Hariharan Devarajan, Anthony Kougkas, and Xian-He Sun

hdevarajan@hawk.iit.edu

mailto:hdevarajan@hawk.iit.edu

/0 Bottleneck

In the data-intensive era, i bk s : /
producing and consuming data siow down
is critical for scientific discovery. ‘*’

. More cores
I/0 subsystems struggle to ' per socket

match growing compute

pa rallelism. Increasingly faster
Uni-processors

System performance is bound
by its slowest component. |
(Amdahl's “well-balanced” law) 2000 2010 2020

I/0 performance is a concern in
petascale, and would
exaggerate even more as we

ascend towards exascale. I

Growing gap of CPU and I/0
performance

Z. 7
Explosion of data
, : . s . s
e Datais crucial to enable I, GSe© ToPEMBNTES oo
~5 (() 15 PETABYTES
discovery. A @
: EXABYTES 5081920 o
o IDC reports pFEdICt that § o reares STERABITES
by 2025' EXABYTES & PETASCALE 7.1 BILLION
. EXABYTES US GOV'T 58 MILLION

o global data volume

kz% 2,5 PETABYTES nATA 2010 2

will grow to 163 ZB 10 PETABYTES EXPLOSION & ... _

21 MILLION 7,494

O 1 OX the data A - TERABYTES
. ‘ \ 43 TERABYTES
roduced in 2016 DNABASES
P 7P S 0 PETABYTES
TERABYTES BILLION 800
TERABYTES

281 BILLION 100 EXABYTES

9.6
BILLION

St

Scientific Workflow

e Highly data-intensive
o Multi-stage
o E.g., three sub stages of
simulation, analysis and
modeling.

e Data Dependent
o Many stages interchange data
or compare results to reach
to a convergence

e Iterative
o The cycle of simulation,
analysis and modeling is
repeating for gaining higher
resolution of data.

Experiment Workflow (DAC)

Diffraction
Pattern

— @

Ampitude &
Phase

Analysis Workflow (DAC)

Atom Positions|

Lattice
Fitting

\Atom Pgsitions

Thresholding

Strain Stats

Density
Isovolume

-
//

Atom
Displacements
y g

& O¥ 13
1 “ S
e
& :
> AR
™

Strain Stats

Modeling Workflow (HPC)

Current approach: Optimize data access

(
New intermediate resources Reduce I/0 cost using several
with higher bandwidth. data access optimizations.
E.g., HBM, NVRAM, NVMe SSD, E.g., Data prefetching, data
etc. staging, data replication, etc.
Increases performance and Reduces access cost by
reduces access latency. preloading data to compute.

Observation

Both tiered storage and
data prefetching
optimize the data
access.

A combination of these two

approaches can compound the benefit
to improve data access.

(Hypothesis

HFetch

Hierarchical Data
Prefetching for Scientific
Workflows in Multi-Tiered
Storage Environments.

SCAN ME

Code: https://bitbucket.org/scs-io/hfetch

https://bitbucket.org/scs-io/fetch

HCompress Goals

> Server-Push >

Lightweight and : :
asynchronous data Unify the diverse
push. hardware tiers.

The engine matches
data hotness to the
device characteristics.

Server pushes
appropriate data to the
app in place of it pulling.

HCompress Design

Server-Push ¢ b
LT T s— b Rl 1
o Event are captured through : : Application Cores .8 (.
kernel’s inotify utility | S 4,“: EFE . i
. : : 4 Applicati |
Prefetched data is push to the RIS (TR SIS s W B &
hierarchy H Agent Manager | E : I
. | 2 : .‘ﬁ' : I
Data Centric | | Hierarchical File Segment - .. i
—_—— Data Auditor HFetch |
o Score Incorporates :: Placement | |~ Gzireri 1o : Medcry ‘,4
o recency, frequency, and e R R T e P
. | {6‘3,‘\(y Segment —; i Data Prefetching | | |5
sequencing % R i S} Mapoings | |12 Dedicated RAM | ||o
0 0 . - - - ®
Hierarchical Placement [Nodetonode D P V0 Z
Th) o | /|_communication lien =
=4
o e engine calculates placement I :HFetch Server running on core n+1 : 3
of prefetch dataD | T AN e -
multi-tiered storage and data <+— Instructions T;
gt #—— Data movement Burst Buffers §
characteristics. +—— Agent Events IL— e
-—— Kernel Events @ ll

