IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 11, NOVEMBER 1995

1185

Performance Considerations
of Shared Virtual Memory Machines

Xian-He Sun, Senior Member, IEEE, and Jianping Zhu

Abstract—Generalized speedup is defined as parallel speed
over sequential speed. In this paper the generalized speedup and
its relation with other existing performance metrics, such as tra-
ditional speedup, efficiency, scalability, etc., are carefully studied.
In terms of the introduced asymptotic speed, we show that the
difference between the generalized speedup and the traditional
speedup lies in the definition of the efficiency of uniprocessor
processing, which is a very important issue in shared virtual
memory machines. A scientific application has been implemented
on a KSR-1 parallel computer. Experimental and theoretical re-
sults show that the generalized speedup is distinct from the tradi-
tional speedup and provides a more reasonable measurement. In
the study of different speedups, an interesting relation between
fixed-time and memory-bounded speedup is revealed. Various
causes of superlinear speedup are also presented.

Index Terms—High performance computing, pai‘allel process-
ing, performance evaluation, performance metrics, scalability,
speedup, shared virtual memory.

I. INTRODUCTION

N recent years parallel processing has enjoyed unprece-

dented attention from researchers, government agencies, and
industries. This attention is mainly due to the fact that, with the
current circuit technology, parallel processing seems to be the
only remaining way to achieve higher performance. However,
while various parallel computers and algorithms have been
developed, their performance evaluation is still elusive. In fact,
the more advanced the hardware and software, the more diffi-
cult it is to evaluate the parallel performance. In this paper,
targeting recent development of shared virtual memory ma-
chines, we study the generalized speedup [1] performance
metric, its relation with other existing performance metrics,
and the implementation issues.

Distributed-memory parallel computers dominate today’s
parallel computing arena. These machines, such as the Ken-
dall Square KSR-1, Intel Paragon, TMC CM-5, and IBM
SP2, have successfully delivered high performance comput-
ing power for solving some of the so-called “grand-
challenge” problems. From the viewpoint of processes, there
are two basic process synchronization and communication
models. One is the shared-memory model in which processes
communicate through shared variables. The other is the mes-

Manuscript received Mar. 5, 1994; revised Mar. 14, 1995.

X.-H. Sun is with the Department of Computer Science, Louisiana State
University, Baton Rouge, LA 70803-4020; e-mail: sun@bit.csc.lsu.edu.

J. Zhu is with the NSF Engineering Research Center, Department of
Mathematics and Statistics, Mississippi State University, Mississippi State,
MS 39762.

To order reprints of this article, e-mail: transactions@computer.org, and
reference IEEECS Log Number D950S5.

sage-passing model in which processes communicate through
explicit message passing. The shared-memory model pro-
vides a sequential-like program paradigm. Virtual address
space separates the user logical memory from physical mem-
ory. This separation allows an extremely large virtual mem-
ory to be provided on a sequential machine when only a
small physical memory is available. Shared virtual address
combines the private virtual address spaces distributed over
the nodes of a parallel computer into a globally shared vir-
tual memory [2]. With shared virtual address space, the
shared-memory model supports shared virtual memory, but
requires sophisticated hardware and system support. An ex-
ample of a distributed-memory machine which supports
shared virtual address space is the Kendall Square KSR-1.!
Shared virtual memory simplifies the software development
and porting process by enabling even extremely large pro-
grams to run on a single processor before being partitioned
and distributed across multiple processors. However, the
memory access of the shared virtual memory is nonuniform
[2]. The access time of local memory and remote memory is
different. Running a large program on a small number of
processors is possible but could be very inefficient. The in-
efficient sequential processing will lead to a misleading high
performance in terms of speedup or efficiency.

Generalized speedup, defined as paralle] speed over se-
quential speed, is a newly proposed performance metric [1]. In
this paper, through both theoretical proofs and experimental
results, we show that generalized speedup provides a more
reasonable measurement than traditional speedup. In the proc-
ess of studying generalized speedup, the relation between the
generalized speedup and many other metrics, such as effi-
ciency, scaled speedup, and scalability, are also studied. The
relation between fixed-time and memory-bounded scaled
speedup is analyzed. Various reasons for superlinearity in dif-
ferent speedups are also discussed. Results show that the main
difference between the traditional speedup and the generalized
speedup is how to evaluate the efficiency of the sequential
processing on a single processor.

The paper is organized as follows. In Section II, we study
traditional speedup, including the scaled speedup concept, and
introduce some terminology. Analysis shows that the tradi-
tional speedup, fixed-size or scaled size, may achieve super-
linearity on shared virtual memory machines. Furthermore,
with the traditional speedup metric, the slower the remote

1. Traditionally, the message-passing model is bounded by the local mem-
ory of the processing processors. With recent technology advancement, the
message-passing model has extended the ability to support shared virtual
memory.

1045-9219/95$04.00 © 1995 IEEE

1186

memory access is, the larger the speedup. Generalized speedup
is'studied in Section IIl. The term asymptotic speed is intro-
duced for the measurement of generalized speedup. Analysis
shows the differences and the similarities between the general-
ized speedup and the traditional speedup. Relations between
different performance metrics are also discussed. Experimental
results of a production application on a Kendall Square KSR-1
parallel computer are given in Section IV. Section V contains
a summary. '

II. THE TRADITIONAL SPEEDUP

One of the most frequently used performance metrics in
parallel processing is speedup. It is defined as sequential exe-
cution time over parallel execution time. Parallel algorithms
often exploit parallelism by sacrificing mathematical effi-
ciency. To measure the true parallel processing gain, the se-
quential execution time should be based on a commonly used
sequential algorithm. To distinguish it from other interpreta-
tions of speedup, the speedup measured with a commonly used
sequential algorithm has been called absolute speedup [3].
Another widely used interpretation is the relative speedup [3],
which uses the uniprocessor execution time of the parallel al-
gorithm as the sequential time. There are several reasons to use
the relative speedup. First, the performance of an algorithm
varies with the number of processors. Relative speedup meas-
ures the variation. Second, relative speedup avoids the diffi-
culty of choosing the practical sequential algorithm, imple-
menting the sequential algorithm, and matching the implemen-
tation/programming skill between the sequential algorithm and
the parallel algorithm. Also, when problem size is fixed, the
time ratio of the chosen sequential algorithm and the uniproc-
essor execution of the parallel algorithm is fixed. Therefore,
the relative speedup is proportional to the absolute speedup.
Relative speedup is the speedup commonly used in perform-
ance study. In this study we will focus on relative speedup and
reserve the terms traditional speedup and speedup for relative
speedup. The concepts and results of this study can be ex-
tended to absolute speedup.

