2010 39th International Conference on Parallel Processing

Optimizing HPC Fault-Tolerant Environment: An Analytical Approach

Hui Jin*, Yong Chen §1, Huaiyu Zhu*, Xian-He Sun*

*Department of Computer Science
Lllinois Institute of Technology
Chicago, Illinois, USA
{hjin6, hzhul2,sun}e@iit.edu

Abstract—The increasingly large ensemble size of modern
High-Performance Computing (HPC) systems has drastically
increased the possibility of failures. Performance under failures
and its optimization become timely important issues facing
the HPC community. In this study, we propose an analytical
model to predict the application performance. The model
characterizes the impact of coordinated checkpointing and
system failures on application performance, considering all the
factors including workload, the number of nodes, failure arrival
rate, recovery cost, and checkpointing interval and overhead.
Based on the model, we gauge three parameters, the number
of compute nodes, checkpointing interval, and the number of
spare nodes to conduct a comprehensive study of performance
optimization under failures. Performance scalability under
failures is also studied to explore the performance improvement
space for different parameters. Experimental results from
both synthetic and actual system failure logs confirm that the
proposed model and optimization methodologies are effective
and feasible.

Keywords-Fault Tolerance; Checkpointing; High-
Performance = Computing; Performance Optimization;
Scalability

I. INTRODUCTION

High-Performance Computing (HPC) has crossed the
Petaflop (10** FLOPS) mark and is moving forward to
reach the Exaflop (10'® FLOPS) range. Teraflop computers
(102 FLOPS) are already widely deployed. Such ultra-scale
computing power comes with increased system complexity.
Modern high-performance computers are often equipped
with hundreds of thousands of CPUs, tera-bytes of main
memory, and peta-bytes of storage. The top ten supercom-
puters of top 500 list in November 2009 are equipped with
cores ranging from 41616 to 294912 [21]. The large ensem-
ble size of modern parallel systems significantly increases
the possibility of system failures. The Mean-Time-Between-
Failures (MTBF) of a large-scale cluster could drop to hours
[19]. The frequent interruption due to failures will severely
degrade the application performance.

Checkpointing/Restart (C/R) is a widely used mechanism
for fault-tolerant computing. Modeling the application per-
formance with the presence of failures and the C/R system
is a key to achieve optimal performance. Traditionally, the

§ This work was performed while he was at Illinois Institute of Tech-
nology.

0190-3918/10 $26.00 © 2010 IEEE
DOI 10.1109/1CPP.2010.80

525

tComputer Science and Mathematics Division
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

cheny@ornl .gov

application performance is characterized by workload, the
number of processes, and the computing power available in
a failure-free environment. Failures and checkpointings in-
troduce several more performance factors, including failure
arrival rate, failure recovery cost, and checkpointing interval
and overhead. The problem is further complicated by the fact
that these factors may be correlated. For example, increasing
the number of processes will also increase failure arrival rate
and checkpointing overhead.

While some parameters have monotonic effect on the
application performance, there are several tunable param-
eters that complicate the performance optimization, such as
the number of processes deployed for an application and
the checkpointing interval. The selection of larger number
of processes can benefit the application by decreasing the
workload on each node, but may introduce higher possibil-
ity of failures and checkpointing overhead for coordinated
checkpointing. The selection of checkpointing interval also
plays a critical role in performance. A lazy checkpointing
mechanism reduces the checkpointing overhead but penal-
izes the performance with more work loss in case of failures.
On the other hand, a frequent checkpointing involves more
overhead with less work loss.

The usage of spare nodes as the replacement is a promis-
ing approach to reducing failure recovery cost [18]. How-
ever, identifying an appropriate spare node allocation is not
an easy task. Excessive spare node allocation is a waste of
computing power. On the other hand, the performance can
be severely degraded if there are not enough spare nodes and
the application has to wait for the failures to be manually
repaired [17].

All of the issues discussed above make performance opti-
mization under failures a challenging task. In this study, we
present a comprehensive model to characterize the applica-
tion performance under failures and introduce optimization
strategies to utilize checkpointing and parallel processing
for better performance. The contribution of this research is
threefold:

« First, we propose a queueing model to predict applica-
tion performance with the consideration of workload,
the number of processes, failure arrival rate, recovery
cost, and checkpointing interval and overhead.

« Second, we introduce numerical approaches to deriving

@) CO‘ pute
1(!) I
& SOCIety

the optimal number of processes, checkpointing interval
and number of spare nodes for performance optimiza-
tion.

« Third, we study the scalability with different system
parameters, analyze performance improvement space,
and provide directions for developing scalable comput-
ing environments under failures and checkpointing.

The rest of this paper is organized as follows. We first
present the performance model under failures and coordi-
nated checkpointing in section II. Section III introduces
optimization methodologies for the tunable parameters. Scal-
ability analysis and its implications are presented in section
IV, followed by an experimental study presented in section
V to verify the model and the optimization methodologies.
Section VI reviews and compares the related work. Finally,
section VII concludes this study and discusses future work.

II. PERFORMANCE UNDER FAILURES AND
COORDINATED CHECKPOINTING

A. Assumptions

A computation intensive application with sequential work-
load of W in terms of running time (e.g. hours) is assumed
to be running on a homogeneous large-scale cluster system.
Sequential workload refers to the failure-free execution time
of the application with only one process. The application is
completely parallelizable with a processes, which means that
all the components of the application can be parallelized.
The workload is evenly distributed to a processes such that
each process bears a workload of w = W/a. Each process
is mapped onto one compute node for execution. Since the
processes and compute nodes are one-to-one mapped, we
use these two terms interchangeably throughout this paper.

