
Anthony Kougkas et al. I/O Acceleration via Multi-Tiered Data Buffering and Prefetching JOURNAL OF COMPUTER

SCIENCE AND TECHNOLOGY ?????: 1–33 ??????. DOI ???????

I/O Acceleration via Multi-Tiered Data Buffering and Prefetching

Anthony Kougkas1,∗, Hariharan Devarajan1, and Xian-He Sun1,∗∗

1Illinois Institute of Technology, Department of Computer Science, Chicago 60616, USA

E-mail: akougkas@iit.edu, hdevarajan@hawk.iit.edu, sun@iit.edu

Received June 21, 2019; revised August 25, 2019.

Abstract Modern High-Performance Computing (HPC) systems are adding extra layers to the memory and storage

hierarchy, named deep memory and storage hierarchy (DMSH), to increase I/O performance. New hardware technologies,

such as NVMe and SSD, have been introduced in burst buffer installations to reduce the pressure for external storage and

boost the burstiness of modern I/O systems. The DMSH has demonstrated its strength and potential in practice. However,

each layer of DMSH is an independent heterogeneous system and data movement among more layers is significantly more

complex even without considering heterogeneity. How to efficiently utilize the DMSH is a subject of research facing the HPC

community. Further, accessing data with a high-throughput and low-latency is more imperative than ever. Data prefetching

is a well-known technique for hiding read latency by requesting data before it is needed to move it from a high-latency medium

(e.g., disk) to a low-latency one (e.g., main memory). However, existing solutions do not consider the new deep memory and

storage hierarchy and also suffer from under-utilization of prefetching resources and unnecessary evictions. Additionally,

existing approaches implement a client-pull model where understanding the application’s I/O behavior drives prefetching

decisions. Moving towards exascale, where machines run multiple applications concurrently by accessing files in a workflow, a

more data-centric approach resolves challenges such as cache pollution and redundancy. In this paper, we present the design

and implementation of Hermes: a new, heterogeneous-aware, multi-tiered, dynamic, and distributed I/O buffering system.

Hermes enables, manages, supervises, and, in some sense, extends I/O buffering to fully integrate into the DMSH. We

introduce three novel data placement policies to efficiently utilize all layers and we present three novel techniques to perform

memory, metadata, and communication management in hierarchical buffering systems. Additionally, we demonstrate the

benefits of a truly hierarchical data prefetcher that adopts a server-push approach to data prefetching. Our evaluation

shows that, in addition to automatic data movement through the hierarchy, Hermes can significantly accelerate I/O and

outperforms by more than 2x state-of-the-art buffering platforms. Lastly, results show 10-35% performance gains over

existing prefetchers and over 50% when compared to systems with no prefetching.

Keywords I/O buffering, Heterogeneous buffering, Layered buffering, Deep memory hierarchy, Burst buffers, Hierarchical

data prefetching, Data-centric architecture

1 Introduction

Data-driven science is a reality and in fact, is now

driving scientific discovery [1]. An International Data

Corp. (IDC) report [2] predicts that by 2025, the global

data volume will grow to 163 zettabytes (ZB), ten times

the 16.1ZB of data generated in 2016. The evolu-

tion of modern storage technologies is driven by the

increasing ability of powerful High-Performance Com-

puting (HPC) systems to run data-intensive problems

at larger scale and resolution. In addition, larger sci-

entific instruments and sensor networks collect extreme

amounts of data and push for more capable storage sys-

tems [3]. Modern I/O systems have been developed

and highly optimized through the years. Popular inter-

faces and standards such as POSIX I/O, MPI-IO [4],

and HDF5 [5] expose data to the applications and al-

Regular Paper

Funded by the National Science Foundation under Grants No. OCI-1835764 and CSR-1814872.
∗Corresponding Author - ACM Member ∗∗IEEE Fellow

2 J. Comput. Sci. & Technol., August 2019, Vol., No.

low users to interact with the underlying file system

through extensive APIs. In a large scale environment,

the underlying file system is usually a parallel file sys-

tem (PFS) with Lustre [6], GPFS [7], PVFS2 [8] being

some popular examples. However, as we move towards

the exascale era, most of these storage systems face sig-

nificant challenges in performance, scalability, complex-

ity, and limited metadata services [9, 10], creating the

so called I/O bottleneck which will lead to less scientific

productivity [11, 12].

To reduce the I/O performance gap, modern stor-

age subsystems are going through extensive changes,

by adding additional levels of memory and storage in a

hierarchy [13]. Newly emerging hardware technologies

such as High-Bandwidth Memory (HBM), Non-Volatile

RAM (NVRAM), Solid-State Drives (SSD), and dedi-

cated buffering nodes (e.g., burst buffers) have been

introduced to alleviate the performance gap between

main memory and the remote disk-based PFS. Modern

supercomputer designs employ such hardware technolo-

gies in a heterogeneous layered memory and storage hi-

erarchy, we call Deep Memory and Storage Hierarchy

(DMSH) [14, 15]. For example, Cori system at the

National Energy Research Scientific Computing Center

(NERSC)∗, uses CRAY’s Datawarp technology†. Los

Alamos National Laboratory Trinity supercomputer‡

uses burst buffers with a 3.7 PB capacity and 3.3 TB/s

bandwidth. Summit in Oak Ridge National Lab is also

projected to employ fast local NVMe storage for buffer-

ing§.

As multiple layers of storage are added into HPC

systems, the complexity of data movement among the

layers increases significantly, making it harder to take

advantage of the high-speed and low-latency storage

systems [16]. Additionally, each layer of DMSH is an

independent system that requires expertise to manage,

and the lack of automated data movement between tiers

is a significant burden currently left to the users [17].

Popular I/O middleware, such as HDF5, PnetCDF [18],

and ADIOS [19], are configured to operating with the

traditional memory-to-disk I/O endpoints. This mid-

dleware provides great value by isolating users from the

complex effort to extract peak performance from the

underlying storage system, but it will need to be up-

dated to handle the transition to a multi-tiered I/O con-

figuration [17]. Furthermore, optimizing read data ac-

cess patterns is crucial to achieving computational effi-

ciency. One popular practice employed is data prefetch-

ing. The effectiveness of data prefetching depends upon

the ability to recognize data access patterns and to

timely identify the data which should be prefetched.

Therefore, both timeliness and accuracy are critical in

the perceived performance of a data prefetcher. All

prefetching solutions have to answer two main ques-

tions [20]: a) when to prefetch data, and b) what data

to prefetch. Prefetching the wrong data or the right

data at a wrong time not only does not help but ac-

tually hurts the overall performance [21]. Additionally,

the presence of multiple tiers of the storage hierarchy

raises a third question: where to prefetch data? There

is a need to seamlessly and transparently support access

to DMSH.

In this paper, we present the design and implemen-

tation of Hermes¶: a new, heterogeneous-aware, multi-

tiered, dynamic, and distributed I/O buffering system.

Hermes enables, manages, and supervises I/O buffering

∗https://www.nersc.gov/users/computational-systems/cori/burst-bufer/
†http://www.cray.com/sites/default/files/resources/ CrayXC40-DataWarp.pdf
‡http://www.lanl.gov/projects/trinity/specifications.php
§https://tinyurl.com/y2676no5
¶Ancient Greek God of ”messaging and the transgression of boundaries”

Anthony Kougkas et al.: I/O Acceleration via Multi-Tiered Data Buffering 3

into DMSH and offers: a) vertical and horizontal dis-

tributed buffering in DMSH (i.e., access data to/from

different levels locally and across remote nodes), b) se-

lective layered data placement (i.e., buffer data partially

or entirely in various levels of the hierarchy), c) dynamic

buffering via system profiling (i.e., change the buffer-

ing schema dynamically by monitoring the system sta-

tus such as capacity of buffers, messaging traffic, etc.).

Hermes accelerates applications’ I/O access by trans-

parently buffering data in DMSH. Data can be moved

through the hierarchy effortlessly and therefore, appli-

cations have a capable, scalable, and reliable middle-

ware software to navigate the I/O challenges towards

the exascale era. Lastly, by supporting both POSIX

and HDF5 interfaces, Hermes offers ease-of-use to a

wide-range of scientific applications. Hermes has been

carefully designed to enable data-centric prefetching

decision engine that utilizes system-generated events,

while leveraging the presence of multiple tiers of stor-

age, to perform hierarchical data placement at the re-

quired time. We build upon the observation that sci-

entific workloads demonstrate a WORM data access

model (i.e., write-once-read-many) [22], which is also

true for BigData applications [23, 24, 25]. We also tar-

get modern scientific workflows that span across mul-

tiple applications in a pipeline of data processing. In

such environments, data might be read multiple times

across applications which might create severe issues for

prefetching cache management. Cache pollution, cache

redundancy, and unnecessary data evictions leading to

increased miss ratios are the norm, and not the ex-

ception, especially in extremely large scale workloads.

Hermes addresses these issues by maintaining global file

heatmaps that represent how a file is accessed across

processes or applications. It uses those heatmaps to

express the placement of data in a hierarchical system.

The contributions of this work include:

• presenting the design and implementation of Her-

mes: a new, heterogeneous-aware, multi-tiered,

dynamic, and distributed I/O buffering system

(Section 3.1).

• introducing three novel data placement policies

to efficiently utilize all layers of the new memory

and storage hierarchy (Section 3.2.2).

• presenting the design and implementation of three

novel techniques to perform memory, metadata,

and communication management in hierarchical

buffering systems (Section 3.4.2).

• showcasing that a data-centric prefetching ap-

proach solves several issues caused by a grow-

ing set of application-specific optimizations (Sec-

tion 3.3).

• evaluating Hermes’ design and technical innova-

tions showing that our solution can grant bet-

ter performance compared to the state-of-the-art

buffering platforms (Section 4).

2 Background

2.1 Modern Application I/O Characteristics

Modern HPC applications are required to process

large volume, velocity and variety of data, leading to an

explosion of data requirements and complexity∗. Many

applications spend significant time of the overall execu-

tion in performing I/O making storage a vital compo-

nent in performance [26]. Furthermore, scientific appli-

cations often demonstrate bursty I/O behavior [27, 28].

Typically, in HPC workloads, short, intensive, phases of

I/O activities, such as checkpointing and restart, peri-

odically occur between longer computation phases [29,

∗http://www.hpcuserforum.com/presentations/tuscon2013/ IDCHPDABigDataHPC.pdf

4 J. Comput. Sci. & Technol., August 2019, Vol., No.

30]. The intense and periodic nature of I/O opera-

tions stresses the underlying parallel file system and

thus, stalls the application. To appreciate how impor-

tant and challenging the I/O performance of a system

is, one needs to deeply understand the I/O behavior

of modern scientific applications. More and more sci-

entific applications generate very large datasets, and

the development of several disciplines greatly relies on

the analysis of massive data. We highlight some sci-

entific domains that are increasingly relying on High-

Performance Data Analytics (HPDA), the new gener-

ation of data-intensive applications, which involve suf-

ficient data volumes and algorithmic complexity to re-

quire HPC resources:

• Computational Biology : The National Center

for Biotechnology Innovation maintains the Gen-

Bank database of nucleotide sequences, which

doubles in size every 10 months. The database

contains over 250 billion nucleotide bases from

more than 150,000 distinct organisms.

• Astronomy : Square Kilometre Array project

run by an international consortium operates the

largest radio telescope in the world which pro-

duces staggering data as presented in the keynote

speech during the 2017 SC conference. As high-

lighted, the incoming images are of 10 PBs and

the produced 3D image is 1 PB each.

• High-Energy Physics: The Atlas experiment for

the Large Hadron Collider at the Center for Eu-

ropean Nuclear Research generates raw data at a

rate of 2 PBs per second and stores approximately

100 PBs per year of processed data.

2.2 A New Memory and Storage Hierarchy

Accessing, storing, and processing data is of the ut-

most importance for the above applications which ex-

pect a certain set of features from the underlying stor-

age systems: a) high I/O bandwidth, b) low latency, c)

reliability, d) consistency, e) portability, and f) ease of

use. New system designs that incorporate non-volatile

buffers between the main memory and the disks are of

particular relevance in mitigating the periodic bursti-

ness of I/O. The new DMSH promises to offer a so-

lution that can efficiently support scientific discovery

in many ways: improved application reliability through

faster checkpoint-restart, accelerated I/O performance

for small transfers and analysis, fast temporary space

for out-of-core computations and in-transit visualiza-

tion and analysis. Building hierarchical storage systems

is a cost-effective strategy to reduce the I/O latency of

HPC applications. However, while DMSH systems of-

fer higher I/O performance, data movement between

the layers of the hierarchy is complex and significantly

challenging to manage. Moreover, there is no software

yet that addresses the challenges of DMSH.

Middleware layers, like MPI-IO and parallel HDF5,

try to hide the complexity by performing coordinated

I/O to shared files while encapsulating general purpose

optimizations. However, the actual optimization strat-

egy of these middleware layers is dependent on the un-

derlying file system software and hardware implementa-

tion. More importantly, these middleware libraries are

designed with memory-to-disk endpoints and are not

ready to handle I/O access through a DMSH system,

which is ultimately left to the user. Ideally, the presence

of multiple layers of storage should be transparent to

applications without having to sacrifice performance or

increase programming difficulty. System software and a

new middleware solution to manage these intermediate

layers can help obtain superior I/O performance. Ul-

timately, the goal is to ensure that developers have a

high-performance I/O solution that minimizes changes

to their existing software stack, regardless of the under-

Anthony Kougkas et al.: I/O Acceleration via Multi-Tiered Data Buffering 5

lying storage.

Deep memory and storage hierarchies require a scal-

able, reliable, and high-performance software to ef-

ficiently and transparently manage data movement.

New data placement and flushing policies, memory and

metadata management, and an efficient I/O communi-

cation fabric is required to address DMSH complexity

and realize its potential. We believe that a radical de-

parture from the existing software stack for the scien-

tific communities is not realistic. Therefore, we propose

to raise the level of abstraction by introducing a new

middleware solution, Hermes, and make it easier for

the user to perform I/O on top of a DMSH system.

In fact, Hermes supports existing widely popular I/O

libraries such as MPI-IO and HDF5 which makes our

solution highly flexible and production-ready. We envi-

sion a buffering platform that can be application- and

system-aware, and thus, hide lower level details allow-

ing the user to focus on his/her algorithms. We strive

for maximizing productivity, increasing resource uti-

lization, abstracting data movement, maximizing per-

formance, and supporting a wide range of scientific ap-

plications and domains.

