimized
access patterns, we modified the following standard MPI-
IO functions:

Fig. 8. Structure of replica mapping table.
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MPI_File_open: while opening a file, in addition to
opening the original file, it also opens the corresponding
replica files.

MPI_File_read/write (and other variants of read/
write): for each I/O read or write operation, the function
first uses the input parameters to check whether the request
belongs to any of the replica file. If the requested data are
found in RMT, the request will be redirected to the replica
with new file name, offset. Otherwise, the request will then
be served by the original file. All these operations are trans-
parent to applications. In this way, the unused storage space
can be intelligently utilized according to the I/O patterns.

MPI_File_seek: it calculates the offset and conducts
the seek operation in the replica files.

MPI_File_close: it closes the opened replica files.

5.3 Other Data Consistency Issues

To maintain data consistency for the application, we adapt
several approaches during the I/O redirection process.
First, if the data of a write request can be found in the rep-
lica file according to the mapping table, then the request is
re-directed to the replica file and the corresponding table
entry is marked as dirty. Second, all read requests are redir-
ected to their replicas, such that an obsolete original copy of
the data will not be read within a program’s run. Finally,
we flush the data to the original files if the dirty flag in the
entry is set when the application ends its execution. With
these methods, the application can access the up-to-date
data with higher I/O system performance.

6 EVALUATION

6.1 Experimental Setup

We conduct experiments on a SUN Fire Linux cluster,
where each node was configured with two Opteron quad-
core processors, 8 GB memory and a 250 GB hard disk drive
(HDD). Furthermore, four nodes are equipped with addi-
tional 100 GB SSD. All nodes are equipped with Gigabit
Ethernet interconnection. The operating system is Ubuntu
13.04, the MPI library is MPICH2-1.4.1p1, and the parallel
file system is OrangeFS 2.8.6.

We compare CEDA with the original I/O system (ORIG)
where data replication is disabled. To ensure that the
improvements only come from the cost-effective and distri-
bution-aware replication, we also compare CEDA with a
cost-ineffective but distribution-aware data replication
scheme (CIDA) [15], which always selects non-contiguous
file access patterns and replicates them contiguously in rep-
lica space with a specific data distribution. As CIDA only
considers the data access costs of the replicas regardless of
the costs of the original file requests, it can’t guarantee the
cost-benefit of the data replication and thus may experience
inefficiencies in certain cases.

We use the popular benchmark IOR [20], HPIO [35],
BTIO [27], and a real application [36] to test the I/O system
performance.

We first share the experimental results for HDD-based
parallel I/O systems, and next we show the results for SSD-
based parallel I/O systems.

6.2 Evaluation on HDD-Based Parallel I/O Systems

By default we employ eight HDD-based nodes as file serv-
ers and eight other nodes as computing nodes. All file data
are distributed on the eight servers with the default stripe
size of 64 KB.

6.2.1 IOR Benchmark

IOR is a parallel file system benchmark developed at Law-
rence Livermore National Laboratory [20]. It provides three
APIs: MPI-IO, POSIX, and HDF5, we only use MPI-IO in the
tests. During these benchmarks, IOR by default runs with
16 processes, each performing I/O operations on a shared
file with request size of 64 KB.

Various Request Sizes. We first run IOR with various
request sizes. Fig. 9 shows the I/O performance of IOR with
request size from 16 to 256 KB. Each process issues random
strided I/O requests and accesses data of 128 MB. We
observe that CEDA outperforms ORIG and CIDA. By using
the cost-effective distribution-aware data replication, CEDA
improves read performance from 69.1 to 291.7 percent, and
write performance from 57.3 to 171.2 percent respectively at
request size 16, 64 and 256 KB, in comparison with ORIG.
Compared with CIDA, CEDA also has better performance:
the read performance is increased up to 257.8 percent, and
write performance is increased as much as 249.7 percent. As
the request size increases, IOR’s bandwidth becomes higher
because the increasingly amortized disk seek time reduces
the penalty of non-sequential disk access. We also find CIDA
to be only efficient to improve the original I/O system per-
formance for small request size of 16 KB. For request size of
64 and 256 KB, CIDA even decreases the original I/O

Fig. 9. Bandwidths of IOR with various request sizes.
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performance by up to 49.1 percent. This is because combin-
ing non-contiguous small file requests may lead tomore con-
tiguous accesses on disk but it is not the case for larger non-
contiguous file requests, as shown in Section 2. On the other
hand, CEDA always shows superior I/O performance.