We assume the inter-arrival times of failures for each
node are independent and identically distributed (iid) as
exponential random variables with parameter \;, which is
the inverse of MTBF. The entire application will be halted if
any process fails during the execution so the failure arrivals
of the parallel system with « nodes is also exponentially
distributed with parameter A = a);. Though exponential
distribution may not be the best fit for failure arrivals with
the consideration of correlated failures [22] [19], it is still
widely assumed by the important works in this area [25]
[18] [4] [24]. One possible reason is that it is too complex, if
not impossible, to propose a practical analytical model with
other distributions such as weibull. Furthermore, exponential
distribution will be more suitable for failure arrivals with the
assistance of data pre-processing techniques that remove the
redundant/correlated failures [28]. In sub-section V-A, we
demonstrate that in real system in production, although the
failure arrival is not perfectly exponential distributed, our
assumption and model can still lead to a high accuracy in
matching real scenario.

Applications have two options to handle the interrupts
caused by failures. The first option, repair-based failure

526

Table I: Nomenclature

Symbol[Default Value [Description.

w 524,288 Hours Sequential workload of a parallel application in
terms of hours.

a N/A Number of processes of an application (Number
of compute nodes involved).

w W/a Workload on each node in terms of hours.

s ST Failure arrival rate of each node TrArr.

A a X Ay Failure arrival rate of the system with a nodes.

"y 0.1 Hour Mean failure recovery cost from the perspective
of application level.

oy I Standard deviation of recovery cost in terms of
hours.

0f 1 Cax}efﬁcient of variation of failure recovery cost,
ny

T 0.5 Hour Checkpointing interval in terms of hours.

) d=p+gXa Checkpointing overhead in terms of hours.

p 0.05 Hour 1/0 overhead of image writing in terms of hours.

q 0.0006 Hour Message passing overhead in terms of hours.

vy y=17+9 Failure-free period needed by a successful check-
pointing segment.

T N/A Random variable to finish a segment.

Xi/X | N/A Random variable that reflects rework cost in terms
of hours.

Y'Y N/A Random variable that reflects system down time
due to one or more failures.

S N/A Random variable that reflects the number of inter-
rupts to finish one segment.

Ux (S) N/A Do X

Uy (S)| N/A i1 Vi

T N/A Random variable to finish a parallel application in
terms of hours.

m lw/7] Number of segments with length of v = 7 + &
required to finish a workload of w on each node.

« w (mod T) Length of the last segment to finish the applica-
tion.

%) m Failure repair rate, inverse of physical failure
repair time.

P YA System-level failure intensity. Must be less than 1
to guarantee the stability of the system.

o 1/ Standard deviation of physical failure repair cost.

[% System-level factor to determine the optimal num-
ber of compute nodes.

a‘;pt N/A Application-level factor to determine the optimal
number of processes.

Qopt min{ag,,, ag,,) Optimal number of processes that leads to the min-
imum application execution time while keeping
the stability of the system.

Trirst | N/A First order estimation of the optimal checkpointing
interval.

Topt N/A Optimal checkpointing interval in terms of hours.

b N/A Optimal number of spare nodes.

n N/A Random variable of the number of failures in a
system with a + b nodes.

recovery, suspends the application till the failures are physi-
cally fixed. As an alternative, the application may also select
one or more pre-allocated spare nodes to replace the failed
compute nodes and continue the execution, which is termed
as replacement-based failure recovery. The essence of the
second option is to decrease the failure recovery cost. The
physical repair of failures by system administrators may
take several hours [19], and we can reduce the recovery
cost to several minutes, or even seconds, by using the spare
nodes [23]. Regardless of the failure handling mechanism,
we assume that the recovery time of each failure follows

a general distribution with mean x; and standard deviation
as. Replacement-based failure recovery differs from repair-
based recovery in the sense that it has lower values of
us. The coefficient of variation of failure recovery captures
the normalized dispersion of failure recovery time and is
denoted as 6; = o;/u;. Failures may overlap with each other,
which means that a failure may occur during the recovery
of a previous failure. In such case, the failures are handled
on First-Come-First-Serve (FCFS) basis. The latter failure
will be queued and recovered till all the previous failures
are fixed. A parallel application with a processes can be
considered as an M/G/1 queueing system when we treat a
failure as an event (customer) arrived in the queue.

Coordinated checkpointing is taken at fixed interval of
7. Similar as [14], we model coordinated checkpointing
overhead as § = p+¢xa, where p is the I/O overhead and ¢xa
reflects coordination cost. I/O overhead of p does not scale
with « under the assumption of completely parallelizable
applications. Coordination cost is linearly proportional with
the number of processes based on the analysis of Chandy-
Lamport algorithm [3], which is the basis of all the current
coordinated checkpointing implementations [20] [2] [9]. We
assume synchronous checkpointing in this study and do not
distinguish between checkpointing overhead and latency. We
define rework as the work done between the last checkpoint
and the arrival of the failure, which has to be redone after
the system recovers from the last checkpoint.

Table I lists the symbols, their default values if available,
and the descriptions that are frequently used throughout this
paper. The default values are selected based on the failure
trace from systems in production or related work [19] [14]
[15].

B. Performance of Single Checkpointing Segment

The terminology of checkpointing segment (or segment
for simplicity) represents a period of time between two
consecutive checkpoints. A segment begins with a stable
state of last checkpoint and ends when a new checkpointing
is finished. A continuous failure-free time period with length
of v = 7+ 6 is the condition to terminate a segment. If
a failure happens at time ¢ < v, an interrupt occurs and
we have to resume the segment after the failure recovery,
which initializes another attempt to finish the segment. Such
attempts to a successful segment execution iterate till the
termination condition is met. The success of a segment
execution means that the workload of + is saved to the stable
storage by checkpointing.