2.3 Accelerating Read Access Time

Data prefetching is a well-understood data access

optimization that has been explored in the literature

throughout the years. Starting with hardware prefetch-

ers [31 - 36], data moves through the main memory into

the CPU caches to increase the hit ratio thereby in-

creasing data locality. The granularity of a hardware

prefetcher is a memory page, and the trigger is exe-

cuted per-core. The hardware performs locality-aware

prefetching (i.e., read-ahead approach) where once a

memory page is accessed, the prefetcher brings the next

page into the caches (temporal and spatial locality).

The ability to detect strided patterns is also present in

most modern CPU architectures∗. However, if the ap-

plication demonstrates irregular patterns, then the miss

ratio is high, and applications experience performance

degradation due to the contention in memory bus be-

tween the normal memory access and the prefetcher.

Lastly, a memory page is a well defined prefetching

unit while the same cannot be said for I/O where file

operations will be variable-sized. Software-based solu-

tions [20 -21, 37 - 41] leverage information collected

from the application to perform data prefetching and

can be broadly categorized into:

2.3.1 Offline Data Prefetchers

This category of prefetchers involve a pre-processing

step where an analysis of the application determines

the data access patterns and devise a prefetching plan.

There are several different ways to perform this pre-

execution analysis and several ways to devise a prefetch-

ing plan. In trace-driven [20] prefetching, the appli-

cation runs once to collect execution and I/O traces.

These are then analyzed to generate prefetching in-

structions. This method offers high accuracy in both

the when and what to prefetch but requires significant

user-involvement and poses large offline costs. More

importantly, a trace-driven approach suffers from the

fact that an application’s I/O behavior is subject to

change at runtime. For example, the applications may

include third party libraries (which could result in a

mismatch between application’s I/O calls and what the

servers experience) or when the application runs with

different inputs than originally traced (which could re-

sult in a different access pattern). Similar to trace-

driven approach, a history-based [38, 42] prefetcher

stores the seen accesses in a previous run of an appli-

cation into a database, and, thus, access patterns are

∗https://tinyurl.com/lxxw7sn

6 J. Comput. Sci. & Technol., August 2019, Vol., No.

known when the same application executes again in the

future. While this method decreases the level of user

involvement and the cost of trace analysis, it assumes

that the application’s behavior remains stable between

executions (which is unrealistic). Another approach to

identify application access patterns is compiler-based

prefetching. In this method, the source code is analyzed

and modified to add prefetching instructions either by

I/O re-ordering [43] (where calls are moved earlier in

the code) or by hint-generation [20] (where new code is

injected) to provide the information to the prefetcher

about when and what to prefetch. The code is then

re-compiled and executed with the extra prefetching

instructions. This approach avoids the increased of-

fline costs, since it does not require any execution of

the application, but only requires the modification of

the source code (which raises security concerns). More-

over, it suffers from miscalculations as to how far up

in the code it should move the I/O calls or inject the

hints to perform the prefetching on-time. Lastly, data

staging [44] is a form of prefetching by pre-loading the

working set of an application (i.e., all data that will

be read) in dedicated staging resources before the ap-

plication even starts. This method leads to high hit

ratios, but it assumes that the working set can fit in

the staging resources capacity. In other words, it leads

to sub-optimal resource utilization since data is kept

in memory for the entirety of the application’s runtime

and may be subject to undesired evictions before the

data is read.

2.3.2 Online Data Prefetchers

This category of prefetchers trade accuracy for a

”learn as you go” model. The application’s access pat-

terns are learned as the execution proceeds, avoiding

any pre-processing steps. The on-the-fly identification

of data access patterns can be done using several mod-

els. Firstly, statistical methods such as hidden Markov

models (HMM) [45, 46] and ARIMA models [47] require

a large number of observations to accomplish model

convergence. Once the model has converged, it can

predict the next access and trigger prefetching. How-

ever, they often focus exclusively on either spatial or

temporal I/O behaviors and need long execution time

or several runs to achieve accurate predictions. Sec-

ondly, a grammar-based model [22, 48, 49] relies on

the fact that I/O behaviors are relatively deterministic

(inherent from the code structure) and predicts when

and what future I/O operations will occur. However,

this method demands repetitive workloads and does not

work well for irregular access patterns since the gram-

mar cannot be built out of randomness. Lastly, ma-

chine learning approaches [50, 51] have been recently

proposed where a model learns the data access pat-

tern and uses it to drive the prefetching plan. Rather

than relying on a statistical distribution of accesses or

a sequence of symbols, this method relies on a type of

probabilistic language model called n-gram [52]. This

model predicts the next item in a sequence which takes

the form of a collection of subsequences of N consec-

utive tokens in a stream. All online approaches share

the fact that they do not rely on a priori knowledge

of the application’s data access patterns or user inputs

and hints. The problem is that they require a warm-up

period at the beginning of the execution as they build

their models, which can result in added overheads and

low performance. Additionally, online prefetchers’ per-

formance is directly related to the predictive capabil-

ities of the models used, causing accuracy and time-

liness to be suboptimal when compared to the offline

approaches.

The common theme for all existing approaches is

that they implement a client-pull model. Prefetching

is driven by the applications and their data access pat-

Anthony Kougkas et al.: I/O Acceleration via Multi-Tiered Data Buffering 7

terns. As we move closer to exascale, supercomputers,

while sharing prefetching resources, are expected to run

multiple concurrent applications possibly connected in

a workflow. This means that application-specific opti-

mizations will not perform due to a lack of global co-

ordination. Prefetching cache space will be limited and

shared, leading to cache pollution, cache redundancy,

and unwanted evictions. Application-bound prefetch-

ing resources will be competing with one another, lead-

ing to loss of performance due to interference. The com-

plexity of modern workflows renders application-centric

solutions unrealistic. We need to address the challenges

of read-optimizations from a data-centric view. Sys-

tems must evolve and make smart decisions based on

how data is accessed and what common patterns can be

found across components of a workflow. A server-push

model can obtain a global view and apply optimiza-

tions on the most valuable pieces of data. None of the

existing data prefetching solutions fully utilize the hi-

erarchical environment. The amount of RAM available

to each core is shrinking, and the presence of additional

layers of fast storage mediums seems like a natural so-

lution to mitigate this issue. The hardware is there,

but we need to design software to drive performance by

masking access latency behind each tier of the DMSH.

3 Design and Implementation

3.1 Hermes Architecture

3.1.1 Design overview

Applications

MPI-IO

RAM
NVMe
SSD (i.e., Burst Buffers)

High Level I/O Libraries (pNetCDF, HDF5, etc.,)

HDD (i.e., Parallel File System)

POSIX

DMSH Hardware

API

Data Placement Engine

Cache Manager

Prefetcher

I/O Clients RAM NVMe Burst
Buffers

File
System

Metadata Manager

Data Organizer

Messaging service

Hermes Library

Fig.1. Software stack and Hermes internal design.

Hermes is designed as a middleware layer - sitting be-

tween applications and DMSH as shown in Figure 1.

As a middleware library, Hermes captures I/O calls,

both POSIX and HDF5 (i.e., fopen, fread, fwrite, and

H5Fcreate, H5Dread etc.) and redirects them to differ-

ent layers of DMSH. Legacy applications can easily con-

nect to Hermes by simple linking (i.e., LD PRELOAD)

or recompiling the code with our library. There are no

changes to user code and there is no need to upgrade

to a different workflow. Similarly, there is no require-

ment to change anything on the underlying storage (i.e.,

Lustre, PVFS, etc.,) since Hermes services reside within

the application. Hermes is a middleware software that

does not require any modifications to existing runtime

services. The lifetime of Hermes is tightly couple with

that of the application that has linked to it. We de-

sign Hermes to easily work with existing software. Our

goal is to maximize user productivity by making I/O

buffering transparent.

As a separate usage mode, Hermes also provides a

8 J. Comput. Sci. & Technol., August 2019, Vol., No.

new buffering API for users who want to explicitly take

control of the data movement between layers of DMSH.

This mode also allows Hermes to perform active buffer-

ing where data is shipped to the buffer nodes along with

specific instructions or operations to be performed on

them. For example, a user can pass a set of integers to

Hermes instructing it to first store them to the buffer

nodes, then sort them, compress the sorted list and

lastly persist the final result to the remote PFS. This

flow can be easily executed by a series of hinting mech-

anisms (i.e., flags) that Hermes provides to the user.

Our hinting mechanism is a simple bit encryption which

indicates predetermined operations like sorting, com-

pression/decompression, deduplication and others. For

user defined operations, Hermes provides a bootstrap-

ping mechanism in which the user can submit his/her

functions. The library will then compile and place the

executables to a registry of operations to be handled

by the buffering nodes. Reserved bits are used for user-

defined operations.

The high-level architecture of Hermes can be seen in

Figure 2. In DMSH systems, besides the main memory,

every compute node might be equipped with an NVMe

device or even an SSD. Additionally, shared buffering

nodes, such as burst buffers, will most likely be present

and positioned close to the compute nodes. Finally,

a remote PFS supports all compute nodes with persis-

tence and fault tolerance as important features. Hermes

is a platform that aims to enable efficient access to the

layers of DMSH and as such we distinguish two data

paths: a vertical and a horizontal hierarchy. Vertical

hierarchy refers to data movement within a compute

node and all the way down to the burst buffers and

PFS. Horizontal hierarchy refers to sending data to an-

other compute node’s RAM or NVMe device. The hor-

izontal data movement is greatly optimized if there is

an RDMA-capable network but Hermes can also sup-

port systems with no RDMA. Therefore, a DMSH sys-

tem could consist of several layers, performance-wise,

such as local RAM, remote RAM, local NVMe, remote

NVMe, burst buffers, and PFS (numbered in fig. 2).

Data Movement:
1. Vertical local
2. Vertical remote
3. Horizontal

Compute nodes

NVMe

Hermes

RAM

NVMe

Hermes

RAM

Parallel File System(PFS)

Deep Memory and
Storage Hierarchy

1. Local RAM
2. Remote RAM
3. Local NVMe
4. Remote NVMe
5. Burst Buffers
6. Parallel File System

Node 1 Node n External Services
1. Application Orchestrator
2. System Profiler
3. User-defined Schema Parser

Application Application

Burst
Buffer
Nodes

...

D
M
S
H

HDF5 HDF5

Fig.2. Hermes internal design.

3.1.2 Internal components

Figure 1 demonstrates the design of Hermes library

and all the internal components that work together to

achieve an efficient, transparent, and easy-to-use data

access in all layers of a DMSH (i.e., both vertically

and horizontally). The main Hermes library is comple-

mented by a set of tools and services that help achieve

broader goals such as multi-tenancy, adaptability, etc.

Brief description of each component’s responsibilities:

API: The API is responsible for intercepting all I/O

calls from the applications. It also calculates the oper-

ations to be carried out by the buffering nodes in case

of an active buffering scenario.

Data Placement Engine: This engine is responsible

for mapping data onto DMSH. In other words, the data

placement engine calculates the data destination, where

in the hierarchy should the data be redirected. It maps

data according to various data placement policies.

Data Organizer: The main responsibility of this com-

ponent is to move data between the layers of DMSH.

It is triggered by other components according to cer-

tain criteria which makes it an event-based component.

Anthony Kougkas et al.: I/O Acceleration via Multi-Tiered Data Buffering 9

For instance, if there is no space left in NVMe, data

organizer is triggered to move data down to the burst

buffers and thus freeing space in NVMe. This compo-

nent is responsible for carrying out all data movement

either for prefetching reasons, evictions, lack of space,

or hotness of data etc.

Metadata Manager: The MDM maintains two types

of metadata information: user’s and Hermes library’s

internal metadata. Since Hermes can transparently

buffer data by intercepting I/O calls, MDM keeps track

of user’s metadata operations (i.e., files, directories,

permissions etc.) while consulting the underlying PFS.

Additionally, since data can be buffered anywhere in

the hierarchy, MDM tracks the locations of all buffered

data and internal temporary files that contain user files.

Cache manager: This component is responsible for

handling all buffers inside Hermes. It is equipped with

several cache replacement policies such as least recently

used (LRU) and least frequently used (LFU). It works

in conjunction with the prefetcher. It can be configured

to hold ”hot” data for better I/O latency. It is also re-

sponsible for implementing application-aware caching

schemas.

Prefetcher: This component is performance-driven. It

implements a server-push model that can achieve bet-

ter data-prefetching performance by leveraging a global

view of how data are accessed across multiple applica-

tions. The details of this component are presented in

details in Subsection 3.3.

Messaging Service: This component is used to pass

small messages across the cluster of compute nodes.

This component does not involve any data movement

which is actually done by either the application cores

or other Hermes components such as the data orga-

nizer and prefetcher. Instead, this component provides

an infrastructure to pass instructions to other nodes to

perform operations on data or facilitate its movement.

For example, a typical type of message in Hermes is to

flush buffered data of a certain file to the next layer or

to PFS.

I/O Clients: These clients refer to simple calls using

the appropriate API based on the layer of the hier-

archy. For instance, if Hermes data placement engine

maps some data to the burst buffers, then the respective

I/O client will be called and perform the fwrite() call.

Internally, Hermes can use POSIX, MPI-IO, or HDF5

to perform the I/O. An important feature of Hermes is

that user’s data structures are mapped to Hermes’ in-

ternal structures at each layer of DMSH. For example,

an original dataset of an HDF5 file could be mapped

into a temporary POSIX file in NVMe. The I/O clients

give Hermes the flexibility to ”talk” to several data des-

tinations and manage the independent systems (e.g.,

memcpy for RAM, fwrite() for NVMe, MPI File write()

for burst buffers).

System Profiler: This component is a service out-

side the main library. It is designed to run once during

the initialization. It performs a profiling of the under-

lying system in terms of hardware resources. It tries

to detect the availability of DMSH and measure each

layer’s respective performance. It is crucial to iden-

tify the parameters that Hermes needs to be configured

with. Using this information, the data placement en-

gine can do a better job when mapping data to differ-

ent layers. Each system will have different hierarchy.

Additionally, each hierarchy will demonstrate different

performance characteristics. In our prototype imple-

mentation this component is external and results are

manually injected to the configuration of the library.

We plan to automate this process.

Schema Parser: This component accepts a user-

defined buffering schema and embeds it into the library.

This schema is passed in a XML format and Hermes is

configured accordingly. For instance, if user chooses to

10 J. Comput. Sci. & Technol., August 2019, Vol., No.

aggressively buffer a certain dataset or file, then Her-

mes will prioritize this data higher up in the hierarchy

and also the cache manager will get informed not to

evict this specific buffered dataset. All this is possible

because Hermes will use the user’s instructions to offer

the best buffering performance. In our prototype im-

plementation schema parser is external and is planned

to be automated in future versions of Hermes.

