
Hierarchical Data Prefetching for 
Scientific Workflows in Tiered 

Storage Environments
Hariharan Devarajan, Anthony Kougkas, and Xian-He Sun

hdevarajan@hawk.iit.edu 

IEEE International Parallel and Distributed Processing 
Symposium

(IPDPS)

mailto:hdevarajan@hawk.iit.edu


I/O Bottleneck

● In the data-intensive era, 
producing and consuming data 
is critical for scientific discovery.

● I/O subsystems struggle to 
match growing compute 
parallelism.

● System performance is bound 
by its slowest component. 
(Amdahl's “well-balanced” law)

● I/O performance is a concern in 
petascale, and would 
exaggerate even more as we 
ascend towards exascale. 

I/O performance 
bounds system’s 

performance.

Growing gap of CPU and I/O 
performance



● Data is crucial to enable 
discovery.

● IDC reports predict that 
by 2025:
○ global data volume 

will grow to 163 ZB
○ 10x the data 

produced in 2016

Explosion of data

Data 
explosion



Scientific Workflow

● Highly data-intensive
○ Multi-stage
○ E.g., three sub stages of 

simulation, analysis and 
modeling.

● Data Dependent
○ Many stages interchange data 

or compare results to reach 
to a convergence

● Iterative
○ The cycle of simulation, 

analysis and modeling is 
repeating for gaining higher 
resolution of data.

Complex 
Scientific 

Workflows

Growing gap of CPU and I/O 
performance



Current approach: Optimize data access

Tiered Hardware Software

New intermediate resources 
with higher bandwidth.

E.g., HBM, NVRAM, NVMe SSD, 
etc. 

Increases performance and 
reduces access latency.

Reduces access cost by 
preloading data to compute.

E.g., Data prefetching, data 
staging, data replication, etc. 

Reduce I/O cost using several 
data access optimizations.



Both tiered storage and 
data prefetching 
optimize the data 
access.

A combination of these two 
approaches can compound the benefit 

to improve data access.

Observation

Hypothesis



Hierarchical Data 
Prefetching for Scientific 
Workflows in Multi-Tiered 
Storage Environments.

HFetch

Code: https://bitbucket.org/scs-io/hfetch  

https://bitbucket.org/scs-io/fetch


HCompress Goals

Data CentricServer-Push Hierarchical

Lightweight and 
asynchronous data 

push. 

Server pushes 
appropriate data to the 
app in place of it pulling.

Utilize how data is 
accessed in a workflow.

scheme looks at how 
data is accessed instead 

of apps accessing it.

Unify the diverse 
hardware tiers.

The engine matches 
data hotness to the  

device characteristics.



HCompress Design

Design

● Server-Push
○ Event are captured through 

kernel’s inotify utility
○ Prefetched data is push to the 

hierarchy
● Data Centric

○ Score Incorporates 
○ recency, frequency, and 

sequencing
● Hierarchical Placement

○ The engine calculates placement 
of prefetch data based on 
multi-tiered storage and data 
characteristics.



● Specific Client I/O interception of open/close
● Monitoring through VFS layer
● Collect event through Hardware Monitor.
● Each layer has a different daemon

Example

● Update Auditor
○ Calculate scores
○ Rearranges scores in descending order

● Run DPE
● Perform I/O on different layers.



● Cluster Configuration
○ 64 compute nodes
○ 4 shared burst buffer nodes
○ 24 storage nodes

● Node Configurations
○ compute node

■ 64GB RAM and 512GB 
NVMe

■ Burst Buffer node
■ 64GB RAM and 

2x512GB SSD

● Storage node
○ 64GB RAM and 2TB HDD

Evaluation

● Applications tested
○ Synthetic Benchmarks,
○ Montage, and 
○ WRF

● Compared solutions
○ Stacker: ML-based 

online prefetching
○ KnowAc: offline 

prefetching

Tedbed Config



Server-Client Ratio

● Single Node test
● Test the Server with different 

thread counts for client, daemon 
and engine

○ As clients increase more threads on 
daemon to match production rate.

● Observations
○ Match production rate with 

consumption rate.
○ Max throughput is 213K ops/sec.
○ 1 HFetch server 32 clients.



Placement Engine Reactiveness

● Single Node test
● Test the how sensistive engine 

should be with different updates
○ The engine should match update 

rate to be optimal.

● Observations
○ Trade-off “optimal placement” and 

“engine cost”.
○ We provide a auto tuning of engine 

based on rate of updates. 



Benefit of Hierarchical Prefetching

● A perfect parallel prefetching has 89% hit ratio.
● Most common serial prefetching cannot overlap the 

data perfectly and has more misses.
● HFetch uses ⅛ of ram and is 17% slower.

● Adding more layers reduces the cost of miss penalty
○ Additional cache space on lower tiers
○ Devices slower than RAM but faster than PFS.

● 35% to 50% faster.

Observations:

Lower-RAM footprint Extending Prefetching cache.



Scientific Workflows

● Offline Profiler is accurate with high profiling cost.
● Stacker doesn’t have that cost but application-level 

prefetching hurts due to cache evictions and 
pollution.

● HFetch optimized this using a global data-centric 
score which helps the overall workflow.

● HFetch boosts read performance by 20-40%.

Observations:

Montage WRF



1

2

3

4

Conclusions

HFetch introduces a data-centric hierarchical 
prefetching methodology.

HFetch proposes a novel data centric scoring 
mechanism to measure the hotness of data.

Quantified the benefit of utilizing hierarchical 
hardware and data prefetching cohesively.

HFetch can optimize scientific workflows up to 35% 
compared to competitive solutions.

A list of all 
observations



Q&A

hdevarajan@hawk.iit.edu

Thank you

Code Video