From the problem size point of view, speedup can be di-
vided into the fixed-size speedup and the scaled speedup.
Fixed-size speedup emphasizes how much execution time can
be reduced with parallel processing. Amdahl’s law [4] is based
on the fixed-size speedup. The scaled speedup is concentrated
on exploring the computational power of parallel computers
for solving otherwise intractable large problems. Depending
on the scaling restrictions of the problem size, the scaled
speedup can be classified as the fixed-time speedup [5] and the
memory-bounded speedup [6]. As the number of processors
increases, fixed-time speedup scales problem size to meet the
fixed execution time. Then the scaled problem is also solved
on an uniprocessor to get the speedup. As the number of proc-
essors increases, memory-bounded speedup scales problem
size to utilize the associated memory increase. A detailed study
of the memory-bounded speedup can be found in [6].

Let p and S, be the number of processors and the speedup
with p processors.

IEEE TRANéACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 11, NOVEMBER 1995

DEFINITION 1.

o Superlinear speedup: S, > p
o Unitary speedup: S, = p.
e Linear speedup: S, = a - p for some constant a > Q.

It is debatable if any machine-algorithm pair can achieve
“truly” superlinear speedup. Seven possible causes of super-
linear speedup are listed in Fig. 1. The first four causes in Fig.
1 are patterned from [7].

. cache size increased in parallel processing

. overhead reduced in parallel processing

. latency hidden in parallel processing

. randomized algorithms

. mathematical inefficiency of the serial algorithm

. high memory access latency in the sequential processing
. profile shifting

~1 Y W e

Fig. 1. Causes of superlinear speedup.

Cause 1 is unlikely applicable for scaled speedup, since
when problem size scales up, by memory or by time constraint,
the cache hit ratio is unlikely to increase. Cause 2 in Fig. 1 can
be considered theoretically [8], there is no measured superlin-
ear speedup ever attributed to it. Cause 3 does not exist for
relative speedup since both the sequential and parallel execu-
tion use the same algorithm. Since parallel algorithms are often
mathematically inefficient, cause 5 is a likely source of super-
linear speedup of relative speedup. A good example of super-
linear speedup based on 5 can be found in [9]. Cause 7 will be
explained in the end of Section III, after the generalized
speedup is introduced.

With the virtual memory and shared virtual memory architec-
ture, cause 6 can lead to an extremely high speedup, especially
for scaled speedup where an extremely large problem has to be
run on a single processor. Fig. 5 shows a measured superlinear
speedup on a KSR-1 machine. The measured - superlinear
speedup is due to the inherent deficiency of the traditional
speedup metric. To analyze the deficiency of the traditional
speedup, we need to introduce the following definition.

DEFINITION 2. The cost of parallelism i is the ratio of the
total number of processor cycles consumed in order to
perform one unit operation of work when i processors are
active to the machine clock rate.

The sequential execution time can be written in terms of
work:

Sequential execution time

Processor cycles per unit of work 49
Machine clock rate

= Amount of work X

The ratio in the right hand side of (1), processor cycles per unit
of work over machine clock rate, is the cost of sequential
processing.

Work can be defined as arithmetic operations, instructions,
transitions, or whatever is needed to complete the application.
In scientific computing the number of floating-point operations
(FLOPS) is commonly used to measure work. In general, work

SUN AND ZHU: PERFORMANCE CONSIDERATIONS OF SHARED VIRTUAL MEMORY MACHINES

may be of different types, and units of different operations may
require different numbers of instruction cycles to finish. (For
example, the times consumed by one division and one multi-
plication may be different depending on the underlying ma-
‘chine, and operation and memory reference ratio may be dif-
ferent for different computations.) The influence of work type
on the performance is one of the topics studied in [1]. In this
paper, we study the influence of inefficient memory access on
the performance. We assume that there is only one work type
and that any increase in the number of processor cycles is due
to inefficient memory access.

In a shared virtual memory environment, the memory avail-
able depends on the system size. Let W; be the amount of work
executed when i processors are active (work performed in all

steps that use i processors), and let W = 2?:1W" represent the

total work. The cost of parallelism i in a p processor system,
denoted as c,(i, W), is the elapsed time for one unit operation
of work when i processors are active. Then, W; - ¢,(i, W) gives
the accumulated elapsed time where i processors are active.
cy(i, W) contains both computation time and remote memory
access time.

The uniprocessor execution time can be represented in
terms of uniprocessor cost,

(1) = 3 W (W),
i=1

where c,(s, W) is the cost of sequential processing on a paral-
lel system with p processors. It is different from c¢,(1, W)
which is the cost of the sequential portion of the parallel
processing. Parallel execution time can be represented in
terms of parallel cost,

)4
(p)=Y e, (i, W).
i=1

The traditional speedup is defined as

PTup) T FE Wic, (W)

@

Depending on architecture ‘memory hierarchy, in general
¢y(i, W) may not equal c,(j, W) for i # j [10]. If cy(i, W) =
cp(p, W), for 1 i< p, then

P C,,(p,W)) zplﬁ ’
=l

— clr("’ W) w (3)

The first ratio of (3) is the cost ratio, which gives the influence
of memory access delay. The second ratio,
Y 4)

p Wi
i=1";

is the simple analytic model based on degree of parallelism
[6]. It assumes that memory access time is constant as problem
size and system size vary. The cost ratio distinguishes the dif-
ferent performance analysis methods with or without consid-
eration of the memory influence. In general, cost ratio depends
on memory miss ratio, page replacement policy, data reference
pattern,'etc. Let remote access ratio be the quotient of the