Applications Coordinator: This component is de-

signed to offer support in a multiple-application envi-

ronment. It manages the access to the shared layers

of the hierarchy such as the burst buffers. Its goal

is to minimize interference between different applica-

tions sharing this layer. Additionally, it coordinates the

flushing of the buffers to achieve maximum I/O perfor-

mance. More information on this component can be

found in [25].

All the above components allow Hermes to offer

a high performance I/O buffering platform which is

highly configurable, easily pluggable to several appli-

cations, adaptable to certain system architectures, and

feature-rich yet lightweight.

3.2 Hermes Buffering Modes and Policies

3.2.1 Buffering modes

Similar to other buffering systems, Hermes offers

several buffering modes (i.e., configurable by the user)

to cover a wide range of different application needs such

as I/O latency, fault tolerance, and data sharing:

A. Persistent: in this mode, data buffered in Her-

mes is also written to the PFS for permanent storage.

We have designed two configurations for this mode. 1)

Synchronous: directs write I/O onto DMSH and also

to the underlying permanent storage before confirm-

ing I/O completion to the client. This configuration

is designed for uses cases such as write-though cache

or stage-in for read operations. Since all data also ex-

ist in the PFS, synchronous-persistent mode is highly

fault-tolerant, offers strong data consistency, is ideal

for data sharing between processes, and supports read-

after-write workloads. However, it demonstrates the

highest latency and lowest bandwidth for write opera-

tions since data directed to the buffers also need to be

written in the PFS. 2) Asynchronous: directs write I/O

onto DMSH and completion is immediately confirmed

to the client. The contents of buffers are eventually

written down to the permanent storage system. The

trigger to flush buffered data is configurable and can

be: i) per-operation, flushing is triggered at the end

of current fwrite(), it also flushes all outstanding pre-

vious operations, ii) per-file, flushing is triggered upon

calling fclose() of a given file (this is similar to Data El-

evator approach), iii) on-exit, flushing is triggered upon

application exit (this is similar to Datawarp approach),

and iv) periodic, flushing is periodically triggered in the

background (this is the default Hermes setting). This

configuration is designed for use cases such as write-

back cache and stage-out for read operations. It pro-

vides low-latency and high bandwidth to the applica-

tion since processes return immediately after writing

to the buffers. It also offers eventual consistency since

data are flushed down eventually. It is ideal for write-

heavy workloads and out-of-core computations.

B. Non-persistent: in this mode, I/O is directed to

DMSH and is never written down to the permanent

storage. It is designed to offer a scratch space for fast

temporary I/O. Upon application exit, Hermes deletes

all buffered data. This mode can be used for scenarios

such as quickly storing intermediate results, communi-

cation between processes, in-situ analysis and visual-

ization. In case of buffering node failures, application

must restart. This mode offers high bandwidth and low

latency. Lastly, applications can reserve a specific allo-

cation (i.e., capacity on buffers) for which data preser-

Anthony Kougkas et al.: I/O Acceleration via Multi-Tiered Data Buffering 11

vation is guaranteed by Hermes (similar to Datawarp

reservations). These allocations expire with the appli-

cation lifetime. In case of buffer overflow, Hermes will

transparently swap buffer contents to the PFS much

like memory pages are swapped to the disk by the OS.

The mechanism was designed to offer some extra de-

gree of flexibility to Hermes. For example, let us as-

sume that an application writes simulation results ev-

ery 5 minutes. These results are directly read from the

buffers by an analysis kernel which writes the final re-

sult to the PFS for permanent storage. Simulation data

can be deleted or overwritten after the analysis is done.

Hermes can utilize this periodic and bursty I/O behav-

ior and write the next iteration on top of the previous

one instead of wasting extra buffer space. To achieve

this conditional overwriting of data, Hermes utilizes a

flagging system to define the lifetime of buffered data.

C. Bypass: in this mode, as the name suggests, I/O is

performed directly against the PFS effectively bypass-

ing Hermes. This mode resembles write-around cache

designs.

3.2.2 Data placement policies

In DMSH systems, I/O can be buffered to one or

more layers of the hierarchy. There are two main chal-

lenges: i) how and where in the hierarchy data are

placed, ii) how and when do buffers get flushed either in

the next layer or all the way down to PFS. In Hermes,

the first challenge is addressed by the data placement

engine (DPE) component and the second by the data

organizer. We designed four different data placement

policies to cover a wide variety of applications’ I/O ac-

cess patterns. Each policy is described by a dynamic

programming optimization∗ and follows the flow of Al-

gorithm 1.

Algorithm 1: Hermes DPE algorithm to cal-
culate data placement in DMSH (pseudo code)

Procedure DPE(data, tier)
if data can fit in tier then

/* buffer data in this layer */

PlaceData(data, tier)
else

/* buffer in next tier */

p1← DPE(data, tier.next)
/* split data based on the

remaining capacity of the

current tier */

data[] = Split(data,tier)
p2← DPE(data[0], tier) +
DPE(data[1], tier.next)
/* flush current tier to create

space and then place data */

p3←
Flush(data, tier) + DPE(data, tier)

max (p1, p2, p3)
end

The general idea of the algorithm is as follows. First,

if the incoming data can fit in the current layer’s re-

maining capacity, it places the data there (i.e., Place-

Data(data, tier)). In case it does not fit, based on

the constraint of each policy, it tries one of the fol-

lowing: a) solve again for next layer (i.e., DPE(data,

tier.next)), b) place as much data as possible in the

current layer and the rest in next (i.e., DPE(data[0],

tier) + DPE(data[1], tier.next)), and c) flush current

layer and then place new incoming I/O (i.e., Flush(data,

tier) + DPE(data, tier)). We implemented the DP al-

gorithm using memoization techniques to minimize the

overhead of the solution. We further provide a config-

uration knob to tune the granularity of triggering the

optimization code for data placement.

A. Maximum Application Bandwidth

(MaxBW): this policy aims to maximize the band-

width applications experience when accessing Hermes.

The DPE places data in the highest possible layer of

DMSH in a top-down approach, starting from RAM,

∗Full mathematical formulation of each policy can be found in the Appendix.

12 J. Comput. Sci. & Technol., August 2019, Vol., No.

while balancing bandwidth, latency, and the capacity

of each layer. For instance, this policy will place in-

coming I/O into RAM, if the data size fits in RAM’s

remaining capacity. Otherwise, the policy will try to

minimize the I/O time between the following actions:

skip RAM and directly place data in NVMe, place as

much data as RAM can hold and the rest in NVMe, or

first create space in RAM by flushing data in LRU fash-

ion and then place all new data in RAM. The approach

applies to all layers making the solution recursively

optimal in nature. The above data placement policy

is expressed as an optimization problem where DPE

minimizes the time taken to write the I/O in the cur-

rent layer and the access latency to serve the request,

effectively maximizing the bandwidth. The data orga-

nizer moves data down periodically (or when triggered)

to increase the available space in upper layers for fu-

ture incoming I/O. Data movement between layers is

performed asynchronously. This policy is the default

Hermes configuration.

B. Maximum Data Locality: this policy aims to

maximize buffer utilization by simultaneously directing

I/O to the entire DMSH. The DPE divides and places

data to all layers of the hierarchy based on a data dis-

persion unit (e.g., chunks in HDF5, files in POSIX and

independent MPI-IO, and portions of a file in collective

MPI-IO). Furthermore, Hermes maintains a threshold

based on the capacity ratio between the layers of the hi-

erarchy. This ratio reflects on the relationship between

each layer (e.g., system equipped with 32GB RAM,

512GB NVMe, and 2TB burst buffers creates a capac-

ity ratio of 1-16-64). The data placement in this policy

accounts for both layer’s capacity and data’s spatial lo-

cality. For instance, this policy will place incoming I/O

in RAM if its data size fits within the capacity thresh-

old while respecting the locality of the file. If it does

not fit in RAM’s remaining capacity, the DPE will try

to maximize the buffer utilization between the following

actions: skip RAM and place data in NVMe, place as

much data as possible in RAM and the rest in NVMe, or

perform a re-organization of the files and thus, creating

space for the new data in RAM. The above process is

recursive and can be expressed as an optimization prob-

lem. DPE minimizes the time taken to write the I/O

in the current layer and the degree of data dispersion

(i.e., how many layers data are placed to) effectively

maximizing the buffer utilization. Data movement be-

tween layers is performed asynchronously. This policy

is ideal for workflows that encapsulate partitioned I/O.

For instance, one could prioritize a certain group of

MPI ranks over another (e.g., aggregator ranks) or one

type of file over another (e.g., metadata files over data

files).

C. Hot-data: this policy aims to offer applications a

fast cache for frequently accessed data (i.e., hot-data).

The DPE places data in the hierarchy based on a hot-

ness score that Hermes maintains for each file. This

score encapsulates the access frequency of a file. High-

est scored files will be placed higher up in DMSH since

they are expected to be accessed more often. This en-

sures that layers with lower latency and higher band-

width will serve critical data such as metadata, index

files, etc. The DPE also considers the overall file size

to efficiently map data to each layer (i.e., smaller files

buffered in RAM whereas larger files in burst buffers).

The data placement policy can be expressed as an opti-

mization problem where DPE minimizes the time taken

to write the I/O in the current layer considering both

hotness and capacity of layers. The data organizer de-

motes or promotes data based on the hotness score and

the data movement is performed asynchronously. This

policy is ideal for workflows that demonstrate a spec-

trum of hot-cold data.

D. User-defined: this policy aims to support user-

Anthony Kougkas et al.: I/O Acceleration via Multi-Tiered Data Buffering 13

defined buffering schemas. Users are expected to sub-

mit an XML file with their preferred buffering require-

ments. This file is parsed during initialization by the

schema parser component and used by the DPE to

make data placement decisions. For instance, user can

define certain files to always be in RAM (i.e., never

get evicted), or which HDF5 chunks to get buffered in

NVMe etc.

3.3 Data-centric Multi-tiered Prefething

Hermes implements a system-wide, data-centric,

server-push prefetching solution that aims to identify

how files are accessed, regardless of which process or

application does the data access, and utilize this in-

formation to pre-load the data needed into the deep

memory and storage hierarchy. Hermes’ Prefetcher op-

timizes read operations by leveraging two main observa-

tions: a) the presence of multi-tiered storage suggests a

feasible solution to the shrinking DRAM size per-core;

a prefetching solution that utilizes the storage hierar-

chy to fetch data in a pipeline fashion is needed, and,

b) identifying an application’s data access pattern will

not suffice in the age of data-intensive computing; a

global view of how files are accessed across a workflow

is needed to place prefetched data at the right tier of

the hierarchy (i.e., hotter data are fetched to the higher,

more capable, levels of the hierarchy such as memory).

Figure 3 shows the design of Hermes Prefetcher.

Compute Node
RAM

App
memory

Bucket
Pool

NVMe

Node Manager

MDM
Message
Queue

to other
nodes

Remote Parallel File System

Burst Buffer Nodes

Core n

Local thread:
Data-organizer,
Data aggregations,
Prefetcher

Remote thread:
Messaging service

N
V

M
e and B

urst buffer caching

...

Application

Core1 Core2 Core3 Core n-1

Hermes

Fig.3. Hermes Prefetching Design.

The main idea is to fetch portions of a file to a tier of the

hierarchy based on access frequency, recency, and rela-

tionship between segments (i.e., file segment sequenc-

ing). In other words, instead of guessing what an appli-

cation will access next, Hermes collects access statistics

of file regions (which we call file segments) from the file

systems themselves and pro-actively loads them in the

hierarchy, based on a segment score, that reflects the ur-

gency to access the chosen segment. This score basically

incorporates the frequency with which the segment is

accessed across processes or applications thereby creat-

ing a file access heatmap. The file heatmap is then used

to naturally match it to a hierarchical environment.

Segment movement between tiers of the hierarchy is

also based on how recently a segment was accessed. In

effect, Hermes’ prefetcher answers the three prefetch-

ing questions (what to prefetch, when to prefetch, and

where to place prefetched data) indirectly by naturally

mapping the spectrum of segment frequency and re-

cency to the appropriate tier leveraging the hardware

capabilities of each tier. Hermes’ prefetcher aims to op-

timize complex scientific workflows where a collection

14 J. Comput. Sci. & Technol., August 2019, Vol., No.

of data producers (i.e., simulations, static data sources,

etc.) send data down a pipeline and a collection of con-

sumers (i.e., analytics, visualization) process the data

multiple times. Our design fits naturally in such en-

vironment with hierarchical data prefetching boosting

read operations across all data consumers.

Hermes’ Prefetcher follows an event-based

paradigm. Each compute node is equipped with an

Hermes node manager running on one of the cores.

Each application dynamically links to the Hermes li-

brary and a background prefetching thread, we call

Agent, is spawned alongside each application process.

Upon application initialization (e.g., MPI Init()), a

small fraction of the main memory is allocated for

prefetcher internal structures. Hermes’ Prefetcher is

a multi-threaded program consisting of the following

components:

• Hardware Monitor: Its main role is to monitor

all available hardware tiers. The events are gen-

erated by the system and are pushed to an in-

memory event queue which is served by a pool of

daemon threads. In this context, events are ei-

ther file accesses or tier remaining capacity. All

collected events are then passed on to the file seg-

ment auditor. In the face of updates events, the

prefetcher invalidates the previously prefetched

data enforcing data consistency.

• File Segment Auditor: Its main role is to calcu-

late file segment statistics. Specifically, for each

file segment, which is practically a region of a file,

the auditor calculates its access frequency, when

was it last accessed, and which segment access

preceded it. Using this information, the auditor

can construct a score for each file segment that

reflects how hot the segment is in the prefetching

context. A hot segment is one that is accessed

many times in a recent time window. The se-

quencing of segments also provides a logical map

of which segments are connected to one another.

Lastly, segment statistics and mappings are both

maintained in the metadata manager.

• Agent Manager: Its main role is to collect the

beginning and the end of a prefetching epoch en-

closed between a file open and file close calls and

pass it to the auditor who marks the appropri-

ate file segments that are targeted for prefetching.

The Agent is able to intercept POSIX, MPI-IO,

and HDF5 open-close calls.