Let random variable T denote the time to finish a segment
of length ~, we have

527

T=X1+Xo+ ..+ Xs+V1+Yo+ ... +Ys+7vy

S S
=D Xi+) Yit+y
i=1 i=1

=Ux(S) + Uy (S) +~ (L

where X;(1 < i < S) represents the rework cost and
Yi(1 <4 < S) is the system down time due to one or more
failures. S is the random variable denoting the number of
interrupts occurred over the segment. We use X and Y to
replace X; and Y; throughout this paper when the context
is clear. Ux(S) and Uy (S) represent the summation of X, to
Xs, Y1 to Ys, respectively. Figure 1 illustrates a segment and
its composition.

Lz [&]

4_Segment d—

X1|

Segmente

Figure 1: Checkpointing Segment

X falls within the range of 0 < ¢ < v and its probability
of equalling to ¢ is the conditional probability that a failure
happens at time ¢, given that the inter-arrival of failures is
less than 4. So we have the probability density function of
X as fx(X=t)= ﬁf—:tx- The mean and variance of X can
be expressed as:

B = [(X =0 =5+ @)
V) =B - B = - gt O)

Under the assumption of the M/G/1 failure processing, we
can get the mean and variance of Y using existing results
from queueing theory [11] as:

o
E(Y):l_;w

“4)

aF + b
(1= Auyp)?

S is the number of failed attempts before a successful one,
so we have the probability function of random variable S as
P(S =s) = (1—e~"*)se~7*, The first term of (1—e~"*)* is the
probability of first failed s attempts due to interrupts. The
second term of e—7* represents the probability of continuous
failure-free segment execution. We can derive the mean and
variance of S as:

V(Y)=EY?) - E*(Y) = (&)

B& =1 — e ©)
V) = e — e et - ™

Put the formulas together, we have the mean and variance
of T as:

E(T) = E(E(TI|S))
=E(y+Xi+Xo+ ...+ Xs +Yi+ Yo+ ...+ Y5|9)
= E(y+SE(X)+ SE(Y))

1 24)

= (e’ = 1)(=
@ =D+

®)

V(T) = E(V(T|S)) + V(E(T]S))

=E(S(V(X)+V (V) + V(S)(EX) + E(Y))*

®

C. Performance of Parallel Applications

Each segment of 4 7 + & discussed in sub-section
II-B finishes a useful amount of work =, which has been
successfully checkpointed to the stable storage. We need
m = |w/7] segments of v and one single segment of o = w
(mod 7) to finish the parallel application.

Let 7 be the time to finish a parallel application under
failures, we have

E(T) = mE(T) + E(T") (10)
= lw/r)(e™ = (G +)
a 1 MKy
e =D T
z@ﬁm“fm§+kﬁﬂ>
—_ (%)(e(f-%—p-%-qa)a%f)(E I_Zﬁ

The first term of mE(T) reflects the mean time of success-
ful m checkpointing segments. The second term of E(7) is
the mean time of the rest workload to finish the application.
We neglect the second term due to the fact that it is trivial
for application with large workload and reasonably short
checkpointing interval. The variance of 7 is also derivable
by V(T) =mV(T) + V(T").

This theoretical analysis shows that the application exe-
cution time and its variation are actually functions of the
number of compute nodes a, failure arrival rate of each
node), failure recovery mean p; and stand deviation
os,checkpointing interval = and its overhead § = p + ¢ x a.

III. PERFORMANCE OPTIMIZATION

In section II we have presented a model to characterize
and predict the performance of parallel applications under
failures, which considers a wide range of parameters. While
the application execution time is monotonically impacted
by the parameters of failure arrival rate, recovery time and
checkpointing overhead, there are several tunable parameters
to decide the optimal performance. The rest of this section
discusses the optimal selection of the tunable parameters.

528

A. Optimal Number of Processes

We denote a.,. as the optimal number of processes that
leads to the minimum application execution time while
keeping the stability of the system [11]. A system is referred
as unstable if the number of failed nodes keeps increasing,
otherwise the system is stable.

The number of processes for a parallel application is
determined by two factors: System-Level Factor a3, and
Application-Level Factor a?,,.

1) System-Level Factor: From the system’s perspective,
every failed node must be physically repaired in order to
keep the sustainability of the system. We term ¢ as the
failure repair rate, which is the inverse of mean physical
failure repair time. Note that the value of ¢ is determined
by the physical failure repair time regardless of the fail-
ure handling mechanisms taken by the application. The
replacement-based failure recovery helps reduce the failure
recovery cost for the corresponding application. However,
from the system’s view, a failed node eventually requires
physical failure repair such that it can be available for future
use.

We define p = M/ = a);/p as the failure intensity of the
system. Based on queueing theory, the value of p must be
kept less than 1 to ensure the stability of the system. By
setting p = 0.99 for the maximum value of failure intensity,
we have a3, = Ofg“’

2) Application- Level Factor: While system-level factor

a3,, guarantees the stability of the system, a2, is the optimal
number of processes that leads to the minimum application
execution time. We have a,,. = min{a3,,,a?,,} to guarantee
both the system stability and the minimum application
execution time.

Considering the expected application execution time of
formula (10) as a function of the number of processes a,
a¢,, is the value that satisfies the differentiation function
of 221 — o, which is a transcendental equation. There is
no analytlcal solution to such equation. We use Newton’s
Method [1] to find the optimal number of processes a
numerically.

The pseudocode to find the optimal number of processes
is demonstrated in Algorithm 1. We first calculate the
a3,., which is also set as the starting point of a2, for
Newton’s method. After the iteration terminates, we select
} as the optimal number of processes.

opt

opt

mzn{aom, opt

Algorithm 1 Find the Optimal Number of Processes

AE(T)
da

Definition:g(a) = . € is a positive real number sufficiently close to zero.
Objective: Find the optimal number of processes

a® 0.99¢
opt <~)‘f
al < a
o t
while |g(aom)\ > e doa
- g(agpye)
opt aopt -‘7'(”'gpt)
end while
Gopt < min{ag,,, ag,,}

B. Optimal Checkpointing Interval

In this sub-section we discuss the optimal checkpointing
interval and its derivation. We first present a first order
estimation of the optimal checkpointing interval, followed
by a numerical methodology for a higher order estimation.