1187

number of remote memory accesses and the number of local
memory accesses. For a simple case, if we assume there is no
remote access in. parallel processing and the remote access
ratio of the sequential processing is (p — 1)/p, then
(s, W)
p (D, W)

—1 time of per remote access
=Ll — Q)
time of per local access

Equation (5) approximately equals the time of per remote ac-
cess over the time of per local access. Since the remote mem-
ory access is much slower than the local memory access under
the current technology, the speedup given by (3) could be
considerably larger than the simple analytic model (4). In fact,
the slower the remote access is, the larger the difference. For
the KSR-1, the time ratio of remote and local access is about
7.5 (see Section IV). Therefore, for p = 32, the cost ratio is

7.3. For any W/ Zf_l—vy.l>0.l4, under the assumed remote
-1

access ratio, we will have a superlinear speedup.

III. THE GENERALIZED SPEEDUP

While parallel computers are designed for solving large
problems, a single processor of a parallel computer is not de-
signed to solve a very large problem. A uniprocessor does not
have the computing power that the parallel system has. While
solving a small problem is inappropriate on a parallel system,
solving a large problem on a single processor is not appropri-
ate either. To create a useful comparison, we need a metric
that can vary problem sizes for uniprocessor and multiple
processors. Generalized speedup [1] is one such metric.

Parallel Speed

e (6)
Sequential Speed

Generalized Speedup =
Speed is defined as the quotient of work and elapsed time.
Parallel speed might be based on scaled parallel work. Se-
quential speed might be based on the unscaled uniprocessor
work. By definition, generalized speedup measures the speed
improvement of parallel processing over sequential processing.
In contrast, the traditional speedup (2) measures time reduc-
tion of parallel processing. If the problem size (work) for both
parallel and sequential processing are the same, the general-
ized speedup is the same as the traditional speedup. From this
point of view, the traditional speedup is a special case of the
generalized speedup. For this and for historical reasons, we
call the traditional speedup the speedup, and call the speedup
given in (6) the generalized speedup.

Like the traditional speedup, the generalized speedup can
also be further divided into fixed-size, fixed-time, and mem-
ory-bounded speedup. Unlike the traditional speedup, for the
generalized speedup, the scaled problem is solved only on
multiple processors. The fixed-time generalized speedup is
sizeup [1]. The fixed-time benchmark SLALOM [11] is based
on sizeup.

If memory access time is fixed, one might always assume
that the uniprocessor cost c,(s) will be stablized after some
initial decrease (due to initialization, loop overhead, etc.), as-
suming the memory is large enough. When cache and remote
memory access are considered, cost will increase when a

1188

slower memory has to be accessed. Fig. 2 depicts the typical
cost changing pattern.

Cost

Insufficient Memory

Increases Sequential
Execution Time

i Fits in Remote
E Memory
Fitsin | Fitsin Main Memory |
1
Problem Size

Fig. 2. Cost variation pattern.

From (1), we can see that uniprocessor speed is the recipro-
cal of uniprocessor cost. When the cost reaches its lowest
value, the speed reaches its highest value. The uniprocessor
speed corresponding to the stablized main memory cost is
called the asymptotic speed (of uniprocessor). Asymptotic
speed represents the performance of the sequential processing
with efficient memory access. The asymptotic speed is the
appropriate sequential speed for (6). For memory-bounded
speedup, the appropriate memory bound is the largest problem
size which can maintain the asymptotic speed. After choosing
the asymptotic speed as the sequential speed, the correspond-
ing asymptotic cost has only local access and is independent of
the problem size. We use c(s, W) to denote the corresponding
asymptotic cost, where W, is a problem size which achieves
the asymptotic speed. If there is no remote access in parallel
processing, as assumed in Section II, then c(s, W)/c,(p, Wo) =
1. By (3), the corresponding speedup equals the simple
speedup which does not consider the influence of memory
access time. In general, parallel work W is not the same as W,
and c,(i, W) may not equal ¢,(p, W) for 1 <i < p. So, in gen-
eral, we have

w
; ﬁ'Cp(i’ W)
_ 1
s, Wy) ,)

W cls, Wy)
» W, , ’
2i=1'i—’cp(l’ W)

Equation (7) is another form of the generalized speedup. It is a
quotient of sequential and parallel time as is traditional
speedup (2). The difference is that, in (7), the sequential time
is based on the asymptotic speed. When remote memory is
needed for sequential processing, c(s, Wy) is smaller than
cp(s, W). Therefore, the generalized speedup gives a smaller
speedup than traditional speedup.

Generalized Speedup = Hi

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 11, NOVEMBER 1995

Parallel efficiency is defined as

d
Efficiency = pee D . (8
number of processors
The Generalized Efficiency can be defined similarly as
lized
Generalized Efficiency = generalized speedup .
number of processors
By definition,
W-cls, W
Efficiency = cls W) (10)
r W, .
P'Z,~=1T'Cp(” W)
and
_ _ W (s, Wy)
Generalized Efficiency = (11

W . .
p-Z;T’-cp(z, W)

Equations (10) and (11) show the difference between the two
efficiencies. Traditional speedup compares parallel processing
with the measured sequential processing. Generalized speedup
compares parallel processing with the sequential processing
based on the asymptotic cost. From this point of view, general-
ized speedup is a reform of traditional speedup. The following
lemmas are direct results of (7).

LEMMA 1. If ¢,(s, W) is iﬁdependent of problem size, tradi-
tional speedup is the same as generalized speedup.

LEMMA 2. If the parallel work, W, achieves the asymptotic
speed, that is W = W,, then the fixed-size traditional
speedup is the same as the fixed-size generalized speedup.