3.3.1 File Segment Scoring

A file segment is defined as a file region enclosed by

start and end offsets. The segment size can be stat-

ically defined (e.g., every 1MB) or it can be dynamic

based on how the file is being read. A file segment is the

prefetching unit within the prefetcher, which means all

prefetching operations are expressed by loading one or

more segments. Its dynamic nature provides Hermes a

better opportunity to decompose read accesses in finer

granularity and better utilize the available prefetching

cache, especially in a hierarchical environment where

the prefetching cache can span multiple tiers. Each in-

coming read request may correspond to one or more

segments. For example, assume the segment size is

1MB and there is an fread() operation starting at offset

0 with 3MB size, then Hermes will prefetch segments

1, 2, and 3 to optimize this data access. For every

segment, Hermes’ Prefetcher maintains its access fre-

quency within a prefetching epoch, when it was last

accessed, as well as which segment preceded it (i.e.,

segment sequencing). It scores each file segment based

on these collected access statistics by the following for-

mula:

Scores =

k∑
i=1

(
1

p
)

1
n∗(t−ti) (1)

Anthony Kougkas et al.: I/O Acceleration via Multi-Tiered Data Buffering 15

where s is the segment being scored, k is the number of

accesses, t is the current time, ti is the time of the ith

access, and n ≥ 1 is the count of references to segment

s. An intuitive meaning of 1
n is that a segment’s score is

reduced to 1
p of the original value after every time step.

Finally p ≥ 2 is a monotonically non-increasing class

of functions. Consistently with the principle of tem-

poral locality, t − ti gives more weight to more recent

references with smaller backward distances. This score

aims to encapsulate three simple observations about the

probability of a segment being accessed in the future.

A segment is likely to be accessed in the future again

if: a) it is accessed frequently, b) it has been accessed

recently, and c) it has multiple references to it. All cal-

culated segment scores are also kept as an index in an

ordered map to avoid excessive sorting of score values.

The file heatmaps are generated by the score of each

segment. To minimize overheads, the auditor maintains

segment statistics and file heatmaps in the MDM for

the duration of an epoch (i.e., while the file remains

opened for read). Upon closing the file Hermes has the

ability to store the file heatmaps on disk resembling a

file access history. When a file gets re-opened, if there

is a stored heatmap, Hermes will load it in memory

and compare observed accesses with the pre-existing

heatmap. New accesses will evolve the heatmap fur-

ther. Heatmaps get deleted once the workflow ends

(i.e., a collection of simulation - analysis programs ex-

ecuted in a pipeline). .

3.3.2 Prefetched Data Placement

Hermes’ Prefetcher is a truly hierarchical data

prefetcher, and thus, the prefetching cache spans across

multiple tiers of the deep memory and storage hierar-

chy. In contrast to existing prefetching solution where

prefetched data have a single destination, the main

memory, Hermes fetches data into multiple tiers us-

ing its data placement engine and the collected seg-

ment statistics. This approach can lead to better re-

source utilization, masking access latency behind each

tier (i.e., while prefetching segments in RAM, other seg-

ments are also prefetched to higher tiers), and can offer

concurrent access with less interference (i.e., while one

application accesses segments from RAM another one

can access from NVMe).

Algorithm 2: Hermes Prefetching algorithm
data placement in DMSH (pseudo code)

Procedure Place(segment, tier)
if segment.score > tier.min score then

if segment cannot fit in this tier then
tier.min score← segment.score
DemoteSegments(segment.score,tier)

end
if segment.score > tier.max score
then

tier.max score← segment.score
end
place segment in this tier

else
Place(segment, tier.next)

end

Procedure DemoteSegments(score, tier)
segments←
GetSegmentsLowerThan(score, tier)
foreach s ∈ segments do

Place(s, tier.next)
end

DPE periodically monitors the segment score

changes from the auditor to decide if and what segments

should be moved up or down the tiers. All updated

scores are pushed by the auditor into a vector which the

engine processes. To avoid excessive data movements

among the tiers, Hermes uses two user-configurable con-

ditions to trigger the prefetching triggers: a) a time

interval (e.g., every 1 sec), and, b) a number of score

changes (e.g., every 100 updated scores). The engine

maintains a min and max segment score for each avail-

able tier. If an updated segment score violates its

current tier placement, then it gets promoted or de-

moted accordingly. This approach also handles auto-

matic evictions since each segment has its natural po-

16 J. Comput. Sci. & Technol., August 2019, Vol., No.

sition in the hierarchy based on its score. Note, if seg-

ments have exactly the same score, the default policy

in Hermes is to randomly place them in the tiers. Al-

gorithm 2 has a time complexity of O(m ∗ n) where m

is the number of segments updated on that node and

n is the number of layers. Note, n << m and m is

the number of segments updated on a node between an

interval t. This t should be ideally configured close to

the average computation time of all the application in

the workflow, to avoid excessive computations.

3.4 Implementation Details

3.4.1 Node design

The new DMSH system architecture suggests that

compute nodes may be equipped with one or more non-

volatile storage device and share access to a burst buffer

deployment. Hermes is designed to support all the new

trends in system design. Each application core uses an

I/O API (i.e., POSIX, MPI-IO, HDF5 etc.) which in

turn is captured by Hermes. A dedicated core per node,

called Node Manager, is exclusively used by Hermes ser-

vices. Specifically, this multi-threaded core is respon-

sible for metadata management, data organization and

movement between layers, messaging services between

compute nodes (horizontal hierarchy), local memory

management such as placement of data in buckets, evic-

tion policies, and finally prefetching. The ratio between

application cores and the Hermes node manager is con-

figurable and is suggested to be around 64-to-1 (i.e.,

similar to I/O forwarding layer present in several su-

percomputing sites). If an I/O forwarding layer exists,

Hermes can utilize the I/O cores there. However, our

design is not limited only to such systems and can be

widely deployed. Figure 4 demonstrates Hermes node

design. This design allows Hermes to maintain minimal

overheads resulting to negligible impact to the applica-

tion CPU and memory resources. In fact, Hermes’ us-

age pattern on each node is not different from any other

distributed storage service currently in production. For

example, existing buffering solutions, such as Datawarp

and DataElevator, run daemons on every node that are

responsible to buffer incoming requests. Similarly, Her-

mes node manager is spawned on each node without

affecting the application resources.

Compute Node
RAM

App
memory

Bucket
Pool

NVMe

Node Manager

MDM
Message
Queue

to other
nodes

Remote Parallel File System

Burst Buffer Nodes

Core n

Local thread:
Data-organizer,
Data aggregations,
Prefetcher

Remote thread:
Messaging service

N
V

M
e and B

urst buffer caching

...

Application

Core1 Core2 Core3 Core n-1

Hermes

Fig.4. Compute node design in Hermes.

3.4.2 Critical components

Fig.5. Hermes memory management.

During I/O buffering into DMSH, there are three criti-

cal operations: memory, metadata, and communication

management. To achieve high-performance in each of

Anthony Kougkas et al.: I/O Acceleration via Multi-Tiered Data Buffering 17

these critical operations, Hermes incorporates several

novel technical innovations. As it can be seen in Fig-

ure 4, RAM is split into application memory and Her-

mes memory, which is further divided in bucket pool,

MDM, and message queue. Each of these memory sec-

tions are further depicted in Figure 5.

A. RAM management. We have designed a new

memory management system to offer fast and efficient

use of main memory, a very crucial resource in any

buffering platform. Hermes stores data in buckets, an

abstract notion of a data holder. Buckets have a config-

urable fixed size and consist of a collection of memory

pages. All buckets are allocated during the bootstrap-

ping of the system, creating a bucket pool. This al-

lows Hermes to avoid the cost of per-request memory

allocation (i.e., only pay the cost in the beginning be-

fore application starts), to better control memory us-

age by avoiding expensive garbage collection, and to

define the lifetime of memory allocations per applica-

tion (i.e., re-use the same buckets after data have been

flushed down). Bucket pools are organized in four re-

gions: available buckets, RAM cache, NVMe cache,

burst buffers cache. The bucket pool is managed by

the bucket manager who is responsible to keep track of

the status of each bucket (e.g., full - available). In the

beginning, all buckets are available. When a process

wants to buffer data, it asks the bucket manager for

one or more buckets. The bucket, as a unit of buffer-

ing, is extremely critical to achieve high performance,

low latency, and increases design flexibility (e.g., better

eviction policies, hot data cache etc.).

We implemented Hermes’ memory management us-

ing MPI one-sided operations. Specifically, buckets are

placed in a shared dynamic Remote Memory Access

(RMA) window. This allows easier access to the buck-

ets from any compute node and a better global mem-

ory management. MPI-RMA implementations support

RDMA-capable networks which further diminishes the

CPU overhead. All bucket operations are performed by

the manager who maintains an index of the entire RMA

window and is responsible to assign buckets by return-

ing a pointer to the application (i.e., to buffer data)

or the data organizer (i.e., to flush data). Access to

buckets occurs using MPI Put() and MPI Get(). Up-

date operations are atomic with exclusive locking only

on the bucket being updated. To support fast query-

ing (e.g., location of a bucket, list of available buckets,

etc.) the bucket manager indexes the RMA window and

bucket relationships much like how inode tables work.

The structure of a bucket includes an identifier (uint32),

a data pointer (void*), and a pointer (uint32) to the

next bucket. Hermes’ buckets are perfectly aligned with

RAM’s memory pages which optimizes performance es-

pecially for applications with unaligned accesses. Fi-

nally, to ensure data consistency and fault tolerance,

Hermes maps (via mmap()) the entire MPI-RMA win-

dow and the index structure to a file stored in a non-

volatile layer of the hierarchy (configured by user). We

suggest for a good balance of performance and safety

against failures to place this special file to the burst

buffers since if a compute node fails, the local NVMe

device will become unavailable till the node is fixed.

Figure 6 motivates our design for Hermes’ memory

management. In this test, we issued a million fwrites

of various sizes (from 64KB to 2MB) and measured

the achieved memory operations per second. The test

was conducted on our development machine that runs

CentOS 7.1. In the test’s baseline, we intercept each

fwrite(), allocate a memory buffer (i.e., malloc()), copy

data from user’s buffer to the newly allocated space

(i.e., memcpy()), and finally flush the buffer (i.e., free())

once the data are written to the disk. As a slightly

optimized baseline case we used Google’s TC Malloc.

In contrast, Hermes intercepts each fwrite(), calculates

18 J. Comput. Sci. & Technol., August 2019, Vol., No.

how many buckets are required to store the data and

asks the bucket manager for them, and copies data from

user’s buffer to the acquired buckets. Once data are

written to the disk, buckets are marked by the data

organizer as available and no freeing is performed. As

it can be seen in Figure 6, Hermes outperforms Linux’s

Malloc by 3x and TCMalloc by 2x. Hermes managed to

sustain more than 3 million memory ops/sec, whereas

the baselines, 1 and 2 million ops/sec respectively. In-

terestingly, as the allocation size grows, Linux’s Malloc

struggles in performance compared to TCMalloc. The

pre-allocation and efficient management of the buck-

ets and the lack of freeing of buffers helped Hermes to

maintain stable high performance.

 0

 500000

 1x10
6

 1.5x10
6

 2x10
6

 2.5x10
6

 3x10
6

 3.5x10
6

64 128 512 1024 2048

O
p
e
ra

ti
o
n
s
/s

e
c
o
n
d

Allocation size (KB)

Malloc TC-Malloc Hermes

Fig.6. RAM operations throughput.

B. Metadata management. Any metadata service

in distributed systems is subject to scalability and per-

formance issues. Metadata in a buffering platform like

Hermes consist of data distribution information (e.g.,

which node, which layer in DMSH, which bucket, etc.)

and maintenance of both user’s and internal file names-

paces. Hermes’ metadata manager is distributed and

aims to offer highly concurrent and asynchronous op-

erations. To achieve this, Hermes employs a novel

distributed hashmap design, implemented using RMA

windows and MPI one-sided operations. A hashmap

consists of keys that correspond to specific values. Our

design uses two RMA windows: i) key window, which is

indexed to support efficient querying and ii) value win-

dow, for data values. This practically allows any pro-

cess to simply MPI Get() a specific key and then fetch

its respective value. We use a 2-way hashing: first, the

key is hashed to a specific node and then into a value

that resides on that node. The MPI one-sided oper-

ations allow Hermes to perform metadata operations

without interrupting the destination node. RDMA-

capable machines will be able to perform even faster

by using the RDMA controller for any data movement.

Additionally, the RMA windows are dynamic effectively

allowing the metadata to grow in size as required, sim-

ilarly with rehashing in traditional hashmap contain-

ers. Lastly, our hashmap design liberates us to use

complex structures, such as objects and nested custom

datatypes, to describe a certain file and its metadata

information. In contrast, popular in-memory key-value

such as Redis or MemCached use simple datatypes for

keys and values (e.g., strings or integers) which can be

a limiting factor to metadata services. Additionally,

these key-value stores offer features that are not use-

ful in our use case such as replication, timestamps, and

other features that only add overhead if one does not

need or intend to use them.

Hermes’ MDM uses several maps: i) file han-

dler to file: maintains file handlers of opened files,

{fh,filename}, ii) file to metadata properties: main-

tains all typical file properties (e.g., permissions,

ownership, timestamps etc.,), {filename,{filestat}},

iii) files to location in DMSH: maintains

data distribution information, {filename,{(offset,

size),(node,layer,type,identifier,freq)}}, and iv) node to

current status: maintains information for each node’s

current status such as remaining capacity, hot data

access frequencies, etc., {node,(layer,size,...)}. These

maps allow fast queries and O(1) read/write MDM

operations without the need to execute separate ser-

vices (e.g., a memcached server). Creation and up-

Anthony Kougkas et al.: I/O Acceleration via Multi-Tiered Data Buffering 19

date of metadata information is performed by using

MPI EXCLUSIVE locks which ensures FIFO consis-

tency. Read operations use a shared lock which of-

fers higher performance and concurrency. Finally,

Hermes’ MDM exposes a simple and clean API to

access its structures (e.g., mdm update on open(),

mdm get file stat(), mdm sync meta(), etc.,).

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

Creations Updates

O
p
e
ra

ti
o
n
s
/s

e
c
o
n
d

Operation type

Custom(MPI)
Memcached

Redis
Hermes

Fig.7. Metadata Manager throughput.

