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Abstract—Recent technological advances are putting increased 
pressure on CPU scheduling. On one hand, processors have 
more cores. On the other hand, I/O systems have become more 
complex. Intensive research has been conducted on 
multi/many-core scheduling; however, most of the studies 
follow the conventional approach and focus on the utilization 
and load balance of the cores. In this study, we focus on 
increasing data locality by bringing source information from 
I/O into the core interrupt scheduling process. The premise is 
to group interrupts associated for the same I/O request 
together on the same core, and prove that data locality is more 
important than core utilization for many applications. Based 
on this idea, a source-aware affinity interrupt-scheduling 
scheme is introduced and a prototype system, SAIs, is 
implemented. Experiment results show that SAIs is feasible 
and promising; bandwidth shows a 23.57% improvement in a 
3-Gigabit NIC environment and in the optimal case without 
the NIC bottleneck, the bandwidth improvement increases to 
53.23%. 

Keywords-interrupt scheduling; Source-aware; Parallel I/O; 

I.  INTRODUCTION 
The peak throughput of processors has been improving at 

a phenomenal rate of 50% to 100% per year during the last 
three decades [23]. Since 2004, the emergence of 
multi/many-core [7] architectures has changed the landscape 
of computing [41] and further accelerated these 
improvements. Compared to processor performance 
improvements, data access performance (both latency and 
bandwidth) has improved a snail’s pace. The memory speed 
has only increased by roughly 9% each year. Additionally 
disk throughput has only doubled over the past two decades 
[23]. This performance gap between processors and I/O, 
known as the I/O-wall problem, is predicted to continually 
expand in the foresee future [9][23]. This gap has become 
the critical issue limiting the sustained performance of 
parallel applications. Parallel I/O techniques can help relieve 
this problem by creating multiple data paths between 
processors and I/O, and is considered by many as the 
primary solution to overcome the I/O-wall problem. 
However, parallel I/O further complicates the already 
complicated multi-core scheduling and simply, ignoring the 
fact of parallelism in I/O systems is not an appropriate 
approach. In order to reap the full benefits of a parallel I/O 
on multi-core system, a reexamination of processor 
scheduling is required. Scheduling schemes must be refined 
to match the complications of parallelism and adjust to data 

intensive applications. In this study, we undertake a 
reexamination of interrupt scheduling for parallel I/O on 
multi/many-core systems. 

Conventionally, interrupt scheduling distributes 
interrupts to lightly loaded cores with consideration of only 
core utilization, fairness and power consumption [20]. 
Consequently, the core handling an interrupt is likely not the 
core consuming the requested data (i.e. the core running the 
application processes did not issue the I/O request).  This 
results in a transfer of data between the two cores local 
caches.  

This problem is exacerbated further in parallel I/O. In a 
Parallel File Systems (PFS), multiple server nodes are 
employed to serve one I/O request in order to improve the 
I/O bandwidth. This increased I/O bandwidth, consequently, 
incurs more Network Interface Card (NIC) interrupts on the 
client side. In a conventional load balanced system, 
interrupts are evenly distributed to cores for handling, 
whereas these interrupts may come from the same data 
request. This inevitably causes data movement among 
caches. Under the conventional scheduling approach, parallel 
I/O leads to even more frequent data movement on the client 
side due to the increased bandwidth of the system. In 
addition, when the bandwidth of parallel I/O increases, 
returned data often have to be swapped out of the L1/L2 
cache. This in turn causes more memory access. The I/O 
performance will be more penalized due to this memory 
access. 

