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Pattern-Directed and Layout-Aware Replication
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Abstract—As the performance gap between processors and storage devices keeps increasing, I/O performance becomes a critical
bottleneck of modern high-performance computing systems. In this paper, we propose a pattern-directed and layout-aware data
replication design, named PDLA, to improve the performance of parallel I/O systems. PDLA includes an HDD-based scheme H-PDLA
and an SSD-based scheme S-PDLA. For applications with relatively low I/O concurrency, H-PDLA identifies access patterns of
applications and makes a reorganized data replica for each access pattern on HDD-based servers with an optimized data layout.
Moreover, to accommodate applications with high I/O concurrency, S-PDLA replicates critical access patterns that can bring
performance benefits on SSD-based servers or on HDD-based and SSD-based servers. We have implemented the proposed
replication scheme under MPICH2 library on top of OrangeFS file system. Experimental results show that H-PDLA can significantly
improve the original parallel I/O system performance and demonstrate the advantages of S-PDLA over H-PDLA.

Index Terms—Parallel I/O; I/O optimization; data replication; data reorganization; data access pattern
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1 INTRODUCTION

SUPERCOMPUTERS are moving from petascale towards
exascale in the coming decade. Although the rapid

development of semiconductor technology made the pro-
cessor speed to increase exponentially in the last decade,
the advancements of data input/output (I/O) systems and
storage devices did not keep pace with that of the comput-
ing power. This unbalanced technology advance between
processors and storage devices leads to the so-called I/O-
wall problem [1].

At the same time, applications on high-performance
computing (HPC) domains have increasingly massive data
requirements [2], putting even more pressure on already sat-
urated I/O systems. For instance, in astronomy, giant radio
telescopes will store the observation images continuously
into storage systems for further analysis. The telescopes may
generate data at a rate of several gigabytes to even petabytes
per second [3].

To match the massive data requirements of scientific ap-
plications, HPC centers have widely deployed parallel I/O
systems to provide data services. By scaling out the storage
system with more file servers, supercomputers can achieve
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scalable I/O bandwidth and storage capacity. Unfortunately,
while parallel I/O systems deliver decent peak performance
for many data access patterns, such as large I/O requests,
they fail to perform well for specific access patterns, such as
non-contiguous small I/O requests [1], [4].

There are many I/O optimization techniques developed
to improve I/O system performance, such as data siev-
ing [5], List I/O [6], DataType I/O [7], and Collective
I/O [5]. However, optimizing I/O performance is an error-
prone and time-consuming task, especially for applications
with complex I/O behaviors. I/O performance is appli-
cation dependent, and a general I/O system needs to be
adjustable to different applications [8], [9]. This raises the
desired property of our proposed solution: I/O optimization
should consider both application and system characteristics
and be adaptive for different applications.

In this paper, we propose a pattern-directed and layout-
aware data replication approach, named PDLA, to boost
the performance of HDD-based parallel I/O systems, which
nowadays are still the dominant storage platform for HPC
applications. The “pattern” means how the file is accessed
by an application and the “layout” means how the file
data is distributed across multiple file servers. PDLA is
motivated by three observations. First, scientific applica-
tions usually exhibit data access patterns. It is valuable and
feasible to make use of application’s pattern information for
I/O optimizations. Second, contiguous data access is usu-
ally preferable to obtain higher I/O performance for both
hard disk drives (HDDs) and solid state disks (SSDs). Third,
data layout in parallel file systems can largely influence I/O
system performance.

Based on these three facts, we first propose an
HDD-based pattern-directed and layout-aware replication
scheme, H-PDLA, to improve the parallel I/O system per-
formance on HDD-based servers (HServers). H-PDLA in-
cludes two major optimizations. In the “pattern-directed”
(PD) replication policy, the system makes a reorganized data
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replica for each identified data access pattern of the ap-
plication. As a result, the logical data in the replica space
are reorganized in the order with how they are accessed
by applications. After determining the reorganization, in the
“layout-aware” (LA) replica placement policy, the system stores
the generated replicas with their optimized data layouts in
the same parallel file system (PFS) on HServers, based on
the results of quantitative analysis on data access time cost.
Once the replicas are ready, the I/O system is able to serve
future data requests on the replicas with friendly access
patterns.

Moreover, since replicating data across multiple
HServers may still be insufficient for applications with high
I/O concurrency, we propose an SSD-based PDLA repli-
cation scheme, S-PDLA, which utilizes SSD-based servers
(SServers) to store replica files for improved I/O perfor-
mance. As SServers do not always perform better than
HServers for all access patterns and all servers working
together may outperform SServers alone for some access
patterns, S-PDLA selects critical patterns that can bring per-
formance benefits to carry out cost-effective data replication
on SServers or HServers+SServers. By leveraging the higher
I/O performance of SSDs and the selective data replication
policy, S-PDLA can both efficiently utilize SSD space and
maximize I/O system performance for applications with a
large number of processes.

Specifically, this study makes the following contribu-
tions.

• We propose an HDD-based PDLA data replication
scheme, H-PDLA, which discovers an application’s
access patterns and places the replicas on multiple
HServers with optimized data layouts based on ac-
cess cost analyses.

• We propose an SSD-based PDLA data replication
scheme, S-PDLA, which identifies the critical ac-
cess patterns and selectively stores their replicas on
SServers or all HServers+SServers with optimized
layouts, to further improve I/O system performance.

• We implement both H-PDLA and S-PDLA within
MPICH2 on top of OrangeFS. Experimental results
with representative benchmarks and a real applica-
tion show that H-PDLA can significantly improve
parallel I/O system performance and demonstrates
the performance benefit of S-PDLA over H-PDLA.

The rest of this paper is organized as follows. Section
2 gives the motivation of H-PDLA and S-PDLA. Section 3
and 4 describe the design and implementation of H-PDLA
and S-PDLA respectively. Section 5 presents the evaluation
results. Section 6 introduces the related work. Finally, Sec-
tion 7 concludes this paper.

2 MOTIVATION

2.1 Motivation of H-PDLA
Applications exhibit I/O access patterns: Many HPC ap-
plications read or write data in certain ways. In other
words, their I/O behaviors exhibit access patterns. For
example, due to the iterative loop structures of program
codes, some individual or group of data accesses may repeat
with certain request distances for many times [10]. As these

HPC applications often run multiple times to generate and
analyze data, the same patterns can be identified in the same
execution environment and configuration among different
runs [11], [12]. Therefore, it is feasible to collect and utilize
this information to guide data replication.

Contiguous access is preferable: Traditional HDDs are
the dominant storage media in modern parallel I/O sys-
tems. As non-contiguous data accesses usually involve time-
consuming disk head seeks, it brings higher I/O perfor-
mance than that of a non-contiguous data request. More-
over, while SSDs have different storage characteristics com-
pared to HDDs, they also exhibit better performance for
contiguous I/O requests [13]. Based on this observation,
it is preferable to generate more contiguous I/O requests
through data replication to enhance I/O system perfor-
mance.