To give a detailed explanation for CEDA’s performance
improvement, Fig. 10 plots the I/O time of each server
when IOR issues strided requests at the size of 64 KB. The
I/O time refers to the accumulated sub-request completion
time on a server, which is normalized to the minimal time
on all servers under the CEDA layout. We observe that the
I/O loads are skewed across servers under ORIG because
IOR issues non-uniform sub-requests to servers. In contrast,
CIDA and CEDA have nearly even loads because they place
the same amount of data on each server in the data replica-
tion process. However, CEDA has less I/O time. This is
because it only makes cost-effective data replication by
making each disk to serve more contiguous sub-requests,
while CIDA blindly replicates all non-contiguous file
requests even it may decrease I/O performance.

Various Process Numbers. We then evaluate IOR with vari-
ous process numbers. The IOR benchmark is executed with
8, 32, and 128 processes at a fixed request size of 64 KB. As
shown in Fig. 11, the results are similar to the previous test:
CEDA improves I/O performance for both read and write
requests over CIDA and ORIG. Compared with ORIG, the
I/O bandwidth is increased 98.1, 119.9, and 121.7 percent
respectively for reads in terms of various numbers of pro-
cesses, and 53.4, 109.7, and 99.8 percent for writes. In

contrast to CIDA, the read performance achieves a 133.4,
136.9, and 202.9 percent improvement, and write perfor-
mance achieves a 58.7, 150.3, and 167.1 percent improve-
ment. As the number of processes increases, the I/O
bandwidth gets lower because each server needs to serve
more processes’ requests and the competition among pro-
cesses gets more severe. However the rate of performance
degrading of CEDA is not as substantial as those of ORIG
and CIDA because it makes each server handle less pro-
cesses. These results illustrate that CEDA a high scalability
in terms of the number of processes.

Various Server Numbers. We next examine the I/O perfor-
mance with various server numbers. The number of servers
is varied from two to eight, and the request size is kept to 64
KB. As the Fig. 12 depicts, CEDA improves I/O perfor-
mance for both data reads and writes: read performance
increases from 18.5 to 166.9 percent, while write perfor-
mance improves from 62.9 to 171.2 percent in comparison
with ORIG. Compared with CIDA, CEDA achieves an
improvement up to 257.8 percent for reads and 248.5 per-
cent for writes. In the experiments, read and write perfor-
mance improve as the number of servers increases. This is
because the requests can be distributed on more servers,
which contribute to the overall I/O performance by utiliz-
ing a higher I/O concurrency. We also note that, with larger
number of servers, the performance improvement of CEDA
over CIDA is more significant. This is because CEDA
improves the data access continuity in a single server and
increases the load balance among multiple servers.

Fig. 10. I/O time on each file server different data replication schemes.
S0-S7 refer to the eight servers. Fig. 11. Bandwidths of IOR with various process numbers.
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[Summary] The above study shows that CEDA can
improve IOR performance in terms of different request
sizes, numbers of processes, and numbers of servers. With
the increase of the request size, the number of processes,
and the number of the servers, CEDA can obtain more sig-
nificant performance improvements over existing replica-
tion schemes.

6.2.2 HPIO Benchmark

HPIO is a program designed by Northwestern University
and Sandia National Laboratories to systematically evaluate
parallel I/O system performance [35]. This benchmark can
generate various data access patterns by changing three
parameters: region count, region spacing, and region size.
The region spacing is used to generate non-contiguous data
access patterns. In our experiment, the number of process is
32, the region count is 4,096, the region size is 16 KB, and
the region spacing is varied from 1 to 8 KB.

Fig. 13a shows the I/O bandwidth for read requests.
Compared to ORIG and CIDA, CEDA can increase the over-
all I/O bandwidth. CEDA can increase the I/O bandwidth
over CIDA by 10.9, 49.3, 31.8, and 45.4 percent respectively
for reads. It means that CEDA is effective with respect to
HPIO benchmark. We also note that, as the region spacing
increases, the performance speedup gets more obvious.
This is because non-contiguous I/O requests can benefit
more from the physical continuity-aware data replication.
Although the I/O access of each process is non-contiguous,
it is not as random as the IOR benchmark, thus the

improvements for HPIO are not as significant as those for
IOR. This also confirms the adaptability of CEDA: when the
application’s I/O accesses have a poorer bandwidth, more
benefit is gained by using CEDA. For write operations, the
performance shows a similar trend as presented in Fig. 13b.

6.2.3 BTIO Benchmark

BTIO represents a typical scientific application with inter-
leaved intensive computation and read/write mixed I/O
phases [27]. BTIO uses a Block-Tridiagonal (BT) partitioning
pattern to solve the three-dimensional compressible Navier-
Stokes equations. We consider the Class A and simple sub-
type workload in the experiments. In this case, BTIO writes
and reads a total size of 1.69 GB data with individual I/O
requests (non-collective I/O). We use 4, 16, and 64 compute
processes since BTIO requires a square number of pro-
cesses. Output file is striped across four servers.