Therefore, core-utilization based interrupt scheduling is 
not an appropriate approach for interrupt handling in parallel 
I/O systems. To improve this algorithm, interrupts for the 
same I/O request, and for concurrent parallel I/O requests, 
can be grouped onto the same core to increase data locality. 
In this study, a novel source-aware interrupt scheduling 
scheme is proposed to optimize I/O performance. This 
scheduling scheme is based on the source-aware idea, which 
correlates I/O interrupt handlers to their data consuming 
process. In source-aware nomenclature, the original I/O 
request is called the source, and all the interrupts serving for 
the same source are called peer interrupts. In this design and 
implementation, a single core is chosen to be the core where 
the data request process is running. Although the data request 
process could be migrated to another core while it is blocked 
upon an I/O operation, it is rare to see such a migration 
happen during the I/O blocking, especially in an I/O 
intensive system. For this reason, our scheme schedules the 
I/O interrupts for the same source process onto the core 
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which runs the corresponding I/O request. Due to the scarcity 
of process migration as mentioned above, the scheme 
generally avoids the data movement among the cores.  Please 
note that source-aware is distinct from processor affinity 
[31], which is a data sharing correlation between the core 
and the processes, if the remnant cache data/states in the core 
could be used by the processes/threads in the future. Then 
processor affinity directly describes the candidate cores to 
which interrupts could be delivered and executed. 

Several challenges exist in the source-aware scheduling 
scheme, including: 

• How to identify which process an I/O interrupt 
belongs to; 

• How to inform the I/O interrupt scheduler the 
location of the process issuing the requests; 

• How to provide a light-weight solution upon current 
multi-core system; 

These challenges have motivated this research. The main 
contribution of this paper is four-fold. 

• Conducted a quantitative study to reveal 
performance issues of interrupt scheduling in parallel 
I/O; 

• Designed a source-aware interrupt scheduling 
scheme for parallel I/O; 

• Implemented a source-aware I/O interrupt scheduler 
prototype, named SAIs; 

• Performed experimental testing to verify the 
feasibility and effectiveness of SAIs;  

Several interrupt scheduling schemes have been proposed 
and implemented recently to guide the Advanced 
Programmable Interrupt Controller (APIC) [3][18] in 
optimized interrupt scheduling [3][17][18][20][25]. 
However, these interrupt scheduling strategies are mainly 
focusing on improving cores utilization, rather than data 
locality. Therefore, the source-aware I/O interrupt 
scheduling is a complement to these existing solutions.  

Because there is not a data locality issue associated with 
interrupt scheduling in parallel I/O write operations, our 
study focuses on parallel I/O read. The rest of this paper is 
organized as follows: Section 2 surveys APIC interrupt 
management mechanism and I/O Interrupt scheduling on 
Multi-core. Section 3 introduces the concept of source-
aware interrupt scheduling and its associated quantitative 
analysis. The general source-aware interrupt scheduling 
scheme and one specific implementation are proposed in 
Section 4. Section 5 and 6 present and analyze the 
experimental and simulation results, respectively. In Section 
7, we discuss related works. Finally, Section 8 concludes the 
paper. 

II. BACKGROUND 

A. APIC Mechanism 
In modern computer system, the Advanced 

Programmable Interrupt Controller (APIC) provides interrupt 
support on X86 architecture processors, such as Intel 64 and 
AMD 64. There are two components in the X86 APIC 
systems, the Local APIC and the I/O APIC [3][18]. 

Typically, each core has a Local APIC, and the system has a 
single I/O APIC component shared by the multiple devices 
connected on a peripheral bus. The main function of the I/O 
APIC is to receive external interrupts events from its 
associated I/O devices (e.g. NIC, Hard disk etc.) and route 
them to one or more Local APICs as interrupt messages. The 
Local APIC primarily accepts interrupts message sent from 
I/O APIC and delivers them to the associated core for further 
handling. In general, I/O APIC routes the interrupts to the 
local APICs based on the interrupt redirection table. This 
table identifies which cores could handle the interrupts for 
the specific device [33]. The I/O APIC extracts the available 
cores information from the table and puts it into the interrupt 
message as the destination address. The actual handling of 
I/O interrupts takes place in the softirq interrupt thread [12], 
which is mostly performed on the core that received the 
interrupt. To maximize multi-core utilization and power 
consumption, some interrupt scheduling schemes, such as 
irqbalance [20], have been developed and applied to 
dynamically change interrupt scheduling policy. However, 
this balance scheduling may harm the parallel I/O when 
interrupts are scattered to the multiple lightly loaded cores 
rather than the cores requesting data [10][12]. When the 
interrupt handling and the application are executed on 
different cores, the system overhead will increase as more 
I/O data access would be required due to the increased 
amount of inter-core data movements. 