Data layout affects I/O performance: Parallel file sys-
tems support multiple data layouts, which determine how
the file data is distributed across multiple file servers.
Typical approaches can distribute data on one server, a
set of servers, and all servers. As shown in the previous
work [8], [14], [15], data layout in parallel file systems can
significantly influence I/O system performance because it
involves different network and storage activities for given
I/O requests. For applications with different data access
behaviors, the optimized data layouts are different. To max-
imize the I/O system performance, an idea data placement
scheme should choose the optimized data layout according
to application data access characteristics.

2.2 Motivation of S-PDLA

H-PDLA is only suitable for applications with relatively
low I/O concurrency. This is because the optimized data
layout can perform well only when each server handles a
small number of processes. However, in a large-scale HPC
system, when the number of processes is significantly larger
than the number of HServers, each HServer still needs
to frequently switch among multiple processes, leading to
very low I/O efficiency. Since flash-based SSDs have higher
I/O performance and are much less sensitive to random
accesses than HDDs, it is natural to propose S-PDLA, which
adds additional SServers in the system to optimize data
replication. However, it is non-trivial to do this due to the
following observations.

First, replicating the data of all access patterns on
SServers cannot always improve I/O system performance.
Although an SSD usually outperforms an HDD, whether
SServers outperforms the original HServers becomes uncer-
tain. This is because the aggregated I/O bandwidth relies
on multiple factors, such as the number of servers, the
data layout, and the data access pattern [8], [16]. Therefore,
S-PDLA needs to perform selective pattern replication to
ensure performance benefits.

Second, all servers (HServers+SServers) working to-
gether may provide better I/O performance than HServers
or SServers alone. Previous work has shown that, if with
an optimized data layout, all servers may increase I/O
performance for some access patterns (e.g., large requests)
due to their higher I/O parallelism [17]. Therefore, al-
though storing replica data on SServers is natural, an al-
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Fig. 1: The architecture of the H-PDLA data replication scheme.

ternative approach for S-PDLA is to store them on all
HServers+SServers when doing so is beneficial.

3 THE H-PDLA DESIGN

3.1 Overview of H-PDLA

Figure 1 shows the system overview of the H-PDLA replica-
tion scheme, which resides in MPI-I/O library and consists
of three phases in chronological order. In the first phase,
during the application’s first-time execution, the pattern
recognition module identifies and saves the data access
patterns. In the second phase, the system creates replicas
directly according to the recognized data access patterns.
Compared to the original data files, the replica files rep-
resent the data in the order of the data are accessed. In the
third phase, the system automatically forwards I/O requests
in the later runs of the same application to the replica files
for better performance.

3.2 Data Access Pattern Identification

3.2.1 Trace Collector

This module is responsible for capturing MPI-IO calls in the
MPI standard. It is an I/O middleware library, which can be
linked to any application we want to trace. Other than this
linking step, there is no need for program modifications.
During execution, the application is linked to this I/O
library and each process generates one trace file containing
all its I/O operations. For each file operation, the trace
collector gathers the following information: 1) the MPI rank
and process ID; 2) the file ID; 3) the file offset and request
size; 4) the name of the I/O operations; 5) the starting time
of the operation; and 6) the ending time of the operation.
The trace collector also records the mapping between the
unique file ID and the file path.

3.2.2 Access Pattern Definition

Data accesses of many applications follow certain patterns.
In this study, we define the I/O access pattern from five
aspects: spatial locality, request size, temporal information,
iterative behavior, and I/O operations. The spatial locality
represents the byte order distance between successive ac-
cesses. They can be contiguous or non-contiguous or their
combinations. The request size can be small, medium, or
large. Small I/O requests commonly lead to I/O bottlenecks
when they are sent to disks. The temporal information is
classified based on intervals between data accesses, which
can be fixed (the I/O occurs periodically) or random. The
iterative behavior refers to the repetitive times of I/O re-
quests, which can be repetitive or non-repetitive (i.e., only
once). The I/O operation is divided into read-only, write-
only, and read and write.

We categorize the data access patterns into two types:
local and global ones. The local access pattern represents the
I/O behavior of a process, which is a part of an application.
However, in some situations, the local pattern cannot reflect
the true story of the entire application. For example, when
an application conducts collective I/O operations in which
all the processes participate, the operations of each process
are no longer separated behaviors. One can acquire the
global access patterns of the application by co-analyzing the
local I/O access patterns. More details about the definition
of access patterns can be found in our previous work [11],
[12].

While the pattern may include other properties, in this
study we only focus on spatial patterns since they can
substantially impact I/O performance [12], [5], [6]. We leave
replication optimizations based on other patterns as the
future work.
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Fig. 2: Two access patterns on a parallel file. H-PDLA creates
one replica for each pattern.

3.2.3 Access Pattern Collection

The trace analyzer identifies the data access patterns. It is
an off-line procedure. By taking the collected trace files as
inputs, the analyzer performs analysis to obtain the data
access patterns. The detailed implementation of this module
is described in Section 3.6. Once the data access patterns are
obtained, the system stores them in a pattern database to
guide the following data replication operations.

3.3 Pattern-Directed Replication Policy

3.3.1 Replica Creation Policy

The proposed scheme creates a replica for each identified
access pattern besides the original data. Each replica con-
tains a data object instead of the entire file. It only contains
the data accessed in the data access pattern, as shown in
Figure 2. The data that are not accessed or do not fall into
any data access pattern, will not be replicated and only exist
in the original file. Furthermore, the data in a replica are
reorganized in the access order according to a corresponding
access pattern. Each replica is stored as a new file in the
same file system. Comparing to the trivial data replication,
this policy yields more efficient utilization of storage space.

Generally, the number of replicas plays a pivotal role
in data availability and performance. While distributed file
system HDFS sets this parameter to three by default [18],
we create one replica for each identified access pattern
in parallel file system due to the following reasons. First,
one replica provides comparable performance as n(n > 1)
replicas in HPC domains, where multiple processes seldom
concurrently read the same data. Even when that happens,
since application usually adopts collective I/Os to access
data, there are only fewer processes to read data from stor-
age nodes. Second, this policy is more efficient for storage
space consumption. Third, it is simple to maintain data
consistency between the replicas and the original data.

Since an application may have both local and global
patterns, the scheme first creates replicas for all global
patterns and then makes replicas for the local ones. This can
reduce the number of data replicas and retain the flexibility
of data layout optimization. As illustrated in Figure 3, local
patterns 0 and 1 are combined, thus their data are in the
same file–Replica 0. Local pattern 2 does not belong to any
global pattern, and its data form an independent replica–
Replica 1.

Replica 0 Replica 1

Local pattern 1Local pattern 0 Local pattern 2

Fig. 3: Local patterns are combined into global patterns.

3.3.2 When to Create Replicas
The replica creation is an offline procedure. Namely, the pro-
posed scheme does not create the replicas simultaneously
with the running application. During the first execution of
the application, the scheme discovers all data access patterns
and then adds them into the I/O system’s pattern database.
Afterwards, the system starts to make replicas based on the
queue of newly added patterns. These operations may be
carried out only when there are free computing resources
and I/O bandwidth, so that they do not affect the execution
of normal tasks. In our future work, the system may allow
users to add customized patterns into the queue. In this
case, the future runs of the application will access other data
with the specified patterns, so that the system can obtain
improved I/O performance.