1) First Order Approximation: The optimal checkpoint-
ing interval 7 can be derived by solving equation 2270 = o,
For the first order estimation, we have the followmg condi-
tions hold for relatively reliable system:

o limyaso B(X) = limyaso(s + =5x) = 2

« By applying Taylor Expansion to e** and neglecting

higher order terms, we have e’* =1+ X + % + ..
14+~
Putting all the elements together, we have the simplified
version of the mean application execution time as,

~
~

BE(T) = %E(T) - %(w + SE(X) + SE(Y))
_ %(T+5+(T+5)A(T+5 1_“73”)) (11)
OE(T)

The differentiation equatlon can be obtained as2Z7)
w(3 — H(14+80/2+ A)) = 0. We obtain the ﬁrst order

2 1—)\}
approximation of checkpomtmg interval as

1
Tfirst = \/25(A +6/2+ 5 K f)

1 I
- ,\+1—AW)

25((12)

This result is consistent with the conclusion from [4]. It is
also identical to the conclusion of [25] if the failure recovery
cost is considered to be zero.

2) Higher Order Approximation: The assumption that v\
is negligible made by first order estimation will not hold
for large-scale systems with a large value of a, which will
increase both v = 7 +p+ ¢ xa and X = a x ;. Next we
introduce a numerical solution to finding a more precise
value of optimal checkpointing interval .

Again, equation 227 = 0 is used to derive the optimal
value of = when considering E(7) as a function of ~. From
formula (10), we have

OE(T) O(w/T)(e™ = 1)(5 + 1_M;Lffx)
or or -
1 SA_TA
=0+ - e 1))

By solving equation 1—e®*e™ (1 — 7)) = 0, we obtain the
optimal checkpointing interval. Numerical method similar as
Algorithm 1 can also be adopted. In order to converge faster,
we suggest to use first order estimation as the starting point
of the iteration.

C. Combined Optimization

In sub-sections III-A and III-B we have presented method-
ologies to derive the optimal number of processes and check-
pointing interval individually. Some systems may grant more

529

flexibility such that the user can specify both the number of
processes and the checkpointing interval when submitting
the job. In this case, the combined optimization from both
sides is desired. This question is to seek a combination of
(@opt, Top:) to minimize the application execution time while
the other parameters, i.e., \s, us,p and ¢ are known.

A brute force solution to this problem is to iterate all
possible combinations and find the one with minimum
execution time, which is costly, if not impossible for large-

scale system with millions of components.

This problem can be formalized as follows, 4,, = an

Tn
fla) = 2ED | g(r) = 220D and F(A,) = (flan)) It
‘ . g(7n)
Agpt = < Gowt) is the optimal result, it satisfies F(4,,,) =
Topt
f(aopt) _ 0
g(Topt) 0

We leverage Newton’s numerical method again to solve
this problem. We start the iteration of Newton’s method
[
ijt
represents the corresponding optimal checkpointing interval

derived from sub-section III-B. The iterative fg?ctigrfl is

Apgr = Ap = [Jr(A,)] 7 F(A,), where Jr(4,) = | 52

with A, = is the system-level factor and r,

Aot

T
99

da T
is the Jacobian Matrix. Similar as Algorithm 1, system-level
factor a3, should also be considered in deciding the optimal
number of processes for the combined optimization.

D. Spare Node Allocation

Replacement-based failure recovery is a promising solu-
tion to mitigating the impact of failures on the performance
since it is widely observed that spare nodes are available in
production systems [17] [26]. Suppose we have a compute
nodes in a system, in this sub-section we study the selection
of b, the optimal number of spare nodes to tolerate failures
from o compute nodes.

For the queueing system composed of a + b nodes, we
have the failure arrival rate of A\ = a x ;. Spare nodes do
not have jobs and can be considered as failure-free. In this
scenario the failure is recovered by physical repair because
the failed nodes eventually need to be physically fixed to
keep the sustainability of the system.

Let n be the random variable that reflects the number
of concurrent failures to o nodes. Based on existing results
from queueing theory [11], we have the mean and standard
deviation (Std) of = as,

E(n) = Mo+ (M)’ (1 +0%0%)/(2(1 = /)

=p+p*(1+0%6*)/2(1 - p)) (14)
Std(n) = /V(n) (15)
_ 252 ASE(s%) AE2(s?)
_\/E(n)—l-)\o +3(17p) 41— p)?

Here E(s?) and E(s®) are the second and third moments of
failure repair time respectively, which can be derived from
¢, o, the distribution and its moment generation function.
Formulas (14) and (15) also reveal that p is an important
factor to determine the number of concurrent failures.

We use [E(n) — k x Std(n), E(n) + k x Std(n)] to curve the
range of n and set b, = E(n) + k x Std(n) spare nodes
to tolerate the concurrent failures happen to the system.
k is a small positive integer to control the accuracy and
efficiency of spare node allocation. There is a tradeoff with
the selection of k. A smaller ¥ comes with conservative
spare node allocation and a higher % corresponds to an
aggressive approach of spare node allocation. The impacts
with different values of k are discussed in sub-section V-C.