Remote Parallel File System

N

Example

HFetch Server space
Applications HFetch Agents inotify_handle_event . Auditor |pataPlacement
Hardware Monitor Update Segment Statistics Calculate | Engine Tiers:
Agent#1 Agent#2 |(push to event queue) remercydllE Rconey i T1<T2<T3<T4
fopen(f1, READ) 3 start_epoch(f1) S inotify_add_watch(f1)| [0,0,0,0] [0,0,0,0] null [0.0,0.0,0.0,0.0)| [T4,T4,T4,T4]
fopen(f2, WRITE) - IGNORE
fopen(f1, READ) - start_epoch(f1) IGNORE

fread(f1,0,1)
fread(f1,1,1) fread(f1,0,1)

f1,0ffset:0,size:1,12 collect_event() [+1,0,0,0] [#12,0,0,0] prev->s0 ([1.0,0.0,0.0,0.0]| [T1,74,T4,T4]
[{f1,offset:1,size:1,t3},
{f1,0ffset:0,size:1,t3}]
[{f1,0ffset:2,size:1,14},
{f1,0ffset:1,size:2,t4}]

collect_event() [#1,#1,0,0] | [+t3,+3,0,0] | prev->[s0,s1] |[1.5,1.0,0.0,0.0]| [T1,72,74,T4]

fread(f1,0,1) fread(f1,1,2) collect_event() |[+1,+1,41,0] | [+t4,+t4,+t4,0] |prev->[s0,s1,52]|[1.5,1.5,1.0,0.0]| [T1,T2,72,T4]

fread(f1,0,1) - - f1,0ffset:0,size:1,t5 collect_event() [#1,0,0,0] [15,0,0,0] prev->s0 ([1.2,0.5,0.3,0.0]| [T1,72,73,T4]
fclose(f1) - end_epoch(f1) - IGNORE
[fclose(f2) __|fclose(f1) | IGNORE _Jend._epoch(f1) | inotify_rm_watch(f1) |
®

e Specific Client I/0 interception of open/close e Update Auditor

e Monitoring through VFS layer o Calculate scores

e Collect event through Hardware Monitor. B Riesiinidescending order

e Each layer has a different daemon SIERUN DPE

® « Perform I/O on different layers.

Evaluation

e Cluster Configuration

(@)

(@)

(@)

64 compute nodes
4 shared burst buffer nodes
24 storage nodes

e Node Configurations

(@)

compute node
m 64GB RAM and 512GB
NVMe
Burst Buffer node
64GB RAM and
2x512GB SSD

e Storage node

(@)

64GB RAM and 2TB HDD

e Applications tested

o Synthetic Benchmarks,
o Montage, and
o WRF

e Compared solutions

o Stacker: ML-based
online prefetching

o KnowAc: offline
prefetching

Server-Client Ratio

e Single Node test Daemon:Engine Ratio =26 ~#-4:4 = 6:2
e Test the Server with different 250K

thread counts for client, daemon

and engine

o Asclients increase more threads on
daemon to match production rate.

e Observations
o Match production rate with
consumption rate.
o Max throughput is 213K ops/sec. 8 16 32
o 1 HFetch server 32 clients. # OF CLIENT CORES

o S @ 9
o o o o
= ® = R

Q
b
S
7
[+
W
Qa
:
Z

o

Placement Engine Reactiveness

e Single Node test

Latency == Read Time -e—Hit Ratio

e Test the how sensistive engine %4 ;g‘:‘
should be with different updates ' 80%
o The engine should match update 82'5 1 70%
rate to be optimal. W 2 g~
, b 50% &
e Observations 15 ok
o Trade-off “optimal placement” and o, 30x =
“engine cost". 0.5 20%
o We provide a auto tuning of engine , ;i%
based on rate of updates. wl w2 w3 wl w2 w3 wl w2 w3

High Medium Low
ENGINE TRIGGER SENSITIVITY

Benefit of Hierarchical Prefetching)

Lower-RAM footprint Extending Prefetching cache.

0 In-Memory Optimal
OHFetch

B /n-Memory Naive
ONone

w &
(=1 S

TIME (SEC)

sl

Parallel HFetch Serial None
PREFETCHING SOLUTION

20
, —n Ml

320 640 1280 2560
CLIENT PROCESSES

Observations:
A perfect parallel prefetching has 89% hit ratio. L S Adding more layers reduces the cost of miss penalty
Most common serial prefetching cannot overlap the o Additional cache space on lower tiers
data perfectly and has more misses. o Devices slower than RAM but faster than PFS.

35% to 50% faster.

e HFetch uses % of ram and is 17% slower.

Scientific Workflows

Montage

OStacker OKNOWAC DHermes [No Prefetching
B Profile-Cost

3K

"TIME (SEC)
N
x

-
x

@jmﬂmﬂ

640 1280 2560
CLIENT CORES

Observations:

Offline Profiler is accurate with high profiling cost.

e Stacker doesn't have that cost but application-level
prefetching hurts due to cache evictions and
pollution.

OStacker OKNOWAC OHermes @ No Prefetching
B Profile-Cost

TIME (SEC)
w &H

320

HFetch optimized this using a global data-centric
score which helps the overall workflow.
HFetch boosts read performance by 20-40%.

640 1280 2560
CLIENT CORES

HFetch introduces a data-centric hierarchical
prefetching methodology.

HFetch proposes a novel data centric scoring
mechanism to measure the hotness of data.

Quantified the benefit of utilizing hierarchical
hardware and data prefetching cohesively.

HFetch can optimize scientific workflows up to 35%
compared to competitive solutions.

Conclusions

A list of all
observations

Q&A)

Thank you
hdevarajan@hawk.iit.edu

SCAN ME SCAN ME