In Figure 7 we compare Hermes’ MDM performance

with a custom MPI-based solution, Memcached, and

Redis. In this test, we issue a million metadata opera-

tions and we measure the MDM throughput in opera-

tions per second. First, we implemented a custom MPI-

based solution where one process per node is the MDM

and answers queries from other processes. Upon receiv-

ing one, it queues the operation, it spawns a thread to

serve the operation, and it goes back to listening. The

spawned thread removes the operation from the queue

and performs the operation. While this approach is

feasible, it uses a dedicated core per node. Another

approach is to use an in-memory key-value store. We

implemented the MDM using Memcached and Redis,

two of the most popular solutions. In this approach,

one memcached or Redis server per node is always run-

ning and awaits for any metadata operations. There is

no explicit queuing but its implementation uses multi-

threaded servers with locks and internal queues to sup-

port concurrent operations. Again, a dedicated core is

required to run the server. Lastly, Hermes is using our

own hashmap to perform metadata operations. Each

processes accesses the shared RMA window to get or

put metadata. There is no dedicated core used. As it

can be seen in Figure 7, our solution outperforms by

more than 7x the MPI-based custom solution and by

more than 2x the Memcached and Redis versions. Up-

date operations are more expensive since clients first

need to retrieve the metadata, update them, and then

push them back to the MDM.

C. Messaging service. Many operations in Her-

mes involve communication between different compute

nodes, buffering nodes, and several other components.

The messaging service does not involve in data move-

ment but instead provides the infrastructure to pass

instructions between nodes. For instance, horizontal

access to the deep memory hierarchy involves sending

data across the network to a remote RAM or NVMe.

Another example is when the prefetcher gets triggered

by one process it will fetch data to a layer of the hi-

erarchy for subsequent read operations. Finally, when

the buffers are flushed to the remote parallel file system

for persistence, a system-wide coordination is required.

All the above cases, require a high-performance and low

latency messaging service to be in place. Hermes im-

plements such messaging service by utilizing our own

distributed queue via MPI one-sided operations. We

designed a scalable messaging service by leveraging the

asynchronicity of MPI RMA operations. When a pro-

cess needs to communicate with another process across

the compute nodes, it simply puts a message into the

distributed queue that is hosted by all compute nodes.

An shared dynamic RMA window is used to hold the

queue messages. Each message has a type (i.e., an in-

struction to be carried out), its associated attributes,

and a priority. As with the distributed hashmap above,

if there is an RDMA controller it will be used to avoid

interrupting the destination core. There is no need

20 J. Comput. Sci. & Technol., August 2019, Vol., No.

to employ listeners or other always-on services such as

Apache ActiveMQ [53] or Kafka [54] leading to better

resource utilization. Additionally, we define our own bit

encoding to keep the messages small and avoid costly se-

rializations/transformations and therefore lead to lower

latencies and higher throughput. Hermes messaging

service aims to offer higher overall performance avoid-

ing network bottlenecks and communication storms.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

Publish Subscribe

M
e
s
s
a
g
e
s
/s

e
c
o
n
d

Operation type

Custom(MPI)
Memcached

NATS
Hermes

Fig.8. Messaging Service throughput.

In Figure 8 we compare Hermes’ performance with a

custom MPI-based solution, Memcached, and NATS.

In this test, we issue a million queue operations (e.g.,

publish - subscribe) and we measure the messaging rate

in messages per second. As described above, we imple-

mented a custom MPI-based solution where one process

per node accepts messages from other processes. We

also implemented a distributed queue using Memcached

where each message becomes a key-value pair (i.e., ID-

message). Furthermore, we explored NATS, a popular,

in-memory, high-performance, and open source messag-

ing system. In both latter options, a dedicated core

needs to run server code. Lastly, Hermes is using our

own distributed priority queue to execute the messaging

service. Each processes puts or gets messages from the

shared RMA window while no dedicated core is used.

As it can be seen in Figure 8, Hermes outperforms the

custom MPI-based messaging implementation by more

than 12x. This is expected since the server process

gets saturated from the overwhelming rate of incoming

messages. As a result, client processes needs to wait

blocked for the server to accept their message. The

handler thread cannot match the rate of new messages.

A similar picture is evident in the memcached solution

where Hermes performs more than 8x faster. However,

in memcached, up to 4 handler threads are spawned

which possibly leads to better performance compared

to the custom MPI-based one. Finally, NATS perfor-

mance is really good with more than 300000 published

messages per second. However, Hermes outperforms

NATS by more than 2x for publishing and more than

3x for subscribe operations.

3.5 Design Considerations

In this subsection, we briefly discuss concerns re-

garding the design and features of any buffering plat-

form, especially one that supports a DMSH system such

as Hermes. The goal is to present some of our ideas and

to generate discussion for future directions.

A. High-performance:

Concern 1: How to support and manage heterogeneous

hardware?

Hermes is aware of the heterogeneity of the underlying

resources via the system profiler component which iden-

tifies and benchmarks all layers present in the system.

Hermes aims to utilize each hardware resource to its

best of its capabilities by avoiding hurtful workloads.

Instead, Hermes’ I/O clients generate access patterns

favorable to the each medium.

Concern 2: How to avoid excessive network traffic?

Hermes’ messaging service is carefully designed to op-

erate with small-sized messages with bit encoding. Fur-

thermore, by using asynchronicity and RDMA capable

hardware our solution ensures the low network over-

head.

Concern 3: How to support low-latency applications?

The several data placement policies of Hermes’ DPE

provide tunable performance guarantees for a variety

Anthony Kougkas et al.: I/O Acceleration via Multi-Tiered Data Buffering 21

of workloads. For low latency applications, Hermes can

leverage the performance characteristics of each layer

by placing data to the fastest possible layer. Addition-

ally, our novel memory management ensures that data

can be efficiently cached in RAM before ending up to

their buffer.

Concern 4: How to avoid possible buffer overflow?

Hermes’ Data Organizer component manages the ca-

pacities of the layers and moves data up and down the

hierarchy (i.e., between the layers). In corner cases of

overflow, Hermes provides explicit triggers to the data

organizer to re-balance the layers and move data based

on the buffer capacity on each layer.

Concern 5: How to scale the buffer capacity?

Hermes’ DPE can place data in remote RAM and

NVMe devices, and thus, scaling is horizontal by adding

more compute nodes. Additionally, Hermes can sup-

port RAM Area Network (RAN) deployments [55] to

further extend the buffer capacity.

B. Fault tolerance:

Fault tolerance guarantees are based on the buffering

mode selected (i.e., sync, async). In case of asyn-

chronous buffering mode, buffered data are written to

a fault tolerant layer such as a PFS eventually which

means for a small window of time buffer contents are

susceptible to failures. In our prototype implementa-

tion, buffers are flushed based on an event-driven ar-

chitecture and also periodically to decrease the possi-

bilities of losing critical data. As a future step, we want

to investigate the following options: i) Checkpointing

with configurable frequency. ii) Random replication per

write operation. iii) DPE skips the failing component

for incoming I/O.

C. Data consistency:

Concern 1: Data consistency model?

Hermes supports strong consistency for the application

since our design avoids having the same buffered data

in multiple locations and copies. Once a write is com-

plete, any other process can read the data via either

a local or a remote call. Excessive locking is avoided

by using MPI RMA operations and memory windows.

The model supported is single-writer, multiple-readers.

Concern 2: Support of highly concurrent metadata op-

erations?

Upon opening a file, metadata are loaded from the PFS

to the local RAM of the process that opened it. Then,

Hermes randomly selects two other nodes and replicates

metadata there. We do this to increase the availability

of the metadata info and avoid saturation of one node’s

RAM. When another process wants to access the meta-

data, it randomly selects one of the replica copies and

performs the get. If it needs to update the metadata,

Hermes propagates the update to all replicas. This is

synchronous to ensure consistency.

D. Hermes limitations: Hermes’ DPE component

implements our data placement policies based on the

assumption that the user knows exactly what his/her

workload involve, and thus, selecting the appropriate

policy is not trivial. As a suggestion, the user can first

profile his/her application using typical monitoring and

profiling tools, such as Darshan [56], extract knowledge

regarding the I/O behavior, and make the right policy

choice.

4 Evaluation

4.1 Methodology

Overview: To evaluate Hermes, we have conducted

two set of experiments. We first explored how Her-

mes’ data placement policies handle different work-

loads and application characteristics using synthetic

benchmarks. We then compare Hermes with state-of-

the-art buffering platforms, namely Data Elevator and

Cray’s DataWarp, using real applications. As perfor-

mance metric, we use the overall execution time in sec-

22 J. Comput. Sci. & Technol., August 2019, Vol., No.

onds which we further divide to: i) time to write/read

to/from buffers, and ii) time to flush buffers to PFS.

Computation time is excluded since it is the same

among all systems. As reference, we include a baseline

of no buffering in which data are written/read directly

to/from the PFS. We run all tests ten times and we

report the average time.

Hardware: All experiments were conducted on

Chameleon∗. More specifically, we used the bare metal

configuration with 32 client nodes (i.e., up to 1024 MPI

ranks), 8 burst buffer nodes, and 16 PFS storage nodes.

Each node has a dual Intel(R) Xeon(R) CPU E5-2670

v3 running at 2.30GHz with a total of 48 cores, and 128

GB RAM. Each burst buffer node is equipped with an

SSD drive and each PFS node with an HDD. We em-

ulated one NVMe device per client node by deploying

a DRAM-based file system (i.e., RAMDISK) and im-

posing latency and bandwidth penalties to match the

actual NVMe performance [52, 57, 58]. In order to cor-

rectly calculate the added latency and lowered band-

width, we captured the performance characteristics of

real NVMe devices present in the hierarchy appliances

of Chameleon.

Table 1 lists all the hardware specifications and per-

formance measurements and Figure 9 demonstrates the

cluster topology resembling that of an typical HPC ma-

chine.

Burst
buffers

Infiniband Network(56Gbit)

Parallel File System

Ethernet Network(10Gbit)

x8
x16

Client Nodes

x32

Fig.9. Cluster setup and topology.

Lastly, to better capture the architecture of a modern

supercomputer, we setup our cluster topology as fol-

lows: all 32 client nodes and 8 burst buffers are inter-

connected with 56Gbps Infiniband network and the 16

storage nodes are connected to the rest via a 10Gbps

Ethernet network.

Software: The operating system of the cluster is Cen-

tOS 7.1, the MPI version is Mpich 3.2, the PFS we used

is OrangeFS 2.9.6, the in-memory key-value stores are

Memcached 1.4.36 and Redis 4.0.6, and lastly the dis-

tributed queue we used is NATS Server 1.0.4.

Applications: We evaluate Hermes using our own syn-

thetic benchmark that emulates common scientific ap-

plication workloads such as alternation between compu-

tation - I/O phases, read -after-write, read-once, read-

many etc. It uses POSIX-IO to issue requests to the file

system and operates in a typical file-per-process pat-

tern. We also use two real science applications: Vec-

tor Particle-In-Cell (VPIC) and Hardware Accelerated

Cosmology Code (HACC). Both of these simulations

perform computations and produce output files peri-

odically that need to be persisted in PFS. Also, both

demonstrate a periodic behavior with time steps (i.e.,

iterations) that include the checkpoint and restart as

well as the analysis outputs produced by the simula-

tions. We used 16 time steps for both simulations re-

sulting to total I/O of 1TB.

4.2 Experimental Results

4.2.1 Synthetic Benchmarks

Our synthetic benchmark is highly tunable to gen-

erate workloads that can stress the buffering system

under various use-cases. We designed two test-cases to

evaluate Hermes’ data placement policies.

Alternating Compute-I/O phases: In this test,

each process first performs some computations (emu-

∗https://www.chameleoncloud.org/about/chameleon/

Anthony Kougkas et al.: I/O Acceleration via Multi-Tiered Data Buffering 23

Table 1. Testbed machine specifications

Device RAM NVMe SSD HDD

Model M386A4G40DM0 Intel DC P3700 Intel DC S3610 ST9250610NS

Connection DDR4 2133Mhz PCIe Gen3 x8 SATA 6Gb/s SATA 7200rpm

Capacity 128 GB(8GBx16) 1.2 TB 1.6 TB 2.4 TB

Latency 13.5 ns 20 us 55-66 us 4.16 ms

Max Read BW 13000 MB/s 2800 MB/s 550 MB/s 115 MB/s

Max Write BW 10000 MB/s 1900 MB/s 500 MB/s 95 MB/s

Test Config 32x client nodes RamFS emulated 8x burst buffers 16x PFS servers

ReadBW tested 92647 MB/s 38674 MB/s 3326 MB/s 883 MB/s

WriteBW tested 86496 MB/s 33103 MB/s 2762 MB/s 735 MB/s

lated by sleep() calls) and then writes 64MB in a file-

per-process fashion. We repeat this pattern 16 times

with 1024 processes resulting in 1TB total I/O size.

We vary the ratio of computation over I/O time to emu-

late three distinct types of applications: data-intensive,

compute-intensive, and balanced. We assume that all

data written to the buffers need to be also written to

the disk-based remote PFS. Therefore, Hermes is con-

figured in persistent asynchronous mode. We measure

the overall time spent in I/O, in seconds, which consists

of write-time and flush-time.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

Bas
el
in
e

D
at

aE
le
v

D
at

aW
ar

p

H
er

m
es

BW

H
er

m
es

D
L

Bas
el
in
e

D
at

aE
le
v

D
at

aW
ar

p

H
er

m
es

BW

H
er

m
es

D
L

Bas
el
in
e

D
at

aE
le
v

D
at

aW
ar

p

H
er

m
es

BW

H
er

m
es

D
L

O
v
e
ra

ll
ti
m

e
 (

s
e
c
)

Workload type

Write Flush

Compute-IntensiveBalancedData-Intensive

Fig.10. Benchmark: Alternating Compute-I/O phases.

Figure 10 shows the results. As it can be seen, the

baseline writes directly to PFS (i.e., no flush-time)

and maintains stable write performance regardless of

the computation-I/O ratio. In Data Elevator and

DataWarp, data are written to the burst buffers result-

ing to similar write-time between them. The difference

in performance comes from data flushing. Data Ele-

vator overlaps flushing with computation phases, and

thus, as the computation-I/O ratio increases, flush-

time decreases (i.e., flushing is hidden behind compu-

tation). On the other hand, DataWarp flushes data

only once the application finishes and demonstrates sta-

ble flush-time regardless of the computation-I/O ra-

tio. In Hermes, data are written in all layers of the

DMSH (i.e., RAM, NVMe, and burst buffers in our

system). We evaluate both MaxBW and MaxLocal-

ity data placement policies since they buffer data dif-

ferently. MaxBW places data in a top-down fashion.