3.3.3 Where to Store Replicas
We store the replica files in the same parallel file system
where the application runs. The replica files are only visible
to the I/O middleware that redirects application I/O re-
quests from the original files to the replicas. All replicas are
placed in some specially named directories, and any naming
rule would work as long as the system’s meta-data keeps
the replicas’ file paths. Since modern parallel file systems
support file data layout adjustment by setting the attributes
of the file directories, storing the replica files in separated
directories brings convenience for the layout-aware replica
placement.

Like almost all other replication schemes, the pattern-
directed replication strategy consumes additional storage
space. It is a trade-off between data access performance and
storage capacity. But, for many applications this is a good
trade-off from the energy saving point-of-view. Reducing
data access time will reduce energy consumption. In addi-
tion, since the replicas are a small portion active data of the
original data, the original data then could be stored on slow
spin disks or even on tapes. For this kind of applications,
the trade-off of space becomes blurry and the gains in I/O
performance and energy consumption become obvious. We
will not explore energy saving in this study, but focus on
I/O optimization.

3.4 Layout-Aware Replica Placement Policy
3.4.1 Data Layout in Parallel File Systems
In this study we categorize popular data layout schemes
into three types: one-dimensional horizontal (1-DH), one-
dimensional vertical (1-DV), and two-dimensional (2-D)
data layouts. As shown in Figure 4, 1-DH places the data of
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Fig. 4: Three typical data layouts in parallel file systems.

TABLE 1: Parameters in the data access cost model.

Symbol Description
p Number of I/O client processes
m Number of processes on one client node
s Data size of one access
e Time of single network connection establishing
v Network transmission rate
nh Number of HDD servers for data replication
ah Startup time of one I/O operation on HDD
bh Time of reading/writing one unit of data on HDD
gh Number of storage groups in 2-D layout

each process across all available storage nodes. While 1-DV
distributes the data of each process on one storage node, 2-D
distributes each process’s data on a group of storage nodes.

Among these schemes, 1-DH is the most widely used
one because it can provide decent I/O performance in many
situations. It is the default data layout method namely
“simple striping” in OrangeFS. However, in some cases, it
yields poor performance. For example, when the number
of processes is much larger than the number of storage
nodes, each I/O request will suffer a large latency because
each storage node needs to serve concurrent requests from
all processes [4]. In this case, 1-DV provides higher I/O
performance than 1-DH does because each node needs to
serve fewer processes. This example shows that for different
data access patterns, we should choose different data layout
to yield the best I/O system performance.

3.4.2 Cost Model for HDD-Based Servers
Replicas created by the pattern-directed replication scheme
are logical files before getting stored. While storing them
into parallel file systems, the layout-aware data storage op-
timization first needs to identify the optimized data layouts
for them. For this purpose, we leverage a mathematical
model to evaluate the data access cost in the computing en-
vironment. The corresponding critical parameters are listed
in Table 1. Assume T 1V

H , T 1H
H , and T 2D

H represent the data
access times in the HDD-based file system under 1-DV, 1-
DH, and 2-D layouts respectively, then the cost model is
listed in Table 2. This model is effective enough and has
been comprehensively verified in a practical parallel I/O
system. More details about constructing and verifying the
model can be found in our previous research [8].

We can derive some brief guidelines can from the model.
1) When p < n and s is very large, 1-DH policy has the
lowest cost among the three policies. 2) When p ≈ n and
s is medium, 2-D layout policy produces higher bandwidth

TABLE 2: Cost model for HDD-based servers.

Cost Description

T 1V
H max(m, d p

nh
e)∗ (e+ sv)+ d p

nh
e ∗ (ah+ sbh)

T 1H
H max(p,mnh)∗e+max( p

nh
,m)∗sv+pah+

p
nh
∗ sbh

T 2D
H max(md p

nh
e, d p

gh
e)∗e+max(m,

d p
gh
e

dnh
gh
e )∗sv+

ahd p
gh
e+

d p
gh
e

dnh
gh
e ∗ sbh

than the other two. 3) When p > n and s is relatively small,
1-DV layout policy would be the best choice.

3.4.3 Layout-Aware Replica Placement
Based on the proposed cost model, the layout-aware replica
placement scheme works as follows. First, for each request
in a given access pattern, the cost model estimates its access
cost under each of the three data layouts. Then it adds all the
requests’ costs together to get the access cost for the entire
pattern. Also, for each data layout, the model generates
a cost result. Naturally, the data layout that produces the
lowest cost is the optimized selection, and the scheme will
adopt this optimized layout in the parallel file system for
the corresponding replica placement.

3.5 I/O Redirection

The I/O redirection module redirects original I/O requests
to the newly created replicas. Usually an application issues
an I/O request with three parameters: the identifier of the
original file, the data offset, and the request size. After
locating the replica file according to these three parameters,
run-time information (the parameters listed in Table 1), and
the meta-data in the replica catalog, the redirection module
translates the filename and offset between the original file
and the replica files and fulfills the request using the replica
files.

3.6 Implementation

We implement a prototype of the H-PDLA replication
scheme and its run-time system under MPICH2 on top of
OrangeFS. The implementation adds some components into
the default parallel I/O system. We explain the detail of each
component hereinafter.

3.6.1 Trace Collector and Analyzer
While there are several tools that can be used to collect traces
and analyze patterns, we choose IOSIG [11] because it can
capture the required information of our scheme and only
incurs low overheads. IOSIG is a pluggable library at MPI-
IO layer. By using the Profiling MPI interface, it collects the
data access information of all file I/O operations. All the file
operations of an application are recorded in trace files, each
for one individual process. Besides the MPI-IO interface,
IOSIG supports standard POSIX IO interfaces for portable
deployment.

The trace analyzer is implemented in Python to carry
out offline trace analysis. It utilizes a “template matching”
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approach to recognize data access patterns, which are repre-
sented in the form of I/O signatures defined in our previous
work [12]. By marking the analysis progress with a cursor in
each trace file, the analyzer starts from the first record and
moves the cursor forward to scan all records until reaching
the end. During the scanning process, the analyzer always
picks a predefined access pattern as a template, to check
whether it matches the records around the cursor. Once a
match is found, the cursor moves forward along with the
same pattern in the trace, until the match does not hold.
If there is no match for the first template, the analyzer
switches to other templates and tries again. If failing to
find a match for all templates, it skips the current record,
moves the cursor forward, and starts over the matching
at the new position. The analyzer produces all the local
patterns by analyzing each trace file. After that, it examines
all the local patterns and combines the relative ones into
global patterns. Trace analyzer inserts obtained patterns into
Pattern Database.