IV. SCALABILITY ANALYSIS

In Figure 2 we plot the optimal number of processes,
checkpointing interval and the corresponding application
execution time under different environments. In each sub-
figure we first demonstrate the optimal performance for the
default environment, where each parameter is set as the
default values in Table I. Next we change the value of one
parameter in each environment to observe its impact on
the scalability. Coordination cost grows with the increase
of the number of processes and has more sensitive impact
on the scalability. We plot five series of bars with different
coordination cost to study its impact. In addition to the
first series of bars with default value of ¢, in the second
series we decrease the message passing overhead ¢ to 1/10
of the default value. We eliminate the coordination cost
in the third series of bars to observe the coordination-free
performance. The coordination cost can also be optimized
by reducing the number of synchronization messages needed
to achieve the global consistent state [13], which is elusive
to model accurately since it largely depends on the number
of processes that are involved in the communication. Based
on the observation from [22], we assume the coordination
cost for the improved protocol is proportional to log(a) and
reflect their performance in the last two series of bars.

In sub-figure 2a, the values for the number of optimal
processes for the last three bars are the same for all the
environments. This implies that it is system-level factor
that determines the scalability if the coordination cost is
sublinear to the number of processes. From the perspective
of checkpointing, the optimization of coordination cost is the
key to boost the scalability. When system-level factor limits
the scalability, a checkpointing protocol with the complexity
of O(log(a)) is good enough to match the third bar, which
neglects the coordination cost.

The second series of bar(s§ = p 4+ 0.00006 x a) with lower
message passing cost also presents good scalability: its
optimal number of processes is determined by the system-
level factor for most environments. It will limit the optimal
number of processes only if we increase the failure repair

530

rate or the reliability of each node, as shown in the envi-
ronments of o =1 and MTBF = 32768. In addition, we find
that the second series of bar suffers from low efficiency.
For example, when p; = 0.01, all the last four series are
limited by the system-level factor and share the same optimal
number of processes. However, the application execution
time for the second bar in sub-figure 2c¢ is 234.85 hours,
which is about 70 hours more than the other three series.
Sub-figure 2b reveals the reason of the inefficiency: the
checkpointing interval of the second bar is larger than others
, which risks the application with more rework penalties.

I/O overhead p of checkpointing and failure recovery
cost u; are less critical factors to determine the scalability,
especially when they are already good enough. For example,
there is little scalability improvement for all the series if we
change the value of p from 0.05(default) to 0.005. Similar
observations can be found if we reduce the failure recovery
cost u; from 0.1(default) to 0.01 hours.

We highlight the following implications from the scala-

bility analysis:

. It makes little sense to reduce failure recovery cost if it
is already low enough, i.e. 0.1 hour, which is achievable
with current fast recovery techniques [16].

« Coordination cost of checkpointing contributes signifi-
cantly in limiting the scalability. Reducing the message
passing overhead ¢ is a compelling solution to break
through the bottleneck. However, lowering ¢ may make
the nodes less effective for useful computation.

. With the current checkpointing implementations that
are linearly affected by the number of processes, hard-
ware factors, i.e., failure repair rate and MTBF on each
node, are not critical in determining the scalability.

V. EXPERIMENTAL STUDY
A. Model Verification

Several environments are set up to verify the model. The
default environment sets the parameters to the default values
listed in Table I. We change the value of one parameter in
other environments to observe the accuracy of the model
under different scenarios. X-axis varies the value of a from
256 to 8196.

Failures arrivals are generated with the assumed expo-
nential distribution and the parameters specified by each
environment. Lognormal distribution is a good approxima-
tion for failure recovery and is used to generate the failure
recovery log [19]. For each environment, we run the jobs
for 10000 times at different job submission time and get
the corresponding simulated mean and standard deviation
of application execution time from the sample. We then
use them to compare with the predicted mean and standard
deviation computed from the model to verify the accuracy
of the model.

Sub-figure 3a demonstrates the simulation results under
six environments with the number of processes varied. We

=)
@
%
R
o

T T T T
= p+0.0006a K=
8 = p+0.00006a

8 = —

= p
p+0.0000610g (a) ©
p+0.00061og(a)

El |§|

45} 5 =
3 = s =
2 5 - -
192} .

s
351

25

I
=)
o
=3
S

15
2048

0.5

Optimal Checkpointing Interval (Hours)

Optimal Number of Processes (logscale)

!

Q

T T T T
8 = p+0.0006a &3
p+%AOOOOGa

= P
p+0.0000610g (a) ©
p+0.00061og(a)

1L

768

— 512

256

N
@

64

p=0.005 p=05 W=1 w=001MTBF=32768
Environment

(a) Optimal Number of Processes

24
Default ¢=1 Default o=1

p=0.005 p=05
Environment

(b) Optimal Checkpointing Interval

p=0.005 p=05 K=1 W=0.01 MTBF=32768
Environment

(c) Optimal Application Performance

n=1 n=0.01 MTBF=32768 Default ¢=1

Minimum Application Execution Time (Hours, logscale)

Figure 2: Scalability Analysis

omit some points for the first three environments that suffer
deadly from failures when the system size is sufficiently
large. As expected, we observe that the predicted and
simulated curves from the same environment are overlapped
with each other. The differences between the simulated and
predicted performance are trivial compared with the overall
cost, if not negligible. The maximum gap we observed is 2
hours for limited scenarios, which is more than satisfactory.

An interesting question is whether the proposed model
can be applied in real situations since it is observed in [19]
that exponential distribution is not an ideal approximation
of failure arrivals. To answer this question, we conduct
experiments on the failure trace collected by the Los Alamos
National Lab (LANL) [15].

We verify the model on all the systems that are sized 32
nodes or more. The sequential workload W is set to be ax 128
hours. Physical failure repair time is logged by the trace,
which is used as failure recovery cost. As shown in sub-
figure 3b, each system is marked as one point on x-axis, with
two error bars that reflect means and standard deviations for
both predicted and simulated application performance.