B. I/O Interrupt Scheduling on Multi-core 

 
In general, interrupt scheduling schemes can be classified 

into three types (shown in Figure 1) with or without the 
source-aware feature [16]. In Figure 1, (a) describes round-
robin modes, in which the incoming interrupts are handled 
by cores in turn. This mode is good for core utilization or 
load balancing, but it damages the peer interrupt source-
aware described earlier. This mode is the default interrupt 
scheduling configuration for the Linux with Intel processor. 
(b) shows dedicated modes, in which there is a special core 
to handle all the incoming interrupts. This mode also ignores 
source-aware of peer interrupts. For example, with an AMD 
processor, the Linux default interrupt scheduling is 
configured to operate in lowest priority mode, this causes the 
incoming interrupts to be handled only on core 7. The 
schemes described in (a) and (b) make it difficult to maintain 
source-aware on current multi-core systems. Scheme (c) 
illustrates the proposed source-aware interrupt scheduling 
mode, where source-aware scheduling arranges interrupts 

 
Figure 1. The data location with Different I/O Interrupt Scheduling. 
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from the same application process onto the same target core. 
This mode guarantees that the interrupted data are processed 
and consumed on the same cores, which improves the cache 
affectivity and reduces inter-core data movement.  

III. SOURCE-AWARE INTERRUPT SCHEDULING 
To increase data locality in parallel I/O, a source-aware 

interrupt scheduling scheme (called source-aware scheme) is 
proposed. It instructs the I/O APIC to deliver the interrupt 
requests to the core where the data request application 
process is running (named data consuming core). The 
underlying assumption is every core has a dedicated private 
cache, which is generally true with current and foreseeable 
multi-core microprocessors. Figure 2 shows a simple case to 
explain the basic idea of the source-aware scheme. In this 
case, there is one I/O client and n I/O server nodes (I/O 
server 1 to n). On the I/O client, there are n computing cores 
(Core 1 to Core n) sharing one NIC and one I/O APIC. The 
application processes (APs, from AP A to AP N) are 
executing on the n cores concurrently. If AP A, AP B, and 
AP C request the data block from the PFS concurrently, the 
PFS will return the data block A, block B, and block C to the 
requested AP, respectively. 

 
On the I/O client, if the received data strips sequence is 

(A1, A2, A3, …, An), (B1, B2, B3, …, Bn), and (C1, C2, C3, …, 
Cn),  there are two ways for interrupts to be delivered. By 
default, the I/O APIC is instructed to use a balance scheme, 
hence the interrupts are spread to all the cores based on their 
load information. In this case, data strips within the same 
data request could be handled on totally different cores. This 
fact will lead to inevitable data migration from the core 
handling the interrupt, to the core consuming the data. In 
Figure 2, the small arrow on the side of data strips shows the 
data migration path among the cores. These migrations are 
mitigated if the APIC adopts the source-aware scheme. Here 
the data strip will be handled directly by the core that hosts 
the AP and consumes the data. The red frame at the side of 
the core stands for the result of the source-aware scheduling.  

With the addition of the source-aware concept, there are 
four possible scheduling polices: (i) select the core that 
generated the request, (ii) select the core which runs the 
process that produced the I/O request (maybe different than 
(i) if a rescheduling may occurred during I/O blocking), (iii) 
select the least-loaded core, or (iv) select a specific dedicated 
I/O core. The last two policies are the conventional (source-
unaware) scheduling approaches. The second is a source-
aware policy should be more efficient than the first. 
However, since the process migration rarely happens during 
a blocking I/O, the expected performance difference between 
the first two polices is trivial. As a topic for future study, the 
four presented policies could be integrated and the second 
source-aware policy could be implemented.  

To clarify the advantage of source-aware scheduling 
scheme, a quantitative analysis is included as following. 

A. Assumptions for Analysis 
In a general PFS, there are NC I/O client cores and NS I/O 

server nodes. A data Block X will be split into NS data strips 
(X1, X2, …, XNS) over the NS I/O server nodes. When an 
application requests Block X , the I/O server i needs to return 
the data strips Xi. For simplicity, we assume NC can exactly 
divide NS, and all data strip Xi have the same size. Hence we 
can use P to represent the processing time of one data strip, 
and M to represent its migration time from one processor 
core to another. Experiments in latter sections show that data 
migration is much more expensive than interrupt handling 
with a high speed multi-core processor. Therefore, we can 
deem M >> P. For further analysis, let Tp  be the total 
processing time of data strips on each core; TM be the total 
strip migration time between the cores; TR be the rest time 
spent on network and server side. Both Tp and TM could be 
calculated in terms of P and M.  