3.6.2 Pattern Database
Both the data replicator and the I/O redirection module
need to retrieve an application’s data access patterns. We
keep this meta-data information in “Pattern Database”. It
saves the mapping relation between applications and their
data access patterns, including: 1) which application a pat-
tern belongs to; 2) which file a pattern depends on; 3) the
rank of a process that a pattern belongs to; and 4) which
local access pattern is included in a global access pattern.
Pattern Database also saves the meta-data on the run-time
environment of the owner application, including mainly the
parameters of the system that will be used to determine the
optimized data layout for the generated replication files.

We use Berkeley DB to implement the pattern database.
The Berkeley DB is a hash table and each of its records is
a key-value pair. The key is a “patternID” that is encoded
by the following information: application’s execution com-
mand, number of processes, rank of the process, and the
original file name; the value contains the data access pattern
and the run-time information. The value’s presentation in
the code is a structure definition (in C language) that in-
cludes several fixed member variables and a union (also in
C language) of various type of data access patterns.

3.6.3 Data Replicator
The data replicator is a lightweight daemon program that
monitors a queue containing all data access patterns needed
to be replicated. When the trace analyzer inserts a new
access pattern into the pattern database, it also en-queues
the same pattern into this global queue. When the queue is
not empty, the replicator will de-queue the access patterns
and starts to make replication according to them, one at a
time. In the meantime, the data replicator uses the run-time
information (the parameters listed in Table 1) and the cost
model to find the optimized data layout. Then it just reads
data from the original file and writes them into the replica
files with the optimized data layout. We implement such a
queue using Berkeley DB’s built-in queue access mode. To
configure the data layout, the data replicator just sets up
a directory with the optimized data layout in OrangeFS,
and then stores the replicas into that directory. OrangeFS

provides a tool for configuring a directory’s data layout
policy.

The data replicator also works like a replica scanner. It
periodically scans the pattern database, and whenever it
finds the missing of a pattern’s original file, it will remove
the corresponding data replicas and the related meta-data.

3.6.4 Replica Catalog

The replica catalog stores the meta-data of the replicas.
It manages the relationships among data replicas, original
files, and the data access patterns. The meta-data includes
1) which original file a replica’s data comes from, and
2) based on which access pattern a replica is created. Its
implementation also uses Berkeley DB configured as a hash
table; the key is the patternID (the same key in Pattern
Database), and the value is the path to the replica file based
on the corresponding data access pattern.

3.6.5 I/O Redirection

This module redirects I/O requests to the original files or the
replica files based on the specifics of the requests. Usually,
an application issues an I/O request with three parameters:
the identifier of the original file, the data offset, and the
request size. After locating the replica file according to these
three parameters, run-time information, and the meta-data
in the replica catalog, the redirection module translates the
filename and offset between the original file and the replica
and fulfills the request using the replica.

We have made the following modifications in the MPI-IO
standard functions to redirect I/O requests based on request
specifics.

MPI_File_open: When opening a file, instead of open-
ing the original file, the method tries to open the corre-
sponding replica files.

MPI_File_read/MPI_File_write (and other for-
mats of read/write, such as MPI_File_read_at, etc.): For
each I/O read or write, this function uses the file handle of
the replica file and checks whether the access pattern has
changed or whether the opened file contains the requested
content. If the application is still following the same pattern,
the module calculates the correct data offset and issues a
request using the new offset and file handle. If the pattern
has changed, the module finds new patterns, opens new
replication files, and issues request to them.

MPI_File_close: It closes the opened replica files.
MPI_File_seek: It calculates the offset and conducts

the seek operation in the replica if necessary.
When the requested data do not belong to any data

access pattern and do not have replicas, the system will act
as the same as the default MPI-IO implementation.

4 THE S-PDLA DESIGN

In the previous section, we have described the H-PDLA
replication scheme for HDD-based parallel I/O systems.
As discussed in Section 2.2, H-PDLA is inefficient for an
application with high I/O concurrency. To address this
issue, we propose a new SSD-based replication scheme, S-
PDLA to further improve I/O system performance.
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Fig. 5: The idea of the S-PDLA scheme. The data of access
patterns can be replicated on SServers or HServers+SServers
based on the specifics of the patterns.

4.1 Idea of S-PDLA
The basic idea of S-PDLA is to utilize SServers as the
replica space for the original file system. Since (1) SServers
do not always perform better than HServers for all ac-
cess patterns and (2) all servers may outperform the pure
SServers for some access patterns, S-PDLA only selects crit-
ical patterns that can bring significant performance benefits
to carry out cost-effective data replication on SServers or
HServers+SServers.

Figure 5 shows the idea of the S-PDLA scheme. It
replicates some of the identified access patterns on SServers
and others on HServers+SServers when the data replicas
on the original HServers are inefficient. Where to store
the replica of the pattern is determined by the replication
benefit analysis. During the subsequent I/O service phase,
S-PDLA adaptively redirects I/O requests to SServers or
HServers+SServers based on the specifics of the requests.
In contrast to the simple scheme that indiscriminately repli-
cates the data of all access patterns on SServers, S-PDLA
makes selective data replication to both save SSD space
and maximize I/O system performance. S-PDLA distributes
the replica data on SServers with optimized data lay-
outs since they also affect SSD-based I/O performance [1],
[4]. For simplicity, S-PDLA only stores replica data on
HServers+SServers with the 1-DH layout. The other two
types of data layouts can also be applied to S-PDLA [4],
[9]; we will integrate them into S-PDLA in the future work.

4.2 Cost Models for SServers and HServers+SServers
To enable the cost-effective data replication, we propose two
cost models to evaluate the data access time of a file request
on different types of servers.

4.2.1 Cost Model for SServers
For SServers, the related parameters in the model are listed
in Table 3 and the cost model is defined in Table 4. While
similar to the previous model in Section 3.4.2, the model
shows three differences. First, the number of SServers can be
different from HServers in the HDD-based model. Second,
the read and write performance of SServers are different
because a write on SSD usually involves background ac-
tivities (e.g., garbage collection and wear leveling) while a

TABLE 3: Parameters in cost model for SServers.

Symbol Description
p Number of I/O client processes
m Number of processes on one I/O client node
s Data size of one access
e Time of single network connection establishing
v Network transmission rate
ns Number of SSD servers for data replication
asr Startup time of one read operation on SSD
bsr Time of reading one unit of data on SSD
asw Startup time of one write I/O operation on SSD
bsw Time of writing one unit of data on SSD
gs Number of storage groups in 2-D layout

TABLE 4: Cost model for SSD-based servers.