Fig. 14 plots the aggregate I/O bandwidths. Compared
with the original I/O system (ORIG), CEDA achieves 37.1,
41.3, and 54.8 percent improvement with 4, 16, 64 processes,
respectively. In contrast to CIDA, CEDA also demonstrates
performance advantages.

6.2.4 Real Application

Finally we evaluate the performance of CEDA with a real
application’s I/O trace [36]. We choose this application
because it has mixed access patterns which can show the
adaptivity of our scheme. In the application, each process

Fig. 12. Bandwidths of IOR with various server numbers. Fig. 13. Bandwidths of HPIO with various region spacings.
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sends I/O requests in a non-uniform way at different parts
of a shared file. In summary, the file can be roughly divided
into multiple segments, in which each process issues
requests with different sizes iteratively. We replay the data
accesses of the application according to the I/O trace. In the
experiment, we employ eight nodes as computing nodes,
and four nodes as file servers. As shown in Fig. 15, we find
that CEDA obtains 85.1 and 63.5 percent performance
improvement compared to ORIG and CIDA respectively.
The results indicate that CEDA is effective for applications
with complex I/O access patterns.

6.3 Evaluation on SSD-Based Parallel I/O Systems

We select eight nodes as computing nodes and configure the
file system on four SSD-based file servers. The stripe size of
the file system is 64 KB. We run IOR with 32 processes, each
with random I/O requests to access 256 MB of data.

Fig. 16 shows the I/O performance of IOR with various
request sizes on the SSD-based I/O system. The results are
similar to the HDD-based case: CEDA has the best perfor-
mance among the three schemes. As it can be observed
from the figures, when compared to ORIG, CEDA improves
read performance up to 39.8 percent, and write performance
up to 72.8 percent for request sizes of 4, 16 and 64 KB. In
contrast to CIDA, CEDA improves read performance up to
7.5 percent, and write performance up to 14.7 percent.
Another observation is that the performance improvements
in SSD-based case are not as significant as those in the
HDD-based case. This is because SSD is less sensitive to the
sequentiality of the requests. In other words, combining
non-contiguous small requests into contiguous ones on an

HDD can largely improve the I/O efficiency of HDD, but it
has less impact on the SSD performance. However, CEDA
always brings performance benefits over ORIG and CIDA
for SSD-based I/O systems. These results show that CEDA
also applies to I/O systems with SSD-based file servers.

6.4 Overhead Analysis

While the gains due to data replication are promising,
CEDA incurs resource overhead.

6.4.1 Performance Overhead

In the “profiling phase”, the profiler uses IOSIG to collect
I/O traces during the application’s first run. Previous work
shows that IOSIG only incurs very low overhead in tracing
I/O accesses [33]. In the following two phases, since the pat-
tern analysis and planning are carried out off-line and only
once, the CPU and memory overhead is also acceptable for
most HPC computing systems.

In the “redirection phase”, the redirector needs to deter-
mine where to send the requests. It is necessary to evaluate
the following two possible sources of overhead during run-
time: 1) During file open operation, the redirector needs to
search the access pattern in the Pattern Database; 2) During
file read/write operation, the Redirector needs to check if the
opened files contain the requested data, thus to determine
the proper locations to send the requests.

To show the redirection overhead, we run IOR with vari-
ous request sizes from 4 to 64 KB. The process numbers are
16, 32, and 64. The file system is built on eight HDD-based

Fig. 14. Bandwidths of BTIO benchmark.

Fig. 15. Performance of a real application.

Fig. 16. Bandwidths of IOR with various request sizes.
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file servers and each process writes a 1,024 MB of data with
a contiguous access pattern. We intentionally do not add
the patterns in the database so that the system will make no
data replication. This causes redirector to redirect all requests
to the original I/O system. Fig. 17 shows that the introduced
overhead is acceptable.

6.4.2 Metadata Space Overhead

To maintain data consistency, CEDA stores the replica map-
ping information in the replica remapping table (RMT) in the
same parallel file system, incurring additional storage space.

The system has a maximal space overhead when all the
requests are of 4 KB. Assuming that the available storage
space for data replication is S GB and that each entry of
RMT in our implementation occupies 6 � 4 B, the maximal
number of records in RMT then is S=4 � 106. Therefore, the
maximal metadata space overhead is 0.6 percent of the rep-
lica space, an acceptable requirement for a storage cluster.