Notice that interrupt scheduling can affect Tp and TM, but 
have no influence over TR, because TR is a variable only 
related to the time of network transmission and server 
response. It can then be estimated that TR is equal under 
different interrupt scheduling policy. Additionally, data strip 
processing and data strip migration can happen 
simultaneously. This overlapped part, referred as TO, is under 
the impact of many factors besides the scheduling policy, 
hence hard to evaluate. However, as the processing and 
migration time becomes shorter, it is less probable that they 
will happen concurrently. So if our interest lays only in the 
interrupt scheduling, as what appear in this paper, we can 
assume that TO is proportional to Min(Tp, TM). 

By the above assumptions, the total time of an I/O 
request can be decomposed into four parts by equation (1). 
For various interrupt scheduling policy, TR is a constant; Tp 
and TM are variables; and TO is proportional to the minimum 
of Tp and TM.  

R P M OT T T T T= + + −                                (1) 

It is still difficult to express Tp with P, partly due to the 
possible concurrency of multiple strip processing. With NC 
cores and NS strips, Tp could be at most NS × P  if all the 
strips are handled by one core, or at least P × (NS/NC) if strip 

Figure 2. Source-aware Interrupt Scheduling Design.
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processing take the advantage of all NC cores. TM is much 
easier to calculate. In most CPU design, only one strip 
migration can happen at any time. So we can obtain TM  by: 

#MT M migration= ×                                (2) 

In the rest of this section, we are going to compare two 
different interrupt scheduling policies, balanced and source-
aware. For simplicity, assume that the number of I/O servers 
is the multiple of the number of cores, hence NS = � × NC , 
where  � is a positive integer. 

B. Single I/O Request 
For balanced scheduling, interrupt will be distributed 

evenly across different cores. So if all the interrupts are 
invoked closely, we will have Tp = P × (NS/NC) = P × �. But 
it is too optimistic. The time gap between each interrupt 
could be large. So Tp >= P × �. The faster the network and 
storage server is; the closer Tp to its bottom boundary is.  

The disadvantage of balanced scheduling is the number 
of incurred strip migration. Since at the end of a request, all 
the strips will be moved to a single core, the cost of load 
balance is high. The migration cost is TM = M × (NS ×(NC - 
1)/NC). Meanwhile, notice that TO = Min(TP, TM) and M >> P, 
we can deduce TO <= Tp.  

According to above analysis, inequality (3) evaluates the 
efficiency of balanced scheduling. 

( 1)Balance R CT T M Nα≥ + × × −              (3) 

For source-aware interrupt scheduling, it has a higher 
strip handling cost. By processing all the strips on only one 
core, we have Tp = P × NS. On the other hand, there is no 
strip migration cost, since all the strips are scheduled to the 
same core at the very beginning. Consequently, the total time 
can be expressed as: 

Source aware R ST T P N− = + ×                      (4) 

Though NS is slightly larger than (NC - 1) × �, we can still 
draw the conclusion that TBalanced - TR >> TSource-aware - TR 
because M >> P. 

C. Multiple I/O Request 
Let NR be the number of I/O requests submitted by the 

client. Even in a light loaded system, NR  is generally larger 
than NS,  

When several I/O requests on one client are divided into 
smaller requests on the servers, there is no migration cost for 
source-aware scheduling, and Tp increases to P × NS × NR. 
So, the evaluation becomes: 

Source aware R S RT T P N N− = + × ×             (5) 

Similar to the analysis of source-aware scheduling, the 
variable part of balanced scheduling is increased by a factor 
of NR , where NR  is given by inequality (6). For this reason, 
we still have TBalanced - TR >> TSource-aware- TR. 