Cost Description
Read operation

T 1V
S max(m, d p

ns
e)∗(e+sv)+d p

ns
e∗(asr+sbsr)

T 1H
S max(p,mns)∗e+max( p

ns
,m)∗sv+pasr+

p
ns
∗ sbsr

T 2D
S max(md p

ns
e, d p

gs
e)∗e+max(m,

d p
gs
e

dns
gs
e )∗sv+

asrd p
gs
e+ d p

gs
e

dns
gs
e ∗ sbsr

Write operation
T 1V
S max(m, d p

ns
e)∗(e+sv)+d p

ns
e∗(asw+sbsw)

T 1H
S max(p,mns)∗e+max( p

ns
,m)∗sv+pasw+

p
ns
∗ sbsw

T 2D
S max(md p

ns
e, d p

gs
e)∗e+max(m,

d p
gs
e

dns
gs
e )∗sv+

aswd p
gs
e+ d p

gs
e

dns
gs
e ∗ sbsw

read does not. Third, the startup time and unit data access
time of SSDs are much smaller than those of HDDs because
SSDs have much higher I/O performance. By considering
these configuration and device differences, the model can
efficiently evaluate request performance on SServers

4.2.2 Cost Model for HServers+SServers
For simplicity, we only consider the 1-DH data layout.
Since HServers and SServers have heterogeneous perfor-
mance, we assume the data are distributed on HServers
and SServers with a varied-size file stripe size of sh and ss
respectively to alleviate load imbalance among servers. We
assume each file request is served by all the nh+ns servers,
namely, nh ∗ sh + ns ∗ ss = s. Usually ss is larger than sh to
achieve load balance. In an extreme case, sh can be zero
(which means file data are only distributed on SServers)
if there is a possibility to improve performance. Based on
these assumptions, the corresponding cost model is listed in
Table 5.

Note that the data access time in the model is a function
of two variables, sh and ss for a given file request. It consists
of linear equalities and inequalities of unknown variables
(the max expression can be described as multiple linear
inequalities). Therefore, we can use a linear programming
(LP) optimization technique or an iterative algorithm to find
the optimized stripe sizes with the given assumptions. Since
the linear program is expressed with only two unknown
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TABLE 5: Cost model for HServers+SServers.

Cost Description
Read operation

T 1H
H+S max(p,m(nh + ns)) ∗ e + max(ms, pss) ∗

sv + p ∗max(ah + sh ∗ bh, asr + ss ∗ sbsr)
Write operation

T 1H
H+S max(p,m(nh + ns)) ∗ e + max(ms, pss) ∗

v + p ∗max(ah + sh ∗ bh, asw + ss ∗ sbsw)

variables, the search space is very small and solving the
program requires acceptable off-line time overhead. More
details on constructing the model and finding the optimized
stripe sizes for a given access can be found in [4].

4.3 Critical Access Pattern Identification

With the proposed cost models, S-PDLA can get the data
access costs of each request ri on HServers, SServers, or
HServers+SServers under different data layouts. For a given
access pattern, assume that n is the number of request in the
pattern, we can obtain the optimized data access time for the
pattern on the three potential replica spaces as following:

TH = min{
n∑

i=1

T 1H
H (ri),

n∑
i=1

T 1V
H (ri),

n∑
i=1

T 2D
H (ri)} (1)

TS = min{
n∑

i=1

T 1H
S (ri),

n∑
i=1

T 1V
S (ri),

n∑
i=1

T 2D
S (ri)} (2)

TH+S =
n∑

i=1

T 1H
H+S(ri) (3)

Among the optimized data layouts, the optimal one
yields the lowest data access costs on the three replica
spaces. For a given data access pattern, the performance
benefits of an intended replication on SServers over
HServers can be described as

BS = TH − TS (4)

Accordingly the performance benefits of an intended
replication on HServers+SServers instead of HServers can
be described as

BH+S = TH − TH+S (5)

Assume the maximal performance benefit of req is B,
then B can be described as

B = max{BS , BH+S} (6)

A positive B means that the intended data replication
on SServers or HServers+SServers will further improve I/O
system performance than replicating the pattern data on
HServers. The larger the value of B, the more benefit the
replication brings. However, since SServers do not always
outperform HServers for all system configurations and ac-
cess patterns, the intended replication is not always prof-
itable. For example, when the system has a large number
of HServers and a small number of SServers, HServers

may have better aggregated I/O bandwidth than SServers
because they provide higher I/O parallelism. In this case,
serving the required data from the replicas on HServers
(original I/O system) helps system performance and it does
not need to be replicated on SServers. We will show this in
Section 5.2.

To maximize system performance, S-PDLA regards the
access patterns whose values of B are larger than a pre-
defined threshold as critical patterns and then replicates
them on SServers or HServers+SServers. Where to store the
replica is determined by the replica space which brings the
maximal performance benefit. To guide the following actual
data replication, S-PDLA uses a critical pattern table (CPT)
to store the pattern information, the performance benefit,
the replica space, and the corresponding optimized data
layouts.

4.4 Replica Creation and Placement for Critical Pat-
terns

Algorithm 1 The SSD-based replica creation and placement

Require: Critical pattern table: CPT , Replica Mapping ta-
ble: RMT .

1: pattern[n]← sort desc benefit(CPT [n])
2: for (i = 0; i < n; i++) do
3: opt layout← pattern[i].layout
4: csys ← available space on an SServer
5: spat ← required data size of pattern[i] on an SServer

with opt layout
6: if csys >= spat then
7: if pattern[n].space ==”SServers” then
8: create a file f [i] with opt layout on SServers
9: else

10: create a file f [i] with opt layout on
HServers+SServers

11: end if
12: for each request r[j] in pattern[i] do
13: if r[j] is /∈ f [i] then
14: append the data of request r[j] to file f [i]
15: update the entry into RMT
16: end if
17: end for
18: end if
19: csys ← csys − spat
20: end for

Once obtaining the critical access patterns, S-PDLA will
replicate them on SServers or HServers+SServers with opti-
mized data layouts. Algorithm 1 shows the replica creation
and placement procedure. To be cost-effective, it first sorts
all the critical patterns in descending order of their perfor-
mance benefits, then iterates them for possible data replica-
tion from high-benefit patterns to low-cost ones. A pattern
with a higher benefit has a more top priority to be replicated.
For each access pattern, the algorithm checks whether the
system has enough space to accommodate the involved data
with the optimized data layout. If it is yes, the algorithm
will create a replica file for the given pattern in the cor-
responding replica space (SServers or HServers+SServers).
Then it continuously copies the requested data from the
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original file to the replica file according to their accessing
order in the original file. To keep up replica location and
layout information, the algorithm adds an entry in the
replica mapping table RMT when new data are appended
into the replica file. Otherwise, the access pattern will be
not replicated due to the insufficient space.

Note that the algorithm is a selective policy that only
replicates the critical access patterns instead of all of them.
Furthermore, it is layout-aware as it stores each replica
on SServers or HServers+SServers with an optimized data
layout rather than the fixed 1-DH data layout. In this way,
the limited space of SServers can be efficiently utilized.

4.5 Implementation

CPT and RMT are two key data structures of S-PDLA to
record critical patterns and replica mapping information.
We use Berkeley DB [19] to implement both of them, each
as a database file in the parallel file system on SServers. For
CPT, the key is the PatternID encoded with the application
name, number of processes, rank of the process, original
file name, and the access pattern; the value contains the
performance gain, the replica space, and the optimized data
layout. For RMT, the key is the PatternID and the value
contains the data access information. Additionally, we use
lists in memory to maintain the most frequently accessed
entries in the two tables to speed up lookups.