By Lemma 1, if the simple analytic model (4) is used to
analyze performance, there is no difference between the tradi-
tional and the generalized speedup. If the problem size W is
larger than the suggested initial problem size W, then the sin-
gle processor speedup Sy may not equal to one. S| measures
the sequential inefficiency due to the difference in memory
access.

The generalized speedup is also closely related to the scal-
ability study. Isospeed scalability has been proposed recently in
[12]. The isospeed scalability measures the ability of an algo-
rithm-machine combination maintaining the average (unit)
speed, where the average speed is defined as the speed over the
number of processors. When the system size is-increased, the -
problem size is scaled up accordingly to maintain the average
speed. If the average speed can be maintained, we say the algo-
rithm-machine combination is scalable and the scalability is

n_P'W
vip,p') Pk .(12)
where W’ is the amount of work needed to maintain the aver-
age speed when the system size has been changed from p to p’,
and W is the problem size solved when p processors were
used. By definition

Average speed =

SUN AND ZHU: PERFORMANCE CONSIDERATIONS OF SHARED VIRTUAL MEMORY MACHINES

Since the sequential cost is fixed in (11), fixing average speed
is equivalent to fixing generalized efficiency. Therefore the
isospeed scalability can be seen as the iso-generalized-
efficiency scalability. When the memory influence is not con-
sedered, i.e., ¢, (s, W) is independent of the problem size, the
iso-generalized-efficiency will be the same as the iso-
traditional-efficiency. In this case, the isospeed scalability is
the same as the isoefficiency scalability proposed in [13], [2].

LEMMA 3. If the sequential cost c,(s, W) is independent of
problem size or if the simple analysis model (4) is used for
speedup, the isoefficiency and isospeed scalability are
equivalent to each other.

The following theorem gives the relation between the scal-
ability and the fixed-time speedup.

THEOREM 1. Scalability (12) equals one if and only if the
fixed-time generalized speedup is unitary.

PROOF . Let c(s, W), ¢, (i, W), W, W, be as defined in (7). If
scalability (12) equals 1, let W’, p” be as defined in (12) and

define W, similarly as W;, we have

p_p
=L 13
W oW (13)

for any number of processors p and p’. By definition, gen-
eralized speedup
W’ c(s, W)

r W e
e W)

G_ S, =

With some arithmetic manipulation, we have

r W R
W G_Sp, Zi:l_l‘-‘cp'(l’ W)

p’ P’ c(s, Wp)

Similarly, we have

r W ,
W G_S, - 2,~=1—i"cp(” W)
p p (s, Wp)

By (13) and the above two equations,

» W’ R
i 6 W)

G_S,
v c(s, W,
p (W o) (14)
P .
G_Sp Ei—_—]T'cP (l’ W)
p C(S, W())
For fixed speed,
w’ _ w
s or W o p W .)
P D W) P2 e W)
By equation (13),
wo o EwW
Y, i -c,(;,W):ZT-cp(x, w). (15)
i i=1

i=1

1189

Substituting (15) into (14), we have
G_S, G_S,

—_— p'
p p

’

Forp=1,

G_S, =p"G_S,. (16)

Equation (16) is the corresponding unitary speedup when
G_S; is not equal to one. If the work W equals W,, then
G_S; =1 and (16) becomes

G—-S' =p’,

which is the unitary speedup defined in Definition 1.

If the fixed-time generalized speedup is unitary, then for any
number of processors, p and p’, and the corresponding
problem sizes, W and W', where W’ is the scaled problem
size under the fixed-time constraint, we have

W-c(s, Wy)
r W .
2y @ W)

and

W’-c(s, W) ,
pr W’ =P
Y ey, W)
1

i=1

Therefore,
w w’

r W ; - ’ P w’ . ’ '
P'Z,—=1T'Cp(ly W) 14 .2i=lT.CP'(l’W)
The average speed is maintained. Also since

P w . p’ w’ . ,
ZT'cp(l’ W) =Z_i_'cp'(l) w) ’
i=1 i=1

we have the equality

w_w
p P
The scalability (12) equals one. O

The following theorem gives the relation between memory-
bounded speedup and fixed-time speedup. The theorem is for
generalized speedup. However, based on Lemma 1, the result
is true for traditional speedup when uniprocessor cost is fixed
or the simple analysis model is used.

THEOREM 2. If problem size increases proportionally to the
number of processors in memory-bounded scaleup, then

memory-bounded generalized speedup is linear if and only
if fixed-time generalized speedup is linear.

PROOF . Let c(s, Wy), ¢, (i, W), W, and W, be as defined in
Theorem 1. Let W’, W be the scaled problem size of fixed-
time and memory-bounded scaleup, respectively, and W,

and W/ be defined accordingly.
If memory-bounded speedup is linear, we have
W-c(s, Wp)

r W .
2;‘:17.01’(” W)

=a-p,

1190

and

p W* R
e 6 W)

for some constant a > 0. Combine the two equations, we
have the equation

14 B w*
' W A N
P'Ziﬁ'%(” W) p '2:;1 oG
i i

By assumption, W™ is proportional to the number of proces-
sors available,

a7

’

w =2 w.
P

Substituting (18) into (17), we get the fixed-time equality:
p W p w
e W) =2yl W)
i=1 i=1

That is W’ = W", and the fixed-time generalized speedup is
linear.

(18)
(19)

If fixed-time speedup is linear, then, following similar de-
ductions as used for (17), we have

W B W’
r W . T, r W o
P'Zi:lT'Cp(l’ W) p 'Zi=17'cp'(l’ W)

Applying the fixed-time equality (19) to (20), we have the
reduced equation

(20)

’

w=w @1)
P
With the assumption (18), (21) leads to
w=w,
and memory-bounded generalized speedup is linear. O

The assumption of Theorem 2 is problem size (work) in-
creases proportionally to the number of processors. The as-
sumption is true for many applications. However, it is not true
for dense matrix computation where the memory requirement
is a square function of the order of the matrix and the compu-
tation is a cubic function of the order of the matrix. For this
kind of computational intensive applications, in general, mem-
ory-bounded speedup will lead to a large speedup. The follow-
ing corollaries are direct results of Theorem 1 and Theorem 2.