( 1)Balance R C RT T M N Nα≥ + × × − ×    (6) 

Note that the time difference of the two methods is now 
subject to NR, the number of I/O requests. Since NS = � × NC 
, the difference between NS and � × (NC  - 1) is negligible. 
The time difference is proportional to three factors: the 
number of servers (NS), the extra time consumption of data 
strip migration over strip processing (M-P), and the number 
of requests (NR). Factor (M-P) is entirely determined by 
hardware, hence fails to gain our interests. So the other two 
factors are those affecting the potential performance 
improvements of the source-aware scheduling.  

Although it seems sensible to enlarge the performance 
gain by simply increasing NS, an implicit connection between 
these two factors invalidates such behavior. Let Sizereq 
represents the size of an I/O request, and then we can build a 
coarse relationship between NR and NS in (7). When the client 
bandwidth is large enough, an increase of NS allows the 
client to exploit more benefits from source-aware scheduling. 
When the bandwidth becomes a bottleneck, increasing NS 
implies the decrease of NR in (7), which will in turn reduce 
the advantage of source-aware scheduling.  

ClientreqSR BandwidthSizeNN ≤××            (7) 

D. Multiple Programs on One Client 
Now consider the case when more than one program runs 

on the client. Assume the number of programs is NP, and 
NR/NP is the number of requests issued by a single program. 
The analysis of balanced scheduling can largely follow the 
inequality (6). While source-aware scheduling is different. 
Depending on the relation of NP and NC, there are two 
different scenarios. 

1) NC >= NP 

For this case, only NP cores will get used during the 
interrupt handling. If the workload is heavy, interrupts will 
be handled concurrently. So Tp could be as low as P × NS × 
NR/NP. It is implying a shorter time cost compared to (5): 

/R S R Source aware R S R PT P N N T T P N N N−+ × × ≥ ≥ + × ×   (8) 

2) NC < NP 

In this situation, all the cores will be busy processing 
interrupts from different programs. For simplicity, it is 
assumed NP is a multiple of NC. Each core will hold NP / NC 
programs for execution. So the lower boundary of Tp 
becomes P × NS × NR / NC for both scheduling methods. The 
balanced scheduling can almost always reach this boundary, 
while the Tp of source-aware scheduling varies according to 
the workload. At the worst case, where no two cores are 
handling interrupts simultaneously, Tp can be as large as P × 
NS × NR. 

)()1( PMNNTT RCawareSourceBalance −×××−≥− − α        (9) 

As to the strip migration cost of balanced scheduling, the 
analysis in section 3.3 still works. Additionally, the number 
of programs doesn't affect the total migration cost, because 
all the requests from one program will eventually be 
transferred to the same core. Therefore, we can express the 
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performance difference of two scheduling as inequality (9).  
Accordingly, as M >> P, the source-aware scheduling will 
still have better performance. 

The above analysis gives us an intuition of how our 
approach affects the overall performance. As we can see, the 
source-aware method generally shortens the response time. 
And it is most effective under the heavy workload scenario 
where a client runs NC programs simultaneously. Its 
effectiveness, however, does rely on the proportion of TR in 
the whole I/O request handling. If network peak bandwidth 
is a limitation, more efficient interrupt scheduling will not 
make much of a difference on the overall performance. In 
fact, more efficient interrupt handling can move the 
performance bottleneck from interrupt handling to network. 
For this reason, to explore the full potential of source-aware 
interrupt handling, we adopt a combined implementation and 
simulation testing in the experiment section. 

IV. SAIS INTERRUPT SCHEDULER 

 
With the above quantitative analysis, we propose a novel 

source-aware interrupt scheduling (SAIs) for parallel I/O 
interrupts in this section. A general SAIs system design 
under Parallel Virtual File System (PVFS) [29] is presented 
herein. PVFS is a choice of implementation. The design can 
be extended to other parallel file systems as well. 

A. System Design 

SAIs dynamically directs incoming interrupts to the 
affinitive core based on the affinitive core ID (aff_core_id) 
information. The aff_core_id is the identifier of the core that 
the application is running on and the I/O request has been 
sent out from. The aff_core_id could be put into each I/O 
request and guide interrupt scheduling when the data returns. 
SAIs consists of three core components on the client side: 
HintMessager, SrcParser, and IMComposer as shown in 
Figure 3. 