We modify the MPI library so that the replica
location information on SServers or HServers+SServers
is loaded with MPI_Init() and unloaded
with MPI_Finalize(). We also modify the
MPI_File_open/read/write/seek/close()
functions (and other variants of them) to atomically
forward I/O requests to the corresponding replica spaces.

5 EVALUATION

We conduct the experiments on a 64-node Sun Fire Linux
cluster. Each node has two Opteron quad-core processors,
8GB memory and a 250GB 7200RPM SATA-II disk (HDD).
We employ eight nodes as storage nodes managed by
OrangeFS and all the other nodes as computing nodes.
There was no overlap between computing nodes and I/O
nodes (file servers), so that all data accesses between the
application and the file system are remote accesses.

We use three popular micro-benchmarks, IOR [20], PIO-
Bench [21], MPI-Tile-IO [22], and a real application [23]
to evaluate the system performance. We test the system
performance five times and chose the averages as the results.

5.1 Evaluation on the H-PDLA scheme

The evaluation in this subsection is to show the effective-
ness of the HDD-based pattern-directed (PD) and layout-
aware (LA) data replication scheme. For comparison, we
test the performance of the original HDD-based parallel
I/O system (Original) without data replication. To ensure
that the improvements only come from applying the PD
replication policy, we first disable the LA placement in these
tests. Therefore, the replicas and the original files are using
the same data layout. The data layout is 1-DH (”simple

striping” distribution in OrangeFS) with a stripe size of
64KB.

Then, to verify the need of optimized data placement
of the replicas, we measure the system performance by
enabling both PD and LA (PD+LA, namely H-PDLA). We
store the replicas in two different ways, one set of them are
stored in OrangeFS’s default data layout (1-DH), and the
other set of replicas are stored in the optimized data layout
determined by the replica placement scheme in Section 3.4.
These two sets of replicas are identical with each other,
so all the performance differences are the result from the
differences in their data layouts.

5.1.1 IOR Benchmark

Various Numbers of Processes: Figure 6 shows the I/O
performance of IOR with varying number of processes. We
run IOR with 8, 32, 128, and 512 processes. Each process
accesses 512MB of data in a fixed-stride data access pattern,
and the request size is 256KB. Different processes access
their regions of the original file so that no process’s data
co-locate with any other’s data. We can observe that both
PD and H-PDLA can improve the performance of the orig-
inal I/O system. Compared to the original system, the PD
policy improves read performance by up to 970% and write
performance by up to 307%. The reason is that in the original
I/O system, there are many non-contiguous I/O requests,
which degrade I/O efficiency. However, with the PD policy,
these requests are translated into sequential requests in the
replica space, leading to highly improved I/O bandwidth.
In contrast to the PD policy, the LA replication placement
policy can produce up to 10% additional performance im-
provements for reads and 5% for writes. This is because
PD only applies one fixed data layout for replica placement
while LA can choose the best one requiring the lowest cost
from three layout candidates. From these results, we can see
that the optimized data placement for replicas can further
improve I/O system performance.

We also note that as the number of processes increases,
IOR’s bandwidth gets lower because each storage node
needs to serve more processes, leading to more severe con-
tention on storage nodes. However, the rate of bandwidth
degrading is much lower with both PD and H-PDLA than
that with the original case. This shows that the proposed
data replication scheme can significantly improve the sys-
tem scalability on serving more concurrent requests.

Various Request Sizes: Figure 7 shows the bandwidths
of IOR with various request sizes of 16KB, 256KB, and
4MB. We set the number of processes to 64. Similar to the
previous test, both the PD and H-PDLA scheme can obtain
performance improvements over the original I/O system. In
contrast to the original I/O system without data replication,
the PD replication improves the I/O bandwidth by 80% to
926% for reads, and 47% to 521% for writes. With the request
size getting smaller, IOR’s bandwidth gets lower. This is be-
cause each storage node needs to handle a larger number of
small non-contiguous data requests thus the disk seeks get
more frequent. Figure 7 also reveals another improvement
by applying PD replication: when the request size decreases,
the rate of bandwidth degrading is much lower with PD
than that with the original case. In other words, PD can
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Fig. 6: IOR performance with various numbers of processes.
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Fig. 7: IOR performance with various request sizes.

significantly improve the I/O system’s ability to handle a
large number of small requests.

When the LA placement policy is enabled, Figure 7
shows that it can further improve the I/O performance
obtained by the PD replication policy, meaning that LA is
useful and necessary. Compared to the original I/O system,
the I/O system performance can be improved by 84% to
970% for reads and 16% to 208% for writes, when both the
PD and LA policy are enabled.

5.1.2 PIO-Bench Benchmark

The PIO-Bench benchmark can test several I/O access pat-
terns appearing in typical workloads of real applications.
These patterns include sequential, simple strided, nested
strided, random strided, segmented access, and tiled pat-
terns. We run PIO-Bench with a nested-stride access pattern.
The number of processes is 64, and the request sizes are
4KB, 16KB, 64KB, 256KB, and 1MB. We record the program’s
execution time and use it to divide the total data access size
to get the aggregated I/O bandwidth.

Figure 8 shows the performance improvements that PD
brings to PIO-Bench. Compared to the original I/O system,
we can see that PD has performance improvement of 8%
to 27% for reads, and 10% to 39% for writes. Figure 8 also
reveals that the LA optimization can have extra performance
benefits over the PD policy alone: the improvement is 9% to
22% for reads and 5% to 41% for writes. These results show
that H-PDLA is effective for PIO-Bench.

As mentioned above, the data access patterns of PIO-
Bench are nested-stride. This means each process has a
fixed-stride access pattern. But multiple local access patterns
are nested with each other and can be combined into global
access patterns. Therefore, the nested-stride pattern yields
better data locality than the fixed-stride data access pattern
that we used for IOR’s tests. As a result, the performance
improvements of PIO-Bench are not as substantial as those
of IOR but are still significant. This further confirms the
adaptability of H-PDLA: when the application’s data ac-
cesses have poorer performance (due to the worse data

 0

 100

 200

 300

4K 16K 64K 256K 1MA
gg

re
ga

te
d 

B
an

dw
id

th
(M

B
/s

)

Request sizes (Bytes)

Original
PD only

PD + LA

(a) Read bandwidth

 0

 100

 200

 300

4K 16K 64K 256K 1MA
gg

re
ga

te
d 

B
an

dw
id

th
(M

B
/s

)

Request sizes (Bytes)

Original
PD only

PD + LA

(b) Write bandwidth

Fig. 8: PIO-Bench performance with various request sizes.
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Fig. 9: MPI-Tile-IO performance with various request sizes.

locality among consecutive accesses), it gains more benefits
from H-PDLA.

5.1.3 MPI-Tile-IO Benchmark
We then run MPI-Tile-IO with its default access pattern.
MPI-Tile-IO treats the entire data file as a 2-D matrix and
divides it into n × n tiles (n rows by n columns). Given n2

processes, each process accesses the data in one tile, with
fixed-stride access pattern. Each process accesses a chunk
of data based on the size of each tile and the size of each
element. The data of n tiles in the same row are nested
together. Therefore, MPI-Tile-IO’s data access pattern is also
nested-stride.