It starts with RAM for the first iterations of the test,

and once this layer is full, it first moves data down to

NVMe to create space in RAM and then places the in-

coming iteration in RAM. On the other hand, MaxLo-

cality uses layers concurrently. It writes the first it-

erations in RAM and once this layer is full it goes

on to the next without any data movement between

layers. It is clear that for data-intensive applications

where the rate of incoming I/O is high, MaxBW’s data

movement between layers imposes some performance

losses, and thus, MaxLocality’s write performance is

slightly higher. As the computation-I/O ratio increases

however, MaxBW can overlap data movement between

layers with computations. Therefore, for compute-

intensive workloads, MaxBW outperforms MaxLocal-

ity by 4x in write-time since it ensures that incoming

I/O can be written in RAM. For flushing, both poli-

cies leverage any computation time available to asyn-

chronously flush buffer contents to PFS, similarly with

24 J. Comput. Sci. & Technol., August 2019, Vol., No.

Data Elevator. However, Hermes flushes all layers of

the DMSH concurrently which decreases flush-time sig-

nificantly. In summary, in this test Hermes offers 8x

and 2x higher write performance when compared to No

Buffering baseline and state-of-the-art buffering plat-

forms respectively.

Repetitive Read operations: In this test, the bench-

mark is configured to create a write-once, read-many

workload. Each process first writes 32MB in a file-per-

process approach and then reads back 32MB of data

(not necessarily the same data). We have 16 phases of

this pattern with 1024 processes aggregating the I/O

to 1TB. We vary the repetition of read operations as

follows: i) Read-once, where 32MB of data is read only

once, ii) Read-many x4, where 8MB of data is read 4

times (i.e., still 32MB in total), and iii) Read-many x16,

where 2MB of data is read 16 times. This pattern re-

sembles workloads where portions of data such as meta-

data information, indices of files, etc., are frequently ac-

cessed creating a data hotness spectrum. In this test,

we assume that buffers are used as scratch space (i.e.,

temporary I/O), and thus, Hermes is configured in non-

persistent mode. The total time, in seconds, is divided

into write-time and read-time.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Bas
el
in
e

D
at

aE
le
v

D
at

aW
ar

p

H
er

m
es

BW

H
er

m
es

H
D

Bas
el
in
e

D
at

aE
le
v

D
at

aW
ar

p

H
er

m
es

BW

H
er

m
es

H
D

Bas
el
in
e

D
at

aE
le
v

D
at

aW
ar

p

H
er

m
es

BW

H
er

m
es

H
D

O
v
e
ra

ll
ti
m

e
 (

s
e
c
)

Workload type

Write Read

Read-Many x16Read-Many x4Read-Once

Fig.11. Benchmark: Repetitive Read operations.

As it can be seen in Figure 11, the baseline writes

and reads directly from the PFS and maintains a sta-

ble performance irrespective of the workload type. In

Data Elevator and DataWarp, data are written/read

to/from the burst buffers respectively. This results to a

considerable performance improvement over the base-

line. Since repetitive read operations are treated as

new, it shows stable performance across different work-

loads. In contrast, Hermes implements a HotData data

placement policy to offer higher performance for this

type of workloads. Since HotData will promote fre-

quently accessed data in upper layers, repetitive read

operations access data always from RAM resulting in

significant performance boost for Read-many x4 and

x16. On the other hand, MaxBW, while offering a com-

petitive performance across the tested workloads, does

not cache frequent accessed data in RAM and demon-

strates a stable performance across the tested work-

loads. In summary, in this test Hermes offers 38x and

11x higher read performance when compared to No

Buffering baseline and state-of-the-art buffering plat-

forms respectively.

4.2.2 Data-centric prefetching

0%

20%

40%

60%

80%

100%

120%

0

10

20

30

40

50

60

Sequential Strided Repetitive Irregular

H
IT

 R
A

T
IO

 (
%

)

T
IM

E
 (

S
E

C
)

WORKLOAD TYPE

Application-centric Data-centric No prefetching App-HitRatio Data-HitRatio

Fig.12. Application-centric vs. data-centric prefetching.

A system-wide prefetching approach has the advan-

tage of observing how files are accessed across multi-

ple processes or even applications. Hermes’ prefetcher

implements a data-centric logic where access statis-

tics are collected and prefetching decisions are made

based on how important a file block or region (i.e.,

segment in Hermes) is. In contrast, an application-

centric prefetcher’s main objective is to identify how

each application accesses its data and make prefetching

decisions accordingly. This approach might create sce-

narios where the cache can get polluted, or data are

Anthony Kougkas et al.: I/O Acceleration via Multi-Tiered Data Buffering 25

fetched twice, or unnecessary evictions of prefetched

data occur. To better understand the differences be-

tween an application-centric and data-centric prefetch-

ing approach and identify which workloads work best

in each, we tested Hermes under the following scenario.

We have 1024 processes in total organized in four dif-

ferent communicator groups representing different ap-

plications resembling a data analysis and visualization

pipeline. Each process issues read requests on the same

dataset. We tested four commonly-used patterns: se-

quential, strided, repetitive, and irregular access pat-

terns. The prefetching cache size is configured to fit

the total data size of two out of the four applications

which means applications compete for access to this

cache. For Hermes the prefetching cache is configured

to fit one application’s load in RAM and one in NVMe.

Figure 12 demonstrates the evaluation results. As can

be seen, for sequential, strided, and repetitive patterns,

Hermes achieves 26% higher performance when com-

pared to an application-centric approach. Hermes is

able to capture how data are accessed across applica-

tions or files and understand which segments are im-

portant to fetch from a global perspective. This results

in zero cache evictions and no cache pollution. How-

ever, Hermes suffers from irregular patterns since cre-

ated file heatmaps, that represent segment scoring, are

uniformly flat (i.e., same heat throughout). Hence, the

placement of segments in prefetching is effectively ran-

dom which increases the miss ratio.

4.2.3 Real Applications

To test our system under real applications work-

load, we configured Hermes in persistent asynchronous

mode since data need to be stored in the PFS for future

access and selected the default data placement policy,

MaxBW.

VPIC: Vector Particle-In-Cell (VPIC) is a general pur-

pose simulation code for modeling kinetic plasmas in

spatial multi-dimensions.This application demonstrates

a write-only I/O access pattern where at the end of

each time step, each process writes data to an HDF5

file. At the end of each step, VPIC writes a single

HDF5 file containing properties of 8 million particles.

VPIC tends to be extremely I/O intensive (i.e., write-

only, write-heavy), since the portion of computation is

small. During this evaluation we executed the appli-

cation for 16 time steps. We strong scaled the appli-

cation from 256 to 1024 total ranks and we measured

the total time. In Figure 13 we report only the I/O

time which consists of write-time (i.e., what the appli-

cation experiences) and flush-time (i.e., persisting the

data asynchronously). As it can be seen, all tested so-

lutions scale linearly with the number of MPI ranks. In

the largest tested scale of 1024 ranks, the baseline com-

pleted the test in 1192 seconds. Both Data Elevator and

DataWarp wrote the entire dataset in 438 seconds. This

is approximately a 2.5x improvement over the baseline.

However, due to the higher bandwidth of the DMSH,

Hermes’ write performance is 5x and 2x higher than

the baseline and the two buffering platforms we tested,

respectively. When considering data flushing, Data El-

evator overlaps small computations between each time

step and flushes the contents of burst buffers in 1115

seconds whereas DataWarp flushes everything at the

end in 1274 seconds. In contrast, Hermes leverages the

computations but also the concurrency of the DMSH to

flush all buffered data to PFS in 637 seconds. In sum-

mary, in this test, Hermes outperformed the baseline

and state-of-the-art buffering platforms by 40% and

85% respectively.

26 J. Comput. Sci. & Technol., August 2019, Vol., No.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

Bas
el
in
e

D
at

aE
le
v

D
at

aW
ar

p

H
er

m
es

BW

Bas
el
in
e

D
at

aE
le
v

D
at

aW
ar

p

H
er

m
es

BW

Bas
el
in
e

D
at

aE
le
v

D
at

aW
ar

p

H
er

m
es

BW

O
v
e
ra

ll
ti
m

e
 (

s
e
c
)

Number of processes

Write Flush

1024512256

Fig.13. I/O Buffering performance with VPIC-IO.

HACC: Hardware Accelerated Cosmology Code

(HACC) is a cosmological simulation that studies the

formation of structure in collisionless fluids under the

influence of gravity in an expanding universe. HACC

has read-after-write workload where, at every step, sim-

ulation writes out a single shared file (i.e., MPI Collec-

tive I/O) that various analysis modules read back. This

application demonstrates a read-after-write I/O access

pattern where during each time step, each process reads

back data previously written using MPI-Collective IO.

During this evaluation we executed the application for

16 time steps. We strong scaled the application from

256 to 1024 total ranks and we measured the total time.

In Figure 14 we report only the I/O time which consists

of write-time, read-time, and flush-time. As it can be

seen, all tested solutions scale linearly with the number

of MPI ranks. In the largest tested scale of 1024 ranks,

the baseline completed the test in 1313 seconds. Both

Data Elevator and DataWarp performed I/O in 348 sec-

onds. This is approximately a 3.7x improvement over

the baseline. However, when considering data flushing,

Data Elevator completed the test in 773 and DataWarp

in 985 seconds effectively reducing the total improve-

ment to 1.6x and 1.3x respectively. In contrast, Her-

mes completed the entire test in 494 seconds showcasing

the potential of a DMSH system. The performance im-

provement is substantial when compared to No Buffer-

ing baseline with 7.5x faster I/O operations. Hermes

outperformed Data Elevator and DataWarp by 2x due

to higher bandwidth of the DMSH.

 0

 200

 400

 600

 800

 1000

 1200

 1400

Bas
el
in
e

D
at

aE
le
v

D
at

aW
ar

p

H
er

m
es

BW

Bas
el
in
e

D
at

aE
le
v

D
at

aW
ar

p

H
er

m
es

BW

Bas
el
in
e

D
at

aE
le
v

D
at

aW
ar

p

H
er

m
es

BW

O
v
e
ra

ll
ti
m

e
 (

s
e
c
)

Number of processes

Write Read Flush

1024512256

Fig.14. I/O Buffering performance with HACC-IO.

To evaluate the effectiveness of Hermes’ data-centric

prefetching approach, we performed scaling tests using

two complex multi-phased scientific workflows namely

Montage [59] and WRF∗. We compare Hermes prefetch-

ing ability with Stacker [41] and KnowAc [21], one on-

line and one offline prefetcher. Both of those solutions

are configured to fetch data from burst buffers to the

application’s memory.

Montage This workflow is a collection of programs

comprising an astronomical image mosaic engine based

on MPI. It is a classical real world use-case of a workflow

where multiple kernels share data for different purposes

and access this common data concurrently. Each phase

of building the mosaic takes an input from the previous

phase and outputs intermediate data to the next one.

Montage’s workflow is highly read-intensive and itera-

tive. Figure 15 shows the results for Montage. During

this test, each process does 10 MB of I/O operations in

16 time steps for a total of 400 GB for the largest scale.

We weak scaled the execution of Montage by increas-

ing the number of processes from 320 to 2560. Required

data are initially staged in the burst buffer nodes. The

system is overall configured with prefetching cache or-

ganized in 1.5 GB RAM space, 2 GB in local NVMe

drives and 400 GB burst buffer allocation. As can be

seen, the best read performance is achieved by KnowAc,

∗https://www.mmm.ucar.edu/weather-research-and-forecasting-model

Anthony Kougkas et al.: I/O Acceleration via Multi-Tiered Data Buffering 27

a history-based prefetcher, since the prefetcher knows

exactly what to load next. However, such approach suf-

fers from prolonged profiling costs. Stacker avoids pre-

processing steps and build its models as it goes, but

demonstrated a lower hit ratio due to some cache con-

flicts and unwanted data evictions. Hermes is able to

utilize all available tiers and performed the best, offer-

ing from 5-25% better end-to-end performance when

compared to Stacker and 10-30% better than KnowAc

(i.e., profile-cost plus run time). Note that all solutions

scale nicely.

0

1K

2K

3K

320 640 1280 2560

T
IM

E
 (

S
E

C
)

CLIENT CORES

Stacker KNOWAC Hermes No Prefetching
Profile-Cost

Fig.15. End-to-end performance of Montage scientific workflow.

WRF This workflow is a multi-phased mesoscale nu-

merical weather prediction system designed for both at-

mospheric research and operational forecasting needs.

WRF is multi-step iterative workflow where compo-

nents of the simulation analyze observed and simulated

data many times until the model converges. There

are three distinct phases: pre-processing, main model,

post-processing and visualization. Figure 16 shows the

results for WRF. During this test, each process reads

8MB of data in 4 time steps for a total of 80GB across

all scales (i.e., strong scale). Input data are assumed

to be initially present in the burst buffer nodes. The

system is configured with prefetching cache organized

in 1.25 GB RAM space, 2 GB in local NVMe drives and

80 GB burst buffer allocation. Results confirm our pre-

vious observations with KnowAc having the best read

time but additional profiling costs and Stacker demon-

strating better end-to-end time over KnowAc. Hermes

is able to utilize all tiers and scaled better than all so-

lutions.

0

100

200

300

400

500

600

700

320 640 1280 2560

T
IM

E
 (

S
E

C
)

CLIENT CORES

Stacker KNOWAC Hermes No Prefetching
Profile-Cost

Fig.16. End-to-end performance of WRF scientific workflow.

5 Related Work

New hardware technologies have been developed

and can be used to build new memory and storage hi-

erarchies using non-volatile memory (NVRAM) such as

phase-change memory (PCM) [58], memristors [60], and

Flash memory [14]. Flash-based SSD technology has

been widely studied [61], characterized [62], and evalu-

ated for different application types [63, 64]. Researchers

also advocate the use of shared buffer technologies, such

as burst buffers [65], to accelerate I/O. Existing work

has considered NVMe devices as a viable solution for

I/O staging [15, 66]. Caulfield proposed Moneta [67],

an architecture with NVRAM as an I/O device for

HPC applications. Ekel extended Moneta with a real

PCM device to understand the performance implica-

tions of using NVRAM [68]. Dong studied NVRAM for

HPC application checkpointing [69]. Kannan studied

NVRAM for I/O intensive benchmarks in Cloud envi-

28 J. Comput. Sci. & Technol., August 2019, Vol., No.

ronments [15]. Wang proposed BurstMem [70], a tech-

nology for optimizing I/O using burst buffers. Sato et

al., show how the burst buffers can boost performance

of checkpointing tasks by 20x [71].