Though not neatly precise as the data presented in sub-
figure 3a, we still observe a close matching of the predicted
and simulated application execution time in sub-figure 3b.
As an example, for system 19 with 1024 nodes, the model
estimates the application time accurately: the predicted and
simulated means are 504.449 and 489.608 hours, respec-
tively.

System 20 presents relatively more deviation than others.
The model overestimates nearly 40 hours of the performance
mean, which is not trivial compared with the actual mean
execution time of 254 hours. Our analysis shows that the
deviation is attributed to the large coefficient of variation of
the failure recovery, which is 0; = 21.85/3.58 =~ 6.1 for system
20 and the largest among all the systems. Actually, the
deviation is reduced to 12.7 hours by neglecting the failures
with recovery cost more than 100 hours, which decreases
the coefficient of variations to 2.44.

531

Predicted Mean with STD &3
Simulated Mean with STD

)

560004

How

, 5000

Tim

£4000
g

i

3
§3000 ¥
o

aiton Exe

2000

1000

Appl

>.

4096

2048
Number of Processes System ID/Size ¥ ¥

256 512 1024 8196

(a) Simulation Results (b) Experimental Results on LANL

Data

Figure 3: Model Verification

B. Performance Optimization

We show the efficiency of the proposed performance
optimization in Figure 4. In sub-figure 4a we curve the
application execution time with different checkpointing in-
tervals for a set of number of processes. Other parameters
are set as defaults as listed in Table I. The first curve of
a = a,,: 1llustrates the application performance with optimal
number of processes derived from our solution. We can
observe that it outperforms other curves with significant
advantages. The curve of 2048 processes is the closest to
the optimal one when the checkpointing interval is 4 hours
or less. However, its performance is degraded severely for
the checkpointing interval of 8 hours. Though equipped with
the largest number of processes, the curve of 4096 processes
does not necessarily lead to the best performance.

Sub-figure 4b plots the application execution time with
different number of processes for a set of checkpointing
intervals. Again, the first curve where r = ,,, reflects the
optimal interval derived from our solution and leads to the
best performance. It slightly outperforms the performance
of the curve with checkpointing interval of 2 hours. The
advantage is enlarged as the number of processes increases.
The performance for the first order estimated optimal check-
pointing interval is illustrated in the second curve. The
performance of the first order estimation is decreased as the

2000 T T T T 4500 ——

o
[
g
U
o
)
a
kel
&

., T
1800 | #.* 4000 1=0.5

(Hours)
e (Hours

T=1

=2

1600 - 35001 g
=8

ime

N
)
S

N

=3

S
N oW
=1 a 9
S o 9
S S o

=)

S

S
a
=]
S

@
3
3
Applicaiton Execution Tim

Applicaiton Execution T

1000 | i

2500

Hours)

(
[N
=3
<3
S

opt
a=1024 T=Tgy gy v

a
=]
S

a
=]
S

Applicaiton Execution Time
5]
8
3

-3
=1
S

0.5 1 2 4 8 512 1024
Checkpionting Interval (Hours)

(a) Optimal Number of Processes

2048 4096
Number of

(b) Optimal Checkpointing Interval

5:04;5*0 MTRp_

Default
0065

Environment

(c) Combined Optimization

5120 He=2 g
Processes

Figure 4: Optimization Verification

number of processes increases. This is due to the fact that
more processes augments both A =a x Ay and § =p+ ¢ x a,
and invalidates the assumption of v\ — 0 made by the first
order estimation.

The combined optimization is verified as shown in sub-
figure 4c. We vary both « and 7, and set other parameters to
the default values in the default environment. Other environ-
ments change one parameter and are marked at x-axis in the
sub-figure. The first curve where a = a,p:, 7 = 7.,¢ reflects
the combined optimization and always leads to the best
performance compared with other single-side optimization
approaches.

Another concern of Newton’s method is the converge
speed, which depends largely on the starting point. Our
experiments reveal that 1 the optimizations terminate in less
than 10 iterations when setting system-level factor and first
order estimation as the starting points.

C. Spare Node Allocation

<
g

2 600 [#rmem e
2

£ 500
o R —
]

£ 300

Z
~ 200
g

£ 100
&

0
&, o N S
75, 2 e 8,
" " o % %, %, "%,
% % 295 05, “0g, % o, 2

(a) Coverage with Different £ (b) Optimal Number of Spare Nodes

Figure 5: Spare Node Allocation Verification

Figure 5 verifies the spare node allocation methodology.
Each column on the x-axis represents a scenario with
different number of processes and failure intensity. The
process number of each scenario is actually the optimal
number of processes for the checkpointing overhead of
§ = 0.05 + 0.00006 x a, corresponding to the MTBF on each
node varied from 4096, 8192, 16384, and 32768 to 65536,
respectively. For the scenarios of p = 0.99, the optimal
number of processes is determined by system-level factor.

a, EN
7, 7
7, g
'Y, ’6;
K N

b, for each scenario is calculated based on the approaches
introduced in sub-section III-D.

We randomly select 10000 time spots and observe the
number of failures happen to the system at each spot. We
consider the spot as covered if its number of concurrent
failures is less than or equal to b,. We define

Number of covered spots (16)
10000
to characterize the quality of b, spare nodes.

In sub-figure 5a we plot the coverage for different k. We
observe that the curves of ¥k =3 and k = 4 are featured with
coverage more than 96% and 97%, respectively. However, we
would like to suggest setting & = 5, which is highlighted with
coverage more than 99.5% or even 100%. The advantage of
k=6 over k=5 is trivial, if not negligible.