COROLLARY 1. If problem size increases proportionally to the
number of processors in memory-bounded scaleup, then
memory-bounded generalized speedup is unitary if and only
if fixed-time generalized speedup is unitary.

COROLLARY 2. If work increases proportionally with the num-
ber of processors, then scalability (12) equals one if and
only if the memory-bounded generalized speedup is unitary.

Since uniprocessor cost varies on shared virtual memory
machines, the above theoretical results are not applicable to
traditional speedup on shared virtual memory machines.

Finally, to complete our discussion on the superlinear

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 11, NOVEMBER 1995

speedup, there is a new cause of superlinearity for generalized
speedup. The new source of superlinear speedup is called
profile shifting [11], and is due to the problem size difference
between sequential and parallel processing (see Fig. 1). An
application may contain different work types. While problem
size increases, some work types may increase faster than the
others. When the work types with lower costs increase faster,
superlinear speedup may occur. A superlinear speedup due to
profile shifting was studied in [11].

IV. EXPERIMENTAL RESULTS

In this section, we discuss the timing results for solving a
scientific application on KSR-1 parallel computers. We first
give a brief description of the architecture and the application,
and then present the timing results and analyses.

A. The Machine

The KSR-1 computer discussed here is a representative of
parallel computers with shared virtual memory. Fig. 3 shows
the architecture of the KSR-1 parallel computer [14]. Each
processor on the KSR-1 has 32 Mbytes of local memory. The
CPU is a super-scalar processor with a peak performance of 40
Mflops in double precision. Processors are organized into dif-
ferent rings. The local ring (ring:0) can connect up to 32 proc-
essors, and a higher level ring of rings (ring:1) can contain up
to 34 local rings with a maximum of 1,088 processors.

ring:0 1ing:0

ring:0
conpecting up
to 32 processers

Fig. 3. Configuration of KSR-1 parallel computers (P: processor M: 32
Mbytes of local memory).

If a nonlocal data element is needed, the local search engine
(SE:0) will search the processors in the local ring (ring:0). If
the search engine SE:0 can not locate the data element within
the local ring, the request will be passed to the search engine at
the next level (SE:1) to locate the data. This is done automati-
cally by a hierarchy of search engines connected in a fat-tree-
like structure [14], [15]. The memory hierarchy of KSR-1 is
shown in Fig. 4.

Each processor has 512 Kbytes of fast subcache which is
similar to the normal cache on other parallel computers. This
subcache is divided into two equal parts: an instruction sub-
cache and a data subcache. The 32 Mbytes of local memory on

SUN AND ZHU: PERFORMANCE CONSIDERATIONS OF SHARED VIRTUAL MEMORY MACHINES

each processor is called a local cache. A local ring (ring:0)
with up to 32 processors can have 1 Gbytes total of local cache
which is called Group:0 cache. Access to the Group:0 cache is
provided by Search Engine:0. Finally, a higher level ring of
rings (ring:1) connects up to 34 local rings with 34 Gbytes of
total local cache which is called Group:1 cache. Access to the
Group:1 cache is provided by Search Engine:1. The entire
memory hierarchy is called ALLCACHE memory by the Ken-
dall Square Research. Access by a processor to the
ALLCACHE memory system is accomplished by going
through different Search Engines as shown in Fig. 4. The la-
tencies for different memory locations [16] are:

e 2 cycles for subcache,

® 20 cycles for local cache,

¢ 150 cycles for Group:0 cache, and
e 570 cycles for Group:1 cache.

Processor
512 KB Subcache,

32 MB
Local Cache

Search Engine:0

1GB
Group:0 Cache

’ Search Engine:1

34GB
Group:1 Cache

Fig. 4. Memory hierarchy of KSR-1.

B. The Application

Regularized least squares problems (RLSP) [17] are fre-
quently encountered in scientific and engineering applications
[18]. The major work is to solve the equation

ATA + alx=A4"p (22)
by orthogonal factorization schemes (Householder Trans-
formations and Givens rotations). Efficient Householder al-
gorithms have been discussed in [19] for shared memory
supercomputers, and in [20] for distributed memory parallel

computers.
Note that (22) can also be written as

(AT,\/EI)(J%I)x =(AT"/EI)(S) (23)
i BTBx = BT@ , @4)

so that the major task is to carry out the QR factorization for
matrix B which is neither a complete full matrix nor a sparse
matrix. The upper part is full and the lower part is sparse (in
diagonal form). Because of the special structure in B, not all

1191

elements in the matrix are affected in a particular step. Only a
submatrix of B will be transformed in each step. If the columns

of the submatrix B; at step i are denoted by B; = [bj:bj;,mb;],

then the Householder Transformation can be described as:

Householder Transformation

Initialize matrix B
fori=1,n

Lo, = —sign(ag))(b§7b§)1'2
2. w;=bj-ae

3. B, =wibi(al —aal) ,j=i+1, e m

[t 23
4.b,=bi-B;w;, j=i+ln
end for

The calculation of s and updating of b;'s can be done in
parallel for different index j.

C. Timing Results

The numerical experiments reported here were conducted
on the KSR-1 parallel computer installed at the Cornell Theory
Center. There are 128 processors altogether on the machine.
During the period when our experiments were performed;
however, the computer was configured as two stand-alone ma-
chines with 64 processors each. Therefore, the numerical re-
sults were obtained using less than 64 processors.

Fig. 5 shows the traditional fixed-size speedup curves ob-
tained by solving the regularized least squares problem with
different matrix sizes n. The matrix is of dimensions 2n X n.
We can see clearly that as the matrix size n increases, the
speedup is getting better and better. For the case when
n = 2,048, the speedup is 76 on 56 processors. Although it is
well known that on most parallel computers, the speedup im-
proves as the problem size increases, what is shown in Fig. 5 is
certainly too good to be a reasonable measurement of the real
performance of the KSR-1.