Active Buffers [72, 73] exploits one-sided communi-

cation for I/O processors to fetch data from compute

processors’ buffers and performs actual writing in the

background while computation continues. IOLite [74],

proposes a single shared memory per-node for leverag-

ing inter-process communication and buffering of I/O.

Such an approach led to 40% boost in performance.

Nitzberg [75] proposes collective buffering algorithms

for improving I/O performance by 100x on IBM SP2

at NASA Ames Research Center. PLFS [76] remaps

an application’s preferred data layout into one which is

optimized for the underlying file system.

While all the above work emphasizes the benefits

of using each technology individually, none introduced

a complete I/O buffering platform that leverages the

DMSH. The closest work to Hermes is Data Eleva-

tor [77] and its successor UniviStor [78], a new system

that transparently moves data in a hierarchical sys-

tem. The authors focused on systems equipped with

burst buffers and demonstrated a 4x improvement over

other state-of-the-art burst buffer management systems

such as Cray’s Datawarp∗. However, they did not ad-

dress local memory and local non-volatile devices such

as NVMe. Hermes considers both local resources and

shared resources like burst buffers. Furthermore, Her-

mes extends buffering into remote resources and tack-

les data movement to a more complicated landscape of

I/O-capable devices.

In addition to that relevant research, we identify

the following work for data prefetching. Diskseen [38],

tracks the locations and access times of disk blocks.

Based on analysis of their temporal and spatial rela-

tionships, it seeks to improve the sequentiality of disk

accesses and overall prefetching performance. However,

disk blocks do not carry file semantics and relationships

between segments. During Hermes design and develop-

ment, we drew partial motivation from a cache replace-

ment algorithm presented in [88] where frequency and

recency of a memory page can both influence the evic-

tion of the page. Hermes’ segment scoring resembles

in a sense a similar approach where we target segment

with score based on access frequency and recency.

6 Conclusions

To increase I/O performance, modern storage sys-

tems are presented in a new memory and storage hi-

erarchy, called Deep Memory and Storage Hierarchy.

However, data movement among the layers is signifi-

cantly complex, making it harder to take advantage of

the high-speed and low-latency storage systems. Ad-

ditionally, each layer of the DMSH is an independent

system that requires expertise to manage, and the lack

of automated data movement between tiers is a signifi-

cant burden currently left to the users.

In this paper, we present the design and implemen-

tation of Hermes: a new, heterogeneous-aware, multi-

tiered, dynamic, and distributed I/O buffering system.

Hermes enables, manages, and supervises I/O buffer-

ing into the DMSH and offers a buffering platform that

can be application- and system-aware, and thus, hide

lower level details allowing the user to focus on his/her

algorithms. Hermes aims to maximizing productivity,

increasing resource utilization, abstracting data move-

ment, maximizing performance, and supporting a wide

range of scientific applications and domains. We have

presented three novel data placement policies to effi-

ciently utilize all layers of the new memory and storage

hierarchy as well as three novel techniques to perform

∗http://www.cray.com/sites/default/files/resources/ CrayXC40-DataWarp.pdf

Anthony Kougkas et al.: I/O Acceleration via Multi-Tiered Data Buffering 29

memory, metadata, and communication management in

hierarchical buffering systems. Our evaluation results

prove Hermes’ sound design and show a 8x improve-

ment compared to systems without I/O buffering sup-

port. Additionally, Hermes outperforms by more than

2x state-of-the-art buffering platforms such as Data El-

evator and Cray’s Datawarp.

References

[1] Kitchin, Rob. ”Big Data, new epistemologies and

paradigm shifts.” Big data & society 1, no. 1 (2014):

2053951714528481.

[2] Reinsel, David, John Gantz, and John Rydning. ”Data age

2025: The evolution of data to life-critical.” Don’t Focus on

Big Data (2017). White paper

[3] Tansley, Stewart, and Kristin M. Tolle. The fourth

paradigm: data-intensive scientific discovery. Edited by An-

thony JG Hey. Vol. 1. Redmond, WA: Microsoft research,

2009.

[4] Thakur, Rajeev, William Gropp, and Ewing Lusk. ”Data

sieving and collective I/O in ROMIO.” In Proceedings.

Frontiers’ 99. Seventh Symposium on the Frontiers of Mas-

sively Parallel Computation, pp. 182-189. IEEE, 1999.

[5] Folk, Mike, Albert Cheng, and Kim Yates. ”HDF5: A file

format and I/O library for high performance computing ap-

plications.” In Proceedings of Supercomputing, vol. 99, pp.

5-33. 1999.

[6] Braam, Peter. ”The Lustre storage architecture.” arXiv

preprint arXiv:1903.01955 (2019).

[7] Schmuck, Frank B., and Roger L. Haskin. ”GPFS: A

Shared-Disk File System for Large Computing Clusters.”

In FAST, vol. 2, no. 19. 2002.

[8] Ross, Robert B., and Rajeev Thakur. ”PVFS: A parallel

file system for Linux clusters.” In Proceedings of the 4th

annual Linux showcase and conference, pp. 391-430. 2000.

[9] Khaleel, Mohammad A. Scientific Grand Challenges:

Crosscutting Technologies for Computing at the

Exascale - February 2-4, 2010, Washington, D.C.,

report, February 6, 2011; Richland, Washington.

(https://digital.library.unt.edu/ark:/67531/metadc841613/:

accessed August 14, 2019), University of North Texas

Libraries, Digital Library, https://digital.library.unt.edu;

crediting UNT Libraries Government Documents Depart-

ment.

[10] Dongarra, Jack, Pete Beckman, Terry Moore, Patrick Aerts,

Giovanni Aloisio, Jean-Claude Andre, David Barkai et al.

”The international exascale software project roadmap.” In-

ternational Journal of High Performance Computing Appli-

cations 25, no. 1 (2011): 3-60.

[11] Reed, Daniel A., and Jack Dongarra. ”Exascale comput-

ing and big data.” Communications of the ACM 58, no. 7

(2015): 56-68.

[12] Shalf, John, Sudip Dosanjh, and John Morrison. ”Exascale

computing technology challenges.” In International Confer-

ence on High Performance Computing for Computational

Science, pp. 1-25. Springer, Berlin, Heidelberg, 2010.

[13] Bent, John, Gary Grider, Brett Kettering, Adam Man-

zanares, Meghan McClelland, Aaron Torres, and Alfred

Torrez. ”Storage challenges at los alamos national lab.” In

012 IEEE 28th Symposium on Mass Storage Systems and

Technologies (MSST), pp. 1-5. IEEE, 2012.

[14] Caulfield, Adrian M., Laura M. Grupp, and Steven Swan-

son. ”Gordon: using flash memory to build fast, power-

efficient clusters for data-intensive applications.” ACM Sig-

plan Notices 44, no. 3 (2009): 217-228.

[15] Kannan, Sudarsun, Ada Gavrilovska, Karsten Schwan, De-

jan Milojicic, and Vanish Talwar. ”Using active NVRAM

for I/O staging.” In Proceedings of the 2nd international

workshop on Petascal data analytics: challenges and op-

portunities, pp. 15-22. ACM, 2011.

[16] Caulfield, Adrian M., Joel Coburn, Todor Mollov, Arup

De, Ameen Akel, Jiahua He, Arun Jagatheesan, Rajesh K.

Gupta, Allan Snavely, and Steven Swanson. ”Understand-

ing the impact of emerging non-volatile memories on high-

performance, io-intensive computing.” In Proceedings of the

2010 ACM/IEEE International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis, pp.

1-11. IEEE Computer Society, 2010.

[17] Lockwood, Glenn K., Damian Hazen, Quincey Koziol, R. S.

Canon, Katie Antypas, Jan Balewski, Nicholas Balthaser et

al. ”Storage 2020: A Vision for the Future of HPC Storage.”

(2017). Technical Report. NERSC.

[18] Li, Jianwei, Wei-keng Liao, Alok Choudhary, Robert Ross,

Rajeev Thakur, William Gropp, Robert Latham, Andrew

Siegel, Brad Gallagher, and Michael Zingale. ”Parallel

netCDF: A high-performance scientific I/O interface.” In

SC’03: Proceedings of the 2003 ACM/IEEE conference on

Supercomputing, pp. 39-39. IEEE, 2003.

[19] Lofstead, Jay F., Scott Klasky, Karsten Schwan, Norbert

Podhorszki, and Chen Jin. ”Flexible io and integration for

scientific codes through the adaptable io system (adios).”

30 J. Comput. Sci. & Technol., August 2019, Vol., No.

In Proceedings of the 6th international workshop on Chal-

lenges of large applications in distributed environments, pp.

15-24. ACM, 2008.

[20] Chang, Fay, and Garth A. Gibson. ”Automatic I/O hint

generation through speculative execution.” In Proceedings

of the third symposium on Operating systems design and

implementation, pp. 1-14. USENIX Association, 1999.

[21] He, Jun, Xian-He Sun, and Rajeev Thakur. ”Knowac: I/O

prefetch via accumulated knowledge.” In 2012 IEEE Inter-

national Conference on Cluster Computing, pp. 429-437.

IEEE, 2012.

[22] Dong, Bin, Teng Wang, Houjun Tang, Quincey Koziol,

Kesheng Wu, and Suren Byna. ”ARCHIE: Data Analysis

Acceleration with Array Caching in Hierarchical Storage.”

In 2018 IEEE International Conference on Big Data (Big

Data), pp. 211-220. IEEE, 2018.

[23] Buyya, Rajkumar, Rodrigo N. Calheiros, and Amir Vahid

Dastjerdi, eds. Big data: principles and paradigms. Morgan

Kaufmann, 2016.

[24] Kune, Raghavendra, Pramod Kumar Konugurthi, Arun

Agarwal, Raghavendra Rao Chillarige, and Rajkumar

Buyya. ”The anatomy of big data computing.” Software:

Practice and Experience 46, no. 1 (2016): 79-105.

[25] Kougkas, Anthony, Hariharan Devarajan, Xian-He Sun,

and Jay Lofstead. ”Harmonia: An Interference-Aware

Dynamic I/O Scheduler for Shared Non-Volatile Burst

Buffers.” In 2018 IEEE International Conference on Cluster

Computing (CLUSTER), pp. 290-301. IEEE, 2018.

[26] Xie, Bing, Yezhou Huang, Jeffrey S. Chase, Jong Youl

Choi, Scott Klasky, Jay Lofstead, and Sarp Oral. ”Predict-

ing output performance of a petascale supercomputer.” In

Proceedings of the 26th International Symposium on High-

Performance Parallel and Distributed Computing, pp. 181-

192. ACM, 2017.

[27] Kim, Youngjae, Raghul Gunasekaran, Galen M. Shipman,

David A. Dillow, Zhe Zhang, and Bradley W. Settlemyer.

”Workload characterization of a leadership class storage

cluster.” In 2010 5th Petascale Data Storage Workshop

(PDSW’10), pp. 1-5. IEEE, 2010.

[28] Mi, Ningfang, Alma Riska, Qi Zhang, Evgenia Smirni, and

Erik Riedel. ”Efficient management of idleness in storage

systems.” ACM Transactions on Storage (TOS) 5, no. 2

(2009): 4.

[29] Ahern, Sean, Sadaf R. Alam, Mark R. Fahey, Rebecca

J. Hartman-Baker, Richard F. Barrett, Ricky A. Kendall,

Douglas B. Kothe et al. Scientific application requirements

for leadership computing at the exascale. No. ORNL/TM-

2011/250. Oak Ridge National Lab.(ORNL), Oak Ridge,

TN (United States); Center for Computational Sciences,

2007.

[30] Carns, Philip, Kevin Harms, William Allcock, Charles Ba-

con, Samuel Lang, Robert Latham, and Robert Ross. ”Un-

derstanding and improving computational science storage

access through continuous characterization.” ACM Trans-

actions on Storage (TOS) 7, no. 3 (2011): 8.

[31] Dundas, James, and Trevor Mudge. ”Improving data cache

performance by pre-executing instructions under a cache

miss.” In International Conference on Supercomputing, pp.

68-75. 1997.

[32] Doweck J. 2006. Shared memory ac-

cess. White paper, Intel Research Website.

http://download.intel.com/technology/architecture/sma.pdf

[33] Mutlu, Onur, Jared Stark, Chris Wilkerson, and Yale N.

Patt. ”Runahead execution: An alternative to very large

instruction windows for out-of-order processors.” In The

Ninth International Symposium on High-Performance Com-

puter Architecture, 2003. HPCA-9 2003. Proceedings., pp.

129-140. IEEE, 2003.

[34] Qadri, Muhammad Yasir, Nadia N. Qadri, Martin Fleury,

and Klaus D. McDonald-Maier. ”Energy-efficient data

prefetch buffering for low-end embedded processors.” Mi-

croelectronics Journal 62 (2017): 57-64.

[35] Sun, Xian-He, Surendra Byna, and Yong Chen. ”Server-

based data push architecture for multi-processor environ-

ments.” Journal of Computer Science and Technology 22,

no. 5 (2007): 641-652.

[36] Zhou, Huiyang. ”Dual-core execution: Building a highly

scalable single-thread instruction window.” In 14th Inter-

national Conference on Parallel Architectures and Compi-

lation Techniques (PACT’05), pp. 231-242. IEEE, 2005.

[37] Cao, Pei, Edward W. Felten, Anna R. Karlin, and

Kai Li. ”Implementation and performance of integrated

application-controlled file caching, prefetching, and disk

scheduling.” ACM Transactions on Computer Systems

(TOCS) 14, no. 4 (1996): 311-343.

[38] Ding, Xiaoning, Song Jiang, Feng Chen, Kei Davis, and

Xiaodong Zhang. ”DiskSeen: Exploiting Disk Layout and

Access History to Enhance I/O Prefetch.” In USENIX An-

nual Technical Conference, vol. 7, pp. 261-274. 2007.

[39] Alexander C Klaiber and Henry M Levy. 1991. An archi-

tecture for software-controlled data prefetching. In ACM

SIGARCH Computer Architecture News, Vol. 19. ACM,

USA, 43-53.

Anthony Kougkas et al.: I/O Acceleration via Multi-Tiered Data Buffering 31

[40] Mowry, Todd, and Anoop Gupta. ”Tolerating latency

through software-controlled prefetching in shared-memory

multiprocessors.” Journal of parallel and Distributed Com-

puting 12, no. 2 (1991): 87-106.