In this test, we run MPI-Tile-IO with 64 processes and
various request sizes. The request sizes are 4KB, 16KB, 64KB,
256KB, and 1MB. Figure 9 shows the performance improve-
ments that PD brings to MPI-Tile-IO over the original I/O
system. The aggregated bandwidth increases by 39% to 91%
for reads, and 30% to 86% for writes. Figure 9 also illustrates
the performance improvements that H-PDLA brings to MPI-
Tile-IO over the PD scheme: the aggregated I/O bandwidth
is improved by 6% to 15% for read requests and 4% to 14%
for write requests, meaning that the LA scheme is efficient
for MPI-Tile-IO.

Similar to the PIO-Bench test, while the performance
improvement of MPI-Tile-IO is significant, it is not as large
as that of IOR. The reason is that the nested-stride pattern
used in MPI-Tile-IO has strong data locality than the fixed-
stride data access pattern used in IOR.

5.2 Evaluation on the S-PDLA Scheme
All the above results have confirmed the efficiency of H-
PDLA in some cases. In this subsection, we conduct ex-
periments to show that the enhanced S-PDLA scheme can
further improve I/O performance for applications when the
I/O concurrency is significantly larger than the number of
servers.

We compare S-PDLA with three other schemes: H-PDLA,
S-ORIG, and NS-PDLA. As previously discussed, H-PDLA
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Fig. 10: IOR performance with various process numbers.

replicates all identified access patterns on HServers. S-ORIG
stores the original files on SServers without PDLA. NS-
PDLA is a non-selective policy, which indiscriminately repli-
cates the data of all patterns on SServers without consider-
ing replication benefits. In contrast, S-PDLA only replicates
the patterns that can bring performance benefits on SServers
or HServers+SServers. With these comparisons, one will be
clear about the necessity of the selective policy in S-PDLA
and its efficiency in improving I/O system performance.

We deploy the original I/O system on eight HServers.
Moreover, we build an additional system on four SServers,
which are used to store the original files in S-ORIG and the
replica files in S-PDLA.

5.2.1 IOR Benchmark

To simulate the scenario where each server faces high I/O
concurrency, we run IOR with 128, 256, and 512 processes.
We modified IOR to generate various request sizes in dif-
ferent parts of a file, so that processes access the data
with varying I/O patterns. Each process accesses data with
strided I/O requests. We vary request sizes among 16KB,
256KB, and 4MB in different parts of the file. For each
process, the total accessed data size is 512MB.

Figure 10 shows the aggregated bandwidths of IOR
under various numbers of processes. We find S-PDLA out-
performs H-PDLA: the read performance is improved by
128% to 183%, and the write performance is improved by
252% to 279%. This is because S-PDLA leverages high-
performance SSDs and optimized data layouts to enhance
system performance. S-PDLA is also better than S-ORIG: it
speeds up reads by up to 86% and writes by 98%. There
are two reasons for the improvements. (1) S-PDLA stores
the replicas with optimized data layouts while S-ORIG uses
the default layout. (2) S-PDLA stores the replicas of some
patterns on HServers+SServers while S-ORIG only stores
them on SServers, which have lower I/O parallelism.

Another observation is that S-PDLA exceeds NS-PDLA
because it carries out cost-effective replication while NS-
PDLA performs indiscriminate data replication. To confirm
this, we profile the request locations under S-PDLA. It
shows that S-PDLA issues the requests whose sizes are
smaller than 4MB to SServers and those at the size of
4MB to HServers+SServers. As an SServer is significantly
faster than an HServer for small requests, S-PDLA replicates
the patterns only on SServers is more beneficial because
it can efficiently utilize SServers’ performance. However,
when the request size is 4MB, the performance gap be-
tween heterogeneous servers substantially decreases. In this
case, HServers provide better I/O bandwidth than SServers
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Fig. 11: PIO-Bench performance with various request sizes.

because they have higher I/O parallelism. However, repli-
cating the data on HServers+SServers can further improve
I/O performance because it can maximally utilize the I/O
parallelism from all nodes.

We also note that S-PDLA brings diminishing perfor-
mance improvements as the number of processes increases.
The reason is that SSDs also have decreased I/O perfor-
mance when serving a large number of processes. However,
as SSDs have higher I/O performance and less sensitivity
to random accesses, S-PDLA can exhibit better performance
and scalability than H-PDLA.

5.2.2 PIO-Bench Benchmark

We run PIO-Bench with the nested-stride access pattern. The
number of processes is 128 and the request size is from
4KB to 1MB. We calculate the aggregated I/O bandwidth
by using the total data access size to divide the program’s
execution time. Figure 11 shows the I/O bandwidth of
PIO-Bench with various request sizes. When the request
size is equal or smaller than 256KB, S-PDLA obtains I/O
performance improvement over H-PDLA by up to 153% for
reads and by up to 89% for writes. In these cases, S-PDLA
sends the I/O requests to SServers. When the request size
is 1MB, S-PDLA obtains a much higher I/O bandwidth be-
cause in this scenario HServers outperform SServers and S-
PDLA replicates the patterns on HServers+SServers. Similar
to previous tests, S-PDLA is better than S-ORIG and NS-
PDLA. The reason for S-PDLA’s improvements is that it can
intelligently replicate data of some patterns on SServers or
HServers+SServers with optimized data layout, based on
the replication benefit analysis. In contrast, S-ORIG only
stores the data on SServers with the default layout, and NS-
PDLA indiscriminately replicated the data on SServers even
when HServers have superior I/O performance.

5.2.3 MPI-Tile-IO Benchmark

We run MPI-Tile-IO with the default access pattern. The
number of processes is 256, and the request sizes are 4KB,
16KB, 64KB, and 256KB. Figure 12 shows the performance
improvements that S-PDLA brings to MPI-Tile-IO com-
pared with the H-PDLA, S-ORIG, and NS-PDLA replication
scheme. We can see that S-PDLA can further increase the
aggregated bandwidth by 21% to 60% for read requests
and 31% to 57% for write requests compared to H-PDLA.
Furthermore, since the request sizes are relatively small, S-
PDLA obtains the same performance as NS-PDLA because
both of them redirect the requests in all identified patterns
to SServers.
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Fig. 12: MPI-Tile-IO performance with different request
sizes.

5.2.4 Real Application

The above benchmark-based evaluation has illustrated the
effectiveness of S-PDLA. In this subsection, we test the
performance of S-PDLA with a real application, called
’‘Anonymous LANL App 2” [23]. We choose this application
because it has complex access patterns, which can evaluate
the generality of our proposed approach.

In this application, each process issues I/O requests with
various access patterns at different parts of a shared file
during the run time. We can divide the file into three typical
parts according to the request sizes. For the first part, the
request sizes are relatively small (several KBs). The second
part has medium request sizes (tens of KBs). For the last
part, the request sizes change between a large one (hundreds
of KBs) and another large one (hundreds of KBs) iteratively.
To simulate the same access scenario, we replay the data
accesses of the application according to the I/O trace.