80 T 1 T T T T T T T T 1:4_
70 Ideal Speedup — PR
60 n = 1024 X - N
n = 1600 -o- -
50 n = 2048 -+ - o+ .4
‘ <

Speedupl0 . j
sor e T e Xevonun. ;
20 | e SR 3
wFET _
. i S I A . 1 1 — A L

5 10 15 20 25 30 35 40 45 50 55

Number of Processors
Fig. 5. Fixed-size (traditional) speedup on KSR-1.

The problem with the traditional speedup is that it is defined
as the ratio of the sequential time to the parallel time used for
solving the same fixed-size problem. The complex memory
hierarchy on the KSR-1 makes the computational speed of a

1192

single processor highly dependent on the problem size. When
the problem is so big that not all data of the matrix can be put
in the local memory (32 Mbytes) of the single computing
processor, part of the data must be put in the local memory of
other processors on the system. These data are accessed by the
computing processor through Search Engine:0. As a result, the
computational speed on a single processor slows down signifi-
cantly due to the high latency of Group:0 cache. The sustained
computational speed on a single processor is 5.5 Mflops, 4.5
Mflops and 2.7 Mflops for problem sizes 1,024, 1,600, and
2,048, respectively. On the other hand, with multiple proces-
sors, most of the data needed are in the local memory of each
processor, so the computational speed suffers less from the
high Group:0 cache latency. Therefore, the excellent speedups
shown in Fig. 5 are the results of significant uniprocessor per-
formance degradation when a large problem is solved on a
single processor.

Fig. 6 shows the measured single processor speed as a
function of problem size n. The Householder Transformation
algorithm given before was implemented in KSR Fortran. The
algorithm has a numerical complexity of W = 2n° + 8.57" +
26.5n, and the speed is calculated using s = W/t where £ is the
CPU time used to finish the computation.

10 T T T T T T T T T
9r Subcache =— -
gl Local Cache ~— J
Group:0 Cache »— 1
Tr
S e
LN »
Speed 5| N
4+ 4
3 r u
2 r R
1 b
0 — 1 1 I L 1 I3 L 1

0 200 400 600 800 1000 1200 1400 1600 1800 200
Order of the Matrices

Fig. 6. Speed varjation of uniprocessor processing on KSR-1.

As can be seen from Fig. 6, the three segments represent
significantly different speeds for different matrix sizes. When
the whole matrix can be fit into the subcache, the performance
is close to 7 Mflops. The speed decreases to around
5.5 Mflops when the matrix can not be fit into the subcache,
but still can be accommodated in the local cache. Note, how-
ever, when the matrix is so big that access to Group:0 cache
through Search Engine:0 is needed, the performance degrades
significantly and there is no clear stable performance level as
can be observed in the other two segments. This is largely due
to the high Group:0 cache latency and the contention for the
Search Engine which is used by all processors on the machine.
Therefore, the access time of Group:0 cache is less uniform as
compared to that of the subcache and local cache.

To take the difference of single processing speeds for dif-
ferent problem sizes into consideration, we have to use the
generalized speedup to measure the performance of multiple
processors on the KSR-1. As can be seen from the definition
of (6), the generalized speedup is defined as the ratio of the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 11, NOVEMBER 1995

parallel speed to the asymptotic sequential speed, where the
parallel speed is based on a scaled problem. In-our numerical
tests, the parallel problem was scaled in a memory-bounded
fashion as the number of processors increases. The initial
problem was selected based on the. asymptotic speed
(5.5 Mflops from Fig. 6) and then scaled proportionally ac-
cording to the number of processors, i.e., with p processors,
the problem is scaled to a size that will fill M x p Mbytes of
memory, where M is the memory required by the unscaled
problem. Fig. 7 shows the comparisons of the traditional
scaled speedup and the generalized speedup. For the tradi-
tional scaled speedup, the scaled problem is solved on both
one and p processors, and the value of the speedup is calcu-
lated as the ratio of the time of one processor to that of p proc-
essors. While for the generalized speedup, the scaled problem
is solved only on multiple processors, not on a single proces-
sor. The value of the speedup is calculated using (6), where the
asymptotic speed is used for the sequential speed. It is clear
that Fig. 7 shows that the generalized speedup gives much
more reasonable performance measurement on KSR-1 than
does the traditional scaled speedup. With the traditional scaled
speedup, the speedup is above 20 with only 10 processors.
This excellent superlinear speedup is a result of the severely
degraded single processors speed, rather than the perfect scai-
ability of the machine and the algorithm. '

T T 1 T

20 Ideal Speedup — S
Generalized Speedup -X: -
| Traditional Speedup e -
16 4
. L4 ’

Speedup1 2 7]
8 r . e N
ab T 4

0 L 1 1 1

0 2 4 6 8 10
Number of Processors .

Fig 7. Comparison of generalized and traditional speedup on KSR-1.

Finally, Table I gives the measured isospeed scalability (see
(12)) of solving the regularized least squares problem on a
KSR-1 computer. The speed to be maintained on different
number of processors is 3.25 Mflops, which is 60% of the
asymptotic speed of 5.5 Mflops. The size of the 2n X n matrix
is increased as the number of processors increases. It starts as
n = 27 on one processor and increases to n =-2,773 on 56
processors. One may notice that y(2, 4) > y(1, 2) in Table I,
which means that the machine-algorithm pair scales better
from 2 processors to 4 processors than it does from one proc-
essor to two processors. This can be explained by the fact that
on one processor, the matrix is small enough that all data can
be accommodated in the subcache. Once all the data is loaded
into the subcache, the whole computation process does not
need data from local cache and Group:0 cache. Therefore; the
data access time on one processor is significantly shorter than
that on two processors which involves subcache, local cache