[41] Subedi, Pradeep, Philip Davis, Shaohua Duan, Scott

Klasky, Hemanth Kolla, and Manish Parashar. ”Stacker:

an autonomic data movement engine for extreme-scale data

staging-based in-situ workflows.” In Proceedings of the In-

ternational Conference for High Performance Computing,

Networking, Storage, and Analysis, p. 73. IEEE Press, 2018.

[42] Cherubini, Giovanni, Yusik Kim, Mark Lantz, and Vinodh

Venkatesan. ”Data prefetching for large tiered storage sys-

tems.” In 2017 IEEE International Conference on Data Min-

ing (ICDM), pp. 823-828. IEEE, 2017.

[43] Joo, Yongsoo, Sangsoo Park, and Hyokyung Bahn. ”Ex-

ploiting i/o reordering and i/o interleaving to improve ap-

plication launch performance.” ACM Transactions on Stor-

age (TOS) 13, no. 1 (2017): 8.

[44] Abbasi, Hasan, Matthew Wolf, Greg Eisenhauer, Scott

Klasky, Karsten Schwan, and Fang Zheng. ”Datastager:

scalable data staging services for petascale applications.”

Cluster Computing 13, no. 3 (2010): 277-290.

[45] Bengio, Yoshua. ”Markovian models for sequential data.”

Neural computing surveys 2, no. 199 (1999): 129-162.

[46] V Thilaganga, M Karthika, and M Maha Lakshmi. 2017. A

Prefetching Technique Using HMM Forwardand Backward

Chaining for the DFS in Cloud. Asian Journal of Computer

Science and Technology 6, 2 (2017), 23-26.

[47] Tran, Nancy, and Daniel A. Reed. ”Automatic ARIMA time

series modeling for adaptive I/O prefetching.” IEEE Trans-

actions on parallel and distributed systems 15, no. 4 (2004):

362-377.

[48] Matthieu Dorier, Shadi Ibrahim, Gabriel Antoniu, and

Rob Ross. 2014. Omnisc’IO: a grammar-based approach

to spatial and temporal I/O patterns prediction. In

SC’14:Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analy-

sis. IEEE, USA, 623-634.

[49] Yifeng Luo, Jia Shi, and Shuigeng Zhou. 2017. JeCache:

just-enough data caching with just-in-time prefetching for

big data applications. In 2017 IEEE 37th International Con-

ference on Distributed Computing Systems (ICDCS). IEEE,

USA, 2405-2410.

[50] Daniel, Gwendal, Gerson Sunye, and Jordi Cabot.

”Prefetchml: a framework for prefetching and caching mod-

els.” In Proceedings of the ACM/IEEE 19th International

Conference on Model Driven Engineering Languages and

Systems, pp. 318-328. ACM, 2016.

[51] Xu, Rui, Xi Jin, Linfeng Tao, Shuaizhi Guo, Zikun Xiang,

and Teng Tian. ”An efficient resource-optimized learning

prefetcher for solid state drives.” In 2018 Design, Automa-

tion & Test in Europe Conference & Exhibition (DATE),

pp. 273-276. IEEE, 2018.

[52] Wu, Kai, Yingchao Huang, and Dong Li. ”Unimem: Run-

time data managementon non-volatile memory-based het-

erogeneous main memory.” In Proceedings of the Interna-

tional Conference for High Performance Computing, Net-

working, Storage and Analysis, p. 58. ACM, 2017.

[53] Snyder, Bruce, Dejan Bosanac, and Rob Davies. ”Intro-

duction to apache activemq.” Active MQ in Action (2017):

6-16.

[54] Kreps, Jay, Neha Narkhede, and Jun Rao. ”Kafka: A dis-

tributed messaging system for log processing.” In Proceed-

ings of the NetDB, pp. 1-7. 2011.

[55] Zawislak, Dawid, Brian Toonen, William Allcock, Silvio

Rizzi, Joseph Insley, Venkatram Vishwanath, and Michael

E. Papka. ”Early investigations into using a remote ram

pool with the vl3 visualization framework.” In 2016 Second

Workshop on In Situ Infrastructures for Enabling Extreme-

Scale Analysis and Visualization (ISAV), pp. 23-28. IEEE,

2016.

[56] Carns, Philip, Robert Latham, Robert Ross, Kamil Iskra,

Samuel Lang, and Katherine Riley. ”24/7 characterization

of petascale I/O workloads.” In 2009 IEEE International

Conference on Cluster Computing and Workshops, pp. 1-

10. IEEE, 2009.

[57] Dulloor, Subramanya R., Sanjay Kumar, Anil Keshava-

murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,

and Jeff Jackson. ”System software for persistent memory.”

In Proceedings of the Ninth European Conference on Com-

puter Systems, p. 15. ACM, 2014.

[58] Moinuddin K Qreshi, Vijayalakshmi Srinivasan, and Jude

A Rivers. 2009. Scalable high performance main mem-

ory system using phase-change memory technology. ACM

SIGARCH Computer Architecture News 37, 3 (2009), 24-

33.

[59] GB Berriman, JC Good, AC Laity, and M Kong. 2008. The

Montage image mosaic service: custom image mosaics on-

demand. Astronomical Data Analysis Software and Systems

ASP Conference Series 394, 2 (2008), 83-102.

[60] Strukov, Dmitri B., Gregory S. Snider, Duncan R. Stewart,

and R. Stanley Williams. ”The missing memristor found.”

nature 453, no. 7191 (2008): 80.

32 J. Comput. Sci. & Technol., August 2019, Vol., No.

[61] Joo, Yongsoo, Junhee Ryu, Sangsoo Park, and Kang G.

Shin. ”FAST: Quick Application Launch on Solid-State

Drives.” In FAST, pp. 259-272. 2011.

[62] El Maghraoui, Kaoutar, Gokul Kandiraju, Joefon Jann,

and Pratap Pattnaik. ”Modeling and simulating flash based

solid-state disks for operating systems.” In Proceedings of

the first joint WOSP/SIPEW international conference on

Performance engineering, pp. 15-26. ACM, 2010.

[63] Andersen, David G., Jason Franklin, Michael Kaminsky,

Amar Phanishayee, Lawrence Tan, and Vijay Vasudevan.

”FAWN: A fast array of wimpy nodes.” In Proceedings of

the ACM SIGOPS 22nd symposium on Operating systems

principles, pp. 1-14. ACM, 2009.

[64] Chen, Shimin. ”FlashLogging: exploiting flash devices for

synchronous logging performance.” In Proceedings of the

2009 ACM SIGMOD International Conference on Manage-

ment of data, pp. 73-86. ACM, 2009.

[65] Bhimji, Wahid, Debbie Bard, Melissa Romanus, David

Paul, Andrey Ovsyannikov, Brian Friesen, Matt Bryson et

al. Accelerating Science with the NERSC Burst Buffer Early

User Program. Lawrence Berkeley National Lab.(LBNL),

Berkeley, CA (United States), 2016.

[66] Kang, Sooyong, Sungmin Park, Hoyoung Jung, Hyoki

Shim, and Jaehyuk Cha. ”Performance trade-offs in using

NVRAM write buffer for flash memory-based storage de-

vices.” IEEE Transactions on Computers 58, no. 6 (2008):

744-758.

[67] Caulfield, Adrian M., Arup De, Joel Coburn, Todor I.

Mollow, Rajesh K. Gupta, and Steven Swanson. ”Moneta:

A high-performance storage array architecture for next-

generation, non-volatile memories.” In Proceedings of the

2010 43rd Annual IEEE/ACM International Symposium

on Microarchitecture, pp. 385-395. IEEE Computer Soci-

ety, 2010.

[68] Akel, Ameen, Adrian M. Caulfield, Todor I. Mollov, Rajesh

K. Gupta, and Steven Swanson. ”Onyx: A Prototype Phase

Change Memory Storage Array.” HotStorage 1 (2011): 1.

[69] Dong, Xiangyu, Naveen Muralimanohar, Norm Jouppi,

Richard Kaufmann, and Yuan Xie. ”Leveraging 3D

PCRAM technologies to reduce checkpoint overhead for fu-

ture exascale systems.” In Proceedings of the conference on

high performance computing networking, storage and anal-

ysis, p. 57. ACM, 2009.

[70] Wang, Teng, Sarp Oral, Yandong Wang, Brad Settlemyer,

Scott Atchley, and Weikuan Yu. ”Burstmem: A high-

performance burst buffer system for scientific applications.”

In 2014 IEEE International Conference on Big Data (Big

Data), pp. 71-79. IEEE, 2014.

[71] Sato, Kento, Kathryn Mohror, Adam Moody, Todd Gam-

blin, Bronis R. De Supinski, Naoya Maruyama, and

Satoshi Matsuoka. ”A user-level infiniband-based file sys-

tem and checkpoint strategy for burst buffers.” In 2014 14th

IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing, pp. 21-30. IEEE, 2014.

[72] Ma, Xiaosong, Marianne Winslett, Jonghyun Lee, and

Shengke Yu. ”Faster collective output through active buffer-

ing.” In Proceedings 16th International Parallel and Dis-

tributed Processing Symposium, pp. 8-pp. IEEE, 2001.

[73] Ma, Xiaosong, Marianne Winslett, Jonghyun Lee, and

Shengke Yu. ”Improving MPI-IO output performance with

active buffering plus threads.” In Proceedings International

Parallel and Distributed Processing Symposium, pp. 10-pp.

IEEE, 2003.

[74] Pai, Vivek S., Peter Druschel, and Willy Zwaenepoel. ”IO-

Lite: A unified I/O buffering and caching system.” In OSDI,

vol. 99, pp. 15-28. 1999.

[75] Nitzberg, Bill, and Virginia Lo. ”Collective buffering: Im-

proving parallel I/O performance.” In Proceedings. The

Sixth IEEE International Symposium on High Performance

Distributed Computing (Cat. No. 97TB100183), pp. 148-

157. IEEE, 1997.

[76] Bent, John, Garth Gibson, Gary Grider, Ben McClelland,

Paul Nowoczynski, James Nunez, Milo Polte, and Meghan

Wingate. ”PLFS: a checkpoint filesystem for parallel appli-

cations.” In Proceedings of the Conference on High Perfor-

mance Computing Networking, Storage and Analysis, p. 21.

ACM, 2009.

[77] Dong, Bin, Suren Byna, Kesheng Wu, Hans Johansen, Jef-

frey N. Johnson, and Noel Keen. ”Data elevator: Low-

contention data movement in hierarchical storage system.”

In 2016 IEEE 23rd International Conference on High Per-

formance Computing (HiPC), pp. 152-161. IEEE, 2016.

[78] Wang, Teng, Suren Byna, Bin Dong, and Houjun Tang.

”UniviStor: Integrated Hierarchical and Distributed Stor-

age for HPC.” In 2018 IEEE International Conference on

Cluster Computing (CLUSTER), pp. 134-144. IEEE, 2018.

[79] Lee, Donghee, Jongmoo Choi, Jong-Hun Kim, Sam H.

Noh, Sang Lyul Min, Yookun Cho, and Chong Sang Kim.

”LRFU: A spectrum of policies that subsumes the least re-

cently used and least frequently used policies.” IEEE trans-

actions on Computers 12 (2001): 1352-1361.

Anthony Kougkas et al.: I/O Acceleration via Multi-Tiered Data Buffering 33

Appendix

A. Maximum Application Bandwidth

(MaxBW):

DPEMaxBW (s,Ci) =


(s/BWi) ∗Ai , s ≤ Ci

min

 DPE(s, Ci+1)

DPE(Ci, Ci) + DPE(s− Ci, Ci+1)

Move(s− Ci, i + 1) + DPE(s, Ci))

 , s > Ci


(2)

where s is the request size, C is a layer’s remaining

capacity in MBs, i is the current layer, BW is the

bandwidth in MB/s, A is the access latency in ms, and

Move(min size, dest) triggers data organizer to recur-

sively move at least min size data to dest layer.

B. Maximum Data Locality:

DPEMaxLocality(s, d,Li,Ri) =



(s/BWi) ∗ d , Li & s ≤ Ri

min

(
(s/BWi) ∗ (d + 1)

DPE(s, d, Li+1, Ri+1)

)
, !Li & s ≤ Ri

min

 DPE(s, d, Li+1, Ri+1)

DPE(Ri, d, Li, Ri) + DPE(s−Ri, d, Li+1, Ri+1)

ReOrganize(s−Ri) + DPE(s, d, Li, Ri))

 , s > Ri


(3)

where s is the request size, d is the degree of data dis-

persion into DMSH, L is the locality of a dispersion

unit in layer (i.e., if it exists in this layer or not), R is

a layer’s capacity threshold, i is the current layer, BW

is the bandwidth in MB/s, and ReOrganize(min size)

is a function that triggers data organizer to recursively

move at least min size data to maintain the locality of

a dispersion unit.

C. Hot-data:

DPEHotData(s, h,Hi,Ci) =



(s/Ci)/BW , h ≥ Hi & s ≤ Ci

min

 DPE(s, h− 1, Hi+1, Ci+1)

DPE(Ci, h,Hi, Ci) + DPE(s− Ci, h− 1, Hi+1, Ci+1)

Evict(s− Ci, h, i + 1) + DPE(s, h,Hi, Ci))

 , h ≥ Hi & s > Ci

min

(
DPE(s, h + 1, Hi, Ci)

DPE(s, h,Hi+1, Ci+1)

)
, h < Hi & s ≤ Ci

min

(
DPE(Ci, h + 1, Hi, Ci) + DPE(s− Ci, h,Hi+1, Ci+1)

DPE(s, h,Hi+1, Ci+1)

)
, h < Hi & s > Ci


(4)

where s is the request size, h is the file’s hotness score,

H is the minimum hotness score present in a layer,

C is a layer’s remaining capacity in MBs, i is the

current layer, BW is the bandwidth in MB/s, and

Evict(min size, score, dest) is a function that triggers

data organizer to recursively move at least min size

data to the dest layer with score hotness.

	Introduction
	Background
	Modern Application I/O Characteristics
	A New Memory and Storage Hierarchy
	Accelerating Read Access Time
	Offline Data Prefetchers
	Online Data Prefetchers

	Design and Implementation
	Hermes Architecture
	Design overview
	Internal components

	Hermes Buffering Modes and Policies
	Buffering modes
	Data placement policies

	Data-centric Multi-tiered Prefething
	File Segment Scoring
	Prefetched Data Placement

	Implementation Details
	Node design
	Critical components

	Design Considerations

	Evaluation
	Methodology
	Experimental Results
	Synthetic Benchmarks
	Data-centric prefetching
	Real Applications

	Related Work
	Conclusions