Sub-figure 5b illustrates the value of b, for each scenario.
One interesting observation is that intensity p has more
impact on the optimal number of spare nodes than the
number of compute nodes a. For example, although featured
with different o, the number of spare nodes for the first
three scenarios are almost the same. Moreover, the last two
scenarios of each curve demonstrate a huge disparity in the
values of a and b: they only need dozen spare nodes for more
than 10000 compute nodes. The relatively low values of p for
the last two scenarios explain this disparity. In consistence

coverage =

_ with formulas (14) and (15), this observation confirms that

p is the key factor to determine the number of spare nodes.
The spare node allocation depends little on the number of
compute nodes involved in the application.

VI. RELATED WORK

Understanding the impact of failures and fault-tolerant
mechanisms has been an active research area for decades.
Although the reliability of single node has been constantly
improved, the large scale of current parallel systems puts
forward many new challenges to the stage.

Young gave a solution to the optimal checkpointing in-
terval selection by minimizing the total lost time due to
failures and checkpointing [25]. Duda studied the impact of

=
32, 76y 1/ 04g, 576y

checkpointing and failure repair on application performance
in [5]. Garg et al. have proposed a checkpointing model to
minimize the completion time of a program by assuming a
general distribution of failure arrival in [8].

Daly made a big step towards a complete solution of
optimal checkpointing interval in [4]. The author derived
a more complete cost function and demonstrated a pertur-
bation solution to an accurate high order approximation to
the optimal checkpointing interval.

Our previous work of [24] [12] proposed a performance
model under failures with uncoordinated checkpointing,
where each process conducts checkpointing independently
without reaching a global consistent state.

Plank et al. proposed to use spare processors for fault
tolerance [18]. They modeled the application performance
with a Birth-Death Markov Chain and derived an optimal
number of spare nodes and checkpointing interval with a
brute-force iterative solution. While their solution works
well for small-scale systems, it is costly when the number
of processes becomes large, such as in the scale of tens of
thousands.

Elnozahy and Plank studied the impact of checkpointing
for Peta-scale systems and discussed directions for achieving
performance under failures in future high-end computing
environments [7]. In [22], Wang et al. modeled coordinated
checkpointing with Stochastic Activity Networks and studied
the scalability, reliability and performance of the system. In
[27], Zheng and Lan proposed reliability-aware scalability
models to evaluate the performance of parallel systems and
fault-tolerant techniques. [27] built the scalability model on
the performance modeling of [4] [8].

Our work differs the existing research from the following
aspects:

o Performance Modeling: We extend the assumption of
failure recovery cost to general distribution, which
improves existing work that considers failure recovery
as fixed or exponentially distributed [25] [5] [8] [18]
[4] [27]. According to [19], exponential distribution is
not a good fit of failure recovery.

Similar as [22] [4], we also generalize the first order
assumptions. Our model allows failures to occur at any
time even during the period of checkpointing and failure
recovery.

This study extends our previous work of [24] [12] to
coordinated checkpointing environments, which dom-
inate current parallel computing practice due to its
advantage over domino effects and simplicity [6] [7]
[20]. Distinguished from the work that assumed a fixed
value [25] [5] [8] [4], we consider checkpointing over-
head as a function of parameters such as I/O overhead,
coordination cost and the number of processes.

« Performance Optimization: We improve [18] with a
fast numerical solution to optimizing the number of
processes and checkpointing interval. In addition, we

533

introduce a solution to deriving the combined optimiza-
tion of both number of processes and checkpointing
interval, which is not considered in existing work. The
queueing model of this research makes it feasible for an
optimal spare node allocation, which is rarely studied
in the existing work.

o Scalability Analysis: Our work differs from [7] [22]
with an analytic approach to modeling the performance
scalability, instead of simulation. This feature makes
our model ready to use for other researches to study the
performance, reliability and related topics with under
failures and C/R. The target of our scalability analysis
is performance optimization, instead of performance
evaluation of [27]. Equipped with a more practical,
general and accurate model, we believe this study has
more potential in large-scale computing environment
with hundreds of thousands of nodes.

VII. CONCLUSIONS AND FUTURE WORK

New computing paradigms such as data center and Cloud
computing push more and more HPC into the day-to-
day life. Compared to traditional technical and engineering
applications, these new computing paradigms require higher
quality of service and productivity, in addition to computing
power. In the meantime, with the increasing ensemble size,
failure has become an inevitable factor of modern HPC
systems. Performance under failure has become a critical
issue facing the HPC community.

In this study, we have carried out a systematic study
to model, evaluate, and optimize application performance
under coordinated checkpointing fault-tolerant environments
for modern large-scale parallel computing systems. We have
first introduced a queueing based model to characterize
and predict the application execution time under failures.
Based on the newly proposed model, we next have presented
performance optimization solutions to determining optimal
checkpointing interval, optimal number of processes, and
optimal number of spare nodes to minimize application
execution time. The solution for a combined optimization
of both the number of processes and checkpointing interval
is also presented. Then, we have evaluated the importance of
different parameters for a scalable computing environment
under failures. Finally extensive experiments have been
carried out based on both synthetic and actual failure logs.
Experimental results show that both the proposed model and
optimization algorithms work efficiently with satisfactory
accuracy.

In the future we would like to incorporate the proposed
model into existing fault-tolerant computing environments.
We would also like to explore more performance optimiza-
tion methodologies to mitigate the performance loss due to
failures or failure handling. Overall, we plan to build a solid
foundation for developing scalable fault-tolerant parallel
computing environments.

ACKNOWLEDGMENT

This research was supported in part by National Science
Foundation under NSF grant CCF-0937877, CNS-0834514,
CNS-0751200, CCF-0702737, and by Department of En-
ergy SciDAC-2 program under the contract No. DE-FC02-
06ER41442.

REFERENCES

[1] ES. Acton, Numerical Methods That Work, Chapter 2. Math-
ematical Association of America,1990.