SUN AND ZHU: PERFORMANCE CONSIDERATIONS OF SHARED VIRTUAL MEMORY MACHINES

1193

TABLE1
MEASURED SCALABILITY OF RLSP-KSR1 COMBINATION
[V, N) 1 2 4 8 16 32 56
1 1.00000 | 0.12170 | 0.06871 | 0.01705 | 0.00374 | 0.00072 | 0.00006
2 1.00000 | 0.56464 | 0.14011 | 0.03077 | 0.00595 | 0.00050
4 1.00000 | 0.24814 | 0.05449 | 0.01054 | 0.00088
8 1.00000 | 0.21959 | 0.04247 | 0.00356
16 1.00000 | 0.19343 | 0.01621
32 1.00000 | 0.08378
56 1.00000

and Group:0 cache to pass messages. As a result, significant
increase in the work W is necessary in the case of two proces-
sors to offset the extra data access time involving different
memory hierarchies. This is the major reason for the low
y(1, 2) value. When the number of processors increases from
2 to 4, the data access pattern is the same for both cases with
subcache, local cache and Group:0 cache all involved, so that
the work W does not need to be increased significantly to off-
set the extra communication cost when going from 2 proces-
sors to 4 processors. It is interesting to notice, while the scal-
ability of the RLSP-KSR1 combination is relatively low, the
data in Table I has a similar decreasing pattern as the measured
and computed scalability of Burg-nCUBE, SLALOM-nCUBE,
Burg-MasPar, and SLALOM-MasPar combinations [12]. The
scalabilities are all decreasing along columns and have some
irregular behavior at y(1, 2) and y(2, 4).

Interested readers may wonder how the measured scalability
is related to the measured generalized speedup given in Fig. 7.
While Fig. 7 demonstrates a nearly linear generalized speedup,
the corresponding scalability given in Table I is far from ideal
(the ideal scalability would be unity). The low scalability is
expected. Recall that the scaled speedup given in Fig. 7 is
memory-bounded speedup [6]. That is when the number of
processors is doubled, the usage of memory is also doubled.
As a result, the number of elements in the matrix is increased
by a factor of 2. Corollary 2 shows that if work W increases
linearly with the number of processors, then unitary memory-
bounded speedup will lead to ideal scalability. For the regular-
ized least squares application, however, the work W is a cubic
function of the matrix size n. When the memory usage is dou-
bled, the number of floating point operations is increased by a
factor of eight. If a perfect generalized speedup is achieved
from p to p” = 2p, the average speed at p and p” should be the
same. By (12) we have
_2pW 1

8pW 4~
With the measured speedup being a little lower than unitary as
shown in Fig. 7, a less than 0.25 scalability is expected. Table I
confirms this relation, except at (2, 4) for the reason pointed
out earlier. The scalability in the last column is noticeably lower
than other columns. It is because when 56 nodes are involved in
computations, communication has to pass through ring:1, which
slows down the communication significantly.

Computation intensive applications have often been used to
achieve high flops. The RLSP application is a computation

v(p.p")

intensive application. Table I shows that isospeed scalability
does not give credits for computation intensive applications.
The computation intensive applications may achieve a high
speed on multiple processors, but the initial speed is also high.
The isospeed scalability measures the ability to maintain the
speed, rather than to achieve a particular speed.

The implementation is conducted on a KSR-1 shared virtual
memory machine. The theoretical and analytical results given
in Section II and Section III, however, are general and can be
applied on different parallel platforms. For instance, for Intel
Paragon parallel computers, where virtual memory is sup-
ported to swap data in and out from memory to disk, we expect
that inefficient sequential processing will cause similar super-
linear (traditional) speedup as demonstrated on KSR-1. For
distributed-memory machines which do not support virtual
memory, such as CM-5, traditional speedup has another draw
back. Due to memory constraint, scaled problems often cannot
be solved on a single processor. Therefore, scaled speedup is
unmeasurable. Defining asymptotic speed similarly as given in
Section II1, the generalized speedup can be applied to this kind
of distributed-memory machines to measure scalable compu-
tations. Generalized speedup is defined as parallel speed over
sequential speed. Given a reasonable initial sequential speed, it
can be used on any parallel platforms to measure the perform-
ance of scalable computations.

V. CONCLUSION

Since the scaled up principle was proposed in 1988 by
Gustafson and other researchers at Sandia National Labora-
tory [21], the principle has been widely used in performance
measurement of parallel algorithms and architectures. One
difficulty of measuring scaled speedup is that very large
problems have to be solved on uniprocessor, which is very
inefficient if virtual memory is supported, or is impossible
otherwise. To overcome this shortcoming, generalized
speedup was proposed [1]. Generalized speedup is defined
as parallel speed over sequential speed and does not require
solving large problems on uniprocessor. The study [1] em-
phasized the fixed-time generalized speedup, sizeup. To
meet the need of the emerging shared virtual memory ma-
chines, the generalized speedup, particularly implementation
issues, has been carefully studied in the current research. It
has shown that traditional speedup is a special case of gen-
eralized speedup, and, on the other hand, generalized

1194

speedup is a reform of traditional speedup. The main differ-
ence between generalized speedup and traditional speedup is
how to define the uniprocessor efficiency. When uniproces-
sor speed is fixed these two speedups are the same. Extend-
ing these results to scalability study, we have found that the
difference between isospeed scalability [12] and isoeffi-
ciency scalability [13] is also due to the uniprocessor effi-
ciency. When the uniprocessor speed is independent of the
problem size, these two proposed scalabilities are the same.
As part of the performance study, we have shown that an
algorithm-machine combination achieves a perfect scalability
if and only if it achieves a perfect speedup. An interesting
relation between fixed-time and memory-bounded speedups
is revealed. Seven causes of superlinear speedup are also
listed.

A scientific application has been implemented on a Ken-
dall Square KSR-1 shared virtual memory machine. Experi-
mental results show that uniprocessor efficiency is an impor-
tant issue for virtual memory machines, and that the asymp-
totic speed provides a reasonable way to define the uniproc-
essor efficiency.

The results in this paper on shared virtual memory can be
extended to general parallel computers. Since uniprocessor
efficiency is directly related to parallel execution time, scal-
ability, and benchmark evaluations, the range of applicability
of the uniprocessor efficiency study is wider than speedups.
The uniprocessor efficiency might be explored further in a
number of contexts.