Figure 13a shows the corresponding I/O performance of
the application under the four replication policies. Similar
to the previous tests, while S-ORIG, S-PDLA and NS-PDLA
outperform H-PDLA individually, S-PDLA brings the best
performance for the highly varied workload of the applica-
tion. The reason is that S-PDLA replicates different patterns
on the proper servers with optimized data layouts based
on performance benefit analysis, while S-ORIG places the
data on SServers with the default data layout and NS-PDLA
always indiscriminately replicates them on SServers. This
result shows that S-PDLA is also efficient for applications
with complex I/O patterns.

5.3 System Overhead

As shown in Figure 1, we integrate some components into
the default parallel I/O system to make PDLA work au-
tomatically. These modules cause additional system over-
heads.

5.3.1 Trace Collection Overhead

We collect I/O traces in the first execution of the application.
It only happens once. To measure the run-time overhead
of the trace collector, we test the difference between the
execution times of IOR and MPI-Tile-IO with and without
linking the tracing library. For IOR benchmark the overhead
is below 2%, and for MPI-TILE-IO benchmark it is below
6%. These results show that the overhead introduced by the
trace collector is acceptable.
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Fig. 13: Application performance and system overhead.

5.3.2 Pattern Identification Overhead
We conduct access pattern recognition offline in the back-
ground. Thus it does not affect the execution of user appli-
cations. The execution time of the analyzer is proportional
to the number of traced records. That is, its time complexity
is O(n). To show the overhead, we run the analyzer with a
PIO-Bench trace file with 5296 records on a single core in a
client node. The result shows it takes less than 2 seconds to
finish the analyzing. We can parallelize the analysis process
to reduce the execution time if necessary. For example, we
can use shell scripts to start multiple analyzers on multiple
trace files simultaneously.

5.3.3 I/O Redirection Overhead
For some applications with recognized data access patterns
and replica files, the system can improve the overall I/O
performance. However, some applications do not have reg-
ular data access patterns thus will not benefit from the
accesses to the PDLA replica files. In this case, overhead may
exist, which may degrade performance if it is noticeable in
volume.

In this subsection, we only evaluate the following two
possible sources of overheads in the runtime system.

1) During “file open”, the I/O redirection module needs
to look up the data access pattern in the Pattern Database.

2) During “file read/write”, the module needs to check
whether the opened file is a replica, thus to decide whether
to do the offset calculation.

To evaluate the overhead in the runtime, we run IOR
with contiguous data access pattern, and put no related
pattern in the database and make no data replication. So the
system just accesses the original files. We run IOR with 8, 64,
and 512 processes, and each of them 100MB data with the
request size of 256KB. Figure 13b shows the execution time’s
percentage change after enabling H-PDLA comparing with
the original I/O system. We can see that the overhead of H-
PDLA is acceptable. For S-PDLA, it also incurs performance
overhead due to the same reasons for H-PDLA. Since this
overhead is comparable to that of H-PDLA, we omit it in
Figure 13b for concise illustration.

6 RELATED WORK

Data replication: There are many efforts to utilize data
replication for improved I/O system performance. Inter-
ferenceRemoval [24] replicates segments of files that could
be involved in interference to their respectively designated
I/O nodes, so that the degree of interference on each node
can be greatly reduced. IR+ [25] uses SSDs to create disk-
friendly layouts for data replicas in heterogeneous storage



0018-9340 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2019.2946135, IEEE
Transactions on Computers

SUBMISSION TO IEEE TRANSACTIONS ON COMPUTERS 13

systems. Different from these works, PDLA creates replicas
based on data access patterns thus the rule of selecting data
to be replicated is straightforward. PDLA also reorganizes
data according to the access order, so it transforms non-
contiguous accesses to contiguous ones.

To enhance the I/O efficiency of non-contiguous re-
quests, HDFS [18] and GPFS-SNC [26] create multiple copies
for each file, so that I/O requests can be redirected to
the nearest location to reduce data access costs. Similar
approaches are adopted in the cluster or grid systems [27],
[28]. In contrast to these works, PDLA only replicates access
patterns thus it can save storage space. Pattern-based data
replication is also conducted in [29], [30], which select gen-
eral access patterns and replicates them with more reorga-
nized layouts. CEDA [31] considers the physical data layout
of file requests and carries out cost-effective data replication.
However, all these studies utilize the same type of devices
in the original I/O system to replicate data, which may still
have performance limitation for applications with high I/O
concurrency. As opposed to them, S-PDLA leverages new
storage media, SSDs, to improve I/O performance.

Besides, some parallel file systems, such as Ceph, Lustre,
and GPFS, provide built-in data replication functionalities
for enhanced fault tolerance. Similar redundant data place-
ment approaches [32], [33] are designed to improve system
availability. In contrast to these efforts, this study intends to
boost system performance via data replication, an area that
has attracted attention only recently [8].

Data organization: AILS [34], FS2 [35], and BORG [36]
automatically reorganize selected disk blocks to reduce disk
seeking overhead. These techniques are efficient for single
disk and disk arrays but require complex implementation
in the disk device driver and local file systems. With a sim-
ple implementation in I/O middleware, PDLA replication
scheme suits today’s large-scale HPC systems well and has
better pattern recognition ability.

To improve read performance, SOGP [37] stores a copy
of data that is often accessed in a more efficient organization.
While SOGP aims to bridge the gap between OrangeFS and
local storage, PDLA focuses on bridging the gap between
application and physical data. He et al. proposed a file re-
organization method according to access pattern to increase
the continuity by remapping files in MPI-IO layer [38], [39].
Compared with that, PDLA consumes less storage resource
and is more flexible for further data layout optimization.
More importantly, PDLA is a combined system approach
with replication, reorganization, and optimized data layout
working collectively for best performance.

For write optimization, PLFS [40] stores the data of non-
contiguous writes in a set of reorganized log files. While
dramatically improving write performance, it may degrade
read performance when reading back from those files due to
the inevitable data restructuring. In the PDLA scheme, read
and write access patterns are handled separately to achieve
optimized performance for both of them.

7 CONCLUSION

PDLA is a new data replication scheme aiming to optimize
parallel I/O performance based on application-specific I/O
characteristics. It includes an HDD-based scheme H-PDLA

and an SSD-based scheme S-PDLA. For applications with
relatively low I/O concurrency, H-PDLA identifies the ac-
cess patterns of applications and makes a reorganized data
replica for each access pattern on HDD-based servers with
an optimized data layout. For applications with high I/O
concurrency, S-PDLA identifies the critical access patterns
and replicates them on SSD-based servers or all HDD-based
and SSD-based servers with optimized layouts. Experimen-
tal results show that (1) H-PDLA can significantly improve
the performance of the original I/O system and (2) S-PDLA
can further improve the system performance of H-PDLA for
applications with a large number of processes.

In the future work, we plan to utilize more application
access patterns to make storage systems more intelligent
and more efficient. We also intend to test our proposed
replication scheme with more applications from both per-
formance and energy consumption point-of-view.
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