[2] A. Bouteiller, T. Herault, G. Krawezik, P. Lemarinier, etc,

MPICH-V Project: A Multiprotocol Automatic Fault Tolerant

MPI, Proc. of International Journal of High Performance

Comuting Applications, 2006.

[3] K. M. Chandy and L. Lamport, Distributed Snapshots: Deter-

mining Global State of Distributed Systems. ACM Transcations

on Computer Systemss, 3(1):63-75, 1985.

[4] J.T. Daly, A Higher Order Estimate of The Optimum Check-

point Interval for Restart Dumps, Future Generation Computer

Systems, Vol. 22 pp.301-312, 2006.

[5] A. Duda, The Effects of Checkpointing on Program Execution

Time, Information Processing Letters, Vol 16, pp: 221-229,

1983.

[6] E.Elnozahy, L. Alvisi, Y M. Wang and D.B. Jonson, A Survey

of Rollback-Recovery Protocols in Message-Passing Systems,

ACM Computing Survey, Sep 2002.

[7]1 E. Elnozahy and J. Plank, Checkpointing for Peta-Scale Sys-

tems: A Look into The Future of Practical Rollback-Recovery,

1IEEE Trans. Dependable and Secure Computing, 1-2: 97-108,

2004.

[8] S. Garg, Y. Huang, C. Kintala, and K. Trivedi, Minimizing

Completion Time of a Program by Checkpointing and Reju-

venation, Proc. of SIGMETRICS,1996.

[9] J. Hursey, J. M. Squyres, T. I. Mattox and A. Lums-

daine, The Design and Implementation of Checkpoint/Restart

Process Fault Tolerance for Open MPIL. Workshop on De-

pendable Parallel, Distributed and Network-Centric Systems

(DPDNS’07),2007.

[10] J. Hursey, T. Mattox and A. Lumsdaine, Interconnect Ag-
nostic Checkpoint/Restart in Open MPI. Proc. of 18th ACM
International Symposium on High Performance Distributed
Computing (HPDC’09), June, 2009.

[11] R.Jain, The Art of Computer Systems Performance Analysis,
Jone Wiley & Sons, pp. 540-541. 1991.

[12] H.Jin, X.-H. Sun, Z. Zheng, Z. Lan and B. Xie, Performance
under Failures of DAG-based Parallel Computing, /IEEE/ACM
International Symposium on Cluster Coomputing and the Grid
(CCGrid’09), June 2009.

[13] J.L. Kim, T. Park, An Efficient protocol for Checkpointing
Recovery in Distributed Systems, IEEE Trans. on Parallel and
Distributed Systems, 4(8): 955-960. 1993

534

[14] Z. Lan and Y. Li, Adpative Fault Management of Parallel
Applications for High Performance Computing, /IEEE Trans.
Computers, 57(12): 1647-1660, 2008.

[15] Lo-s Alamos National Laboratory, Opertional Data
to Support and Enable Computer Science Research,
http://institute.lanl.gov/data/lanldata.shtml.

[16] Y. Li and Z. Lan, A Fast Recovery Mechanism for Check-
pointing in Networked Environment, Proc. of International
Conference on Dependable Systems and Networks (DSN’0S),
June 2008.

[17] Y. Li, Z. Lan, P. Gujrati, and X.-H. Sun, Fault-Aware Runtime
Strategies for High Performance Computing, IEEE Trans.
Parallel and Distributed Systems, 20(4): 460-473, 2009.

[18] J. Plank and M. Thomason, Processor Allocation and Check-
pointing Interval Selection in Cluster Computing Systems,
Journal of Parallel and Distributed Computing, 61(11): 1570-
1590, 2001.

[19] B. Schroeder and G. A. Gibson, A Large-Scale Study of
Failures in High-Performance Computing Systems, Proc. of In-
ternational Conference on Dependable Systems and Networks
(DSN’06), June 2006.

[20] S. Sankaran, J.M. Squyres, B. Barrett, etc. The LAM/MPI
Checkpointing/Restart Frameworks: System-Initiated Check-
pointing, International Journal of High Performance Applica-
tions, 19-4: 179-493, 2005.

[21] Top 500 Supercomputer Website. http://www.top500.0rg.

[22] L. Wang, K. Pattbbiraman, Z. Kalbarczyk, R. K. Iyer, L.
Votta, C. Vick and A. Wood, Modeling Coordinated Check-
pointing for Large-Scale Supercomputers, Proc. of Inter-
national Conference on Dependable Systems and Networks
(DSN’05), June 2005.

[23] C. Wang, F. Mueller, C. Engelmann and S. L. Scott, A
Job Pause Service under Lam/MPI+BLCR for Transparent
Fault Tolerance, Proc. of Parallel and Distributed Processing
Symposium 2007 (IPDPS’07), March. 2007.

[24] M. Wu, X.-H. Sun, and H. Jin, Performance under Failures
of High-End Computing, Proc. of ACM/IEEE SuperComputing
Conference 2007 (SC’07), Nov. 2007.

[25] J.W. Young, A first order approximation to the optimum
checkpoint interval, Communications of ACM, Vol. 17 pp.530-
531, 1974.

[26] Y. Zhang, M.S. Squillante, A.Sivasubramaniam and R. K.
Sahoo, Performance Implications of Failures in Large-Scale
Cluster Scheduling, Proc. Workshops on Job Scheduling Strate-
gies for Parallel Processing(JSSPP’04), pp.233-252, 2004.

[27] Z. Zheng and Z. Lan, Reliability-Aware Scalability Models
for High Performance Computing, Proc. of IEEE Cluster 2009,
Aug. 20009.

[28] Z. Zheng, Z. Lan, B-H. Park, and A. Geist, System Log
Pre-processing to Improve Failure Prediction, Proc. of Inter-
national Conference on Dependable Systems and Networks
(DSN’09), June 2009.