ACKNOWLEDGMENTS

This research was supported in part by the U.S. National
Aeronautics and Space Administration under NASA contract
NAS1-19480 and NAS1-1672.

The authors are grateful to the Cornell Theory Center for
providing access to its KSR-1 parallel computer, and to the refe-
rees for their helpful comments on the revision of this paper.

REFERENCES

{11 X.-H. Sun and J. Gustafson, “Toward a better parallel performance
metric,” Parallel Computing, vol. 17, pp. 1,093-1,109, Dec. 1991.

[2] K. Hwang, Advanced Computer Architecture: Parallelism, Scalability,
Programmability, McGraw-Hill, 1993.

[3] . Ortega and R. Voigt, “Solution of partial differential equations on
vector and parallel computers,” SIAM Rev., pp. 149-240, June 1985.

(4] G. Amdahl, “Validity of the single-processor approach to achieving large
scale computing capabilities,” Proc. AFIPS Conf., pp. 483-485, 1967.

[51 J. Gustafson, “Reevaluating Amdahl’s law,” Comm. ACM, vol. 31,
pp- 532-533, May 1988.

[6] X.-H. Sun and L. Ni, “Scalable problems and memory-bounded speedup,”
J. Parallel and Distributed Computing, vol. 19, pp. 27-37, Sept. 1993.

[7] D. Helmbold and C. McDowell, “Modeling speedup(n) greater than n,”
IEEE Trans. Parallel and Distributed Systems, pp. 250-256, Apr. 1990.

[8]1 D. Parkinson, “Parallel efficiency can be greater than unity,” Parallel
Computing, vol. 3, pp. 261-262, 1986.

[9] D. Nicol, “Inflated speedups in parallel simulations via malloc(),” In¢’l
J. Simulation, vol. 2, pp. 413-426, Dec. 1992.

[10] X.-H. Sun and J. Zhu, “Performance prediction of scalable computing:

A case study,” Proc. 28th Hawaii Int’l Conf. of Systems Sciences,
pp. 456-465, Jan. 1995.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 11, NOVEMBER 1995

[111 J. Gustafson, D. Rover, S. Elbert, and M. Carter, “The design of a scal-
able, fixed-time computer benchmark,” J. Parallel and Distributed
Computing, vol. 12, no. 4, pp. 388-401, 1991.

[12] X.-H. Sun and D. Rover, “Scalability of parallel algorithm-machine
combinations,” IEEE Trans. Parallel and Distributed Systems, pp. 599-
613, June 1994.

[13] AY. Grama, A. Gupta, and V. Kumar, “Iscefficiency: Measuring the
scalability of parallel algorithms and architectures,” IEEE Parallel and
Distributed Technology, vol. 1, pp. 12-21, Aug. 1993,

[14] Kendall Square Research, “KSR parallel programming,” Waltham,
Mass., 1991.

[15] C. Leiserson, “Fat-trees: Universal networks for hardware-efficient
super-computing,” [EEE Trans. Computers, vol. 34, no. 10, pp. 892-
901, 1985.

[16] Kendall Square Research, “KSR technical summary,” Waltham,
Mass., 1991.

[177 AN. Tikhnov and V. Arsenin, Solution of Ill-Posed Problems. John
Wiley and Sons, 1977.

[18] Y.M. Chen, J.P. Zhu, W.H. Chen, and M.L. Wasserman, “GPST inver-
sion algorithms for history matching in 3D 2-phase simulators,” IMACS
Trans. Scientific Computing I, pp. 369-374, 1989.

[19] J. Dongarra, 1.S. Duff, C.D. Sorensen, and H.A. van der Vorst, Solving
Linear Systems on Vector and Shared Memory Computers. Philadel-
phia: SIAM, 1991.

[20] A. Pothen and P. Raghavan, “Distributed orthogonal factorization:
Givens and Householder algorithms,” SIAM J. Science and Statistical
Computing, vol. 10, pp. 1,113-1,135, 1989.

[21] J. Gustafson, G. Montry, and R. Benner, “Development of parallel
methods for a 1,024-processor hypercube,” SIAM J. Science and Statis-
tical Computing, vol. 9, pp. 609-638, July 1988.

Xian-He Sun (S’88-M’90-SM’95) received the BS
degree in mathematics from Beijing Normal Univer-
sity, Beijing, China, and the MS degree in mathemat-
ics and MS and PhD degrees in computer science, the
latter three from Michigan State University. He joined
the Ames Laboratory, operated for the U.S. Depart-
ment of Energy by Iowa State University; was a visit-
ing faculty member at Clemson University; and was a
staff scientist at JCASE, NASA Langley Research
F-N _ Center. He has been with the Department of Com-
puter Science at Louisiana State University since
January 1994. His research interests include parallel processing, parallel numeri-
cal algorithms, performance evaluation, and database systems.
Dr. Sun was a guest editor for the special issue of the Journal of Parallel
and Distributed Computing on Analyzing Scalability of Parallel Algorithms
and Architectures. He is a member of the IEEE, ACM, and Phi Kappa Phi.

Jianping Zhu received the BS degree in engineer-
ing mechanics in 1982 from Zhejiang University,
China; the MS degree in computational mechanics
in 1984 from Dalian Institute of Technology, China;
and the PhD degree in applied mathematics in 1990
from the State University of New York, Stony
Brook. He joined the Department of Mathematics
and Statistics and the U.S. National Science Foun-
dation Engineering Research Center at Mississippi
State University in 1990 as an assistant professor.
and has been an associate professor there since
1993. He received the second-place award in the 1990 IBM supercomputing
competition and the Intel University Research Partners Fellowship Award in
1992.

Dr. Zhu has written more than 30 refereed publications in scientific com-
puting and a book Solving Partial Differential Equations on Parallel Com-
puters, published in 1994 by World Scientific Publishing. His major research
interests include numerical methods for solving PDEs, parallel computing,
and large-scale simulations. He is a member of the AMS, SIAM and AIAA.