7 RELATED WORK

In the past years several efforts have been devoted to data
replication. BORG [13] automatically copies selected data
blocks to a dedicated disk partition, such that the reorganized
disk layout accommodates the I/O access patterns. FS2 [14]
dynamically places data with multiple additional copies in
free blocks of a file system, such that the nearest replica can
be accessed to benefit disk I/O operations. Similarly, Koller
et al. [37] propose to direct read requests to the intrinsic
duplication of a storage system or the additional replicas to
reduce I/O time. However, these techniques are designed for
a serial I/O system with a single disk. Instead, CEDA are
designed for a parallel I/O systemwithmultiple disks.

Data replication has also been widely used in parallel I/
O systems. Hybrid Replication [21] stores each file with
three copies such that each file request can be redirected to
the proper replica with the smallest access cost. HDFS [22]
and GPFS-SNC [38] create multiple copies for each file in
different physical locations, such that I/O requests can be
redirected to the nearest location to reduce access costs.
InterferenceRemoval [12] replicates file segments to desig-
nated servers, such that requests are re-directed to other
servers to reduce interference on each node. Wang et al. [30]
propose to replicate frequently accessed data chunks to the
disks of compute nodes to reduce access latency. Scarlett [43]
uses popularity-based data replication schemes in HDFS to

improve the performance of Hadoop clusters. Compared to
these methods, CEDA carries out pattern-based replication,
which can further save storage space because it only repli-
cates the accessed data.

PDLA [15] replicates identified data access patterns, and
distributes them on multiple servers with optimized data
layouts based on data placement cost analysis. RADAR [16]
presents a partial data replication system, which replicates
access patterns using the object abstraction in a parallel file
system. Recent work [17] selects more general access pat-
terns and replicates the data of interest in multiple reorgan-
ized layouts. However, all these studies make replication
decisions based on file access information regardless of the
performance benefits obtained by the replication; that is,
they always select non-contiguous file requests and continu-
ously place them in the replica file(s). In contrast, CEDA
makes replication decisions with physical data access infor-
mation on disk by considering data distribution on servers
and it only carries out cost-effective data replication based
on replication benefit analysis.

For data reorganization, PLFS [29] stores write data to an
original logical file in a set of new created log-structured
physical files. Although thewrite performance can be largely
enhanced, the read performance frommultiple physical files
may be a concern due to the inevitable data restructuring.
However, CEDA handles both read and write patterns to
improve I/O performance. Furthermore, the data reorgani-
zation in PLFS is based on the logical file access information,
which also owns the similar drawbacks of traditional data
replication schemes. As opposed to PLFS, CEDAmakes cost-
effective data reorganization by considering physical data
distribution onmultiple disks of the servers.

Besides I/O performance, data replication has also been
used to boost system reliability. Several major parallel file
systems, such as Lustre [7] and GPFS [8], provide built-in
data replication for enhanced fault tolerance. HDFS [22] uses
multiple replicas to serve the same goal. Wang et al. [39] pro-
pose to schedule a job to replicated files on active nodes,
such that re-execution of the job can be avoided. Similar
redundant data placement approaches [40], [41] are used to
ensure system availability when some storage devices enter
or leave the system. As opposed to these approaches, CEDA
aims to improve I/O performance instead of availability.

Currently, severalMapReduce applications need to analyze
the raw data obtained from HPC applications. To make data-
sets generated by HPC applications more accessible for data
analytics applications,MRAP [42] reorganizes datasets accord-
ing to access patternswhen copying them fromHPC storage to
MapReduce storage. Our work differs from these efforts for
whichwe focus on I/O optimization in general purpose paral-
lel file systems, such as PVFS2 [32] andOrangeFS [6].

8 CONCLUSIONS

In this study, we have proposed CEDA, a cost-effective distri-
bution-aware data replication scheme to improve parallel I/O
system performance. Unlike data replication schemes that
consider logical file access information and assume that con-
tiguous file requests are more efficient than non-contiguous
ones, CEDA considers physical data accesses on multiple
servers and makes cost-effective data replication. CEDA

Fig. 17. CEDA performance overhead.
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leverages a cost model to evaluate the I/O access time of a file
request with a given data layout, and only performs the actual
data replication when the replication can achieve perfor-
mance benefits. We have implemented CEDA in the MPICH
I/O library on top of the OrangeFS parallel file system. Exper-
imental results with representative benchmarks and a real
application show that CEDA is a viable solution to improve
parallel I/O systemperformance.

In future work, we plan to evaluate CEDA on a large-
scale cluster with other applications, to gain more insights
into its performance behaviors. We also intend to exploit
the transient access patterns of applications to optimize par-
allel I/O system performance.
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