• HintMessager – encapsulates the aff_core_id into 
data request (for example, we can use PVFS_hint to 
convey aff_core_id  in PVFS). 

• SrcParser – analyzes the IP packet header and 
retrieves the aff_core_id that interrupt should be 
delivered. 

• IMComposer – guides the I/O APIC/MSI to 
compose interrupt message with the aff_core_id 

which describes the destination address of the local 
APIC. 

And, there is a core component on I/O server to put 
aff_core_id into the return I/O data packets (this is an 
optional component for different implementations). 

• Hintcapsuler – encapsulates the aff_core_id into 
every return data packet on the I/O server. 

Because SAIs uses the application level information 
(aff_core_id) to instruct system level interrupt scheduling, 
the implementation of SAIs includes some modifications to 
the networking protocol, system interrupt scheduling, and 
parallel file system. The modifications on I/O server side 
could be involved into SAIs, depending on the 
implementation method. In our prototype, because PVFS is 
employed to serve application I/O requests, PVFS_hint 
message can convey aff_core_id information. We only make 
some minor modifications on the I/O server side in our 
prototype. 

B. Implementation Mechanism 

 
The detailed implementation mechanism of SAIs under 

PVFS is shown in Figure 3. When an application process, for 
example App A, needs to request data from PVFS, the 
aff_core_id will be packed into data request by 
HintMessager as a hint parameter  (which is described by 
step 1 and 2). After that, App A sleeps to wait for the arrival 
of return data. When the data request is received by I/O 
server, HintCapsuler puts aff_core_id into all the return data 
packets (step 3). Because PVFS uses TCP/IP to transfer I/O 
data between client side and I/O server nodes, aff_core_id 
could be encapsulated into a network packet to return to the 
client side. To avoid the extra cost on network protocol 
design, the options field of the IP level will be reserved to 
convey aff_core_id. An options field is an additional header 
field with maximum size of 32-bit word which may follow 
the destination address field [24]. The options field also may 
be an 8-bit simple options field which could be terminated 
with an EOL (0x00) option. In addition, options field of the 
IP packet head could be parsed by NIC device driver on the 
client side before the interrupt is generated. The detailed 
description is shown in Figure 4. The 8-bit simple options 
field consists of three sub-fields: copied, option class, and 
option number. The value of 1-bit Copied field and 2-bit 
option class field are both set to 1 following TCP/IP protocol 
description. With 5-bit option number field describing the 

 
Figure 4. IP Packet Structure with Aff_core_id. 

 
Figure 3. SAIs System Architecture. 
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affinitive core, a maximum 25 = 32 cores could be identified 
by SAIs. 

On the client side, the NIC device driver analyzes the 
incoming MAC frames and composes them as IP packets. 
When the IP packet is ready to deliver to system IP module, 
SrcParser parses the IP packet header to extract aff_core_id 
from options field in the NIC device driver. After the 
aff_core_id extract operation, the NIC device driver issues 
one softirq interrupt message, in which aff_core_id has been 
added as the destination address of the local APIC by 
IMComposer (described by step 4 and 5). The interrupt 
message is then delivered to the affinitive core for processing 
(step 6). When the according core completes interrupt 
handling and packet processing, inter-core signals are sent to 
wake the application process. To avoid the application 
process being migrated to another core when the data returns, 
SAIs enforces that the application process should be bundled 
on the core which requested data before data return. In a 
nutshell, a data request causes multiple return packets from 
multiple sever nodes at the same time, but SAIs guides all 
the interrupts to the cores corresponding to the aff_core_id 
encapsulated in the packets. 

V. EXPERIMENTAL EVALUATION 
The SAIs scheduler has been integrated into the client 

side kernel and NIC drivers to verify its benefit for parallel 
I/O application. Our performance evaluation is based on the 
analysis and compares the four commonly used metrics: 
bandwidth, cache miss rate, processor utilization, and, 
cpu_clk_unhalted. 

A. Experimental Setup 
Our experiments were conducted on a 49-node Sun-Fire 

Linux-based cluster. This cluster is composed of one Sun-
Fire 4240 head node and 48 Sun-Fire 2200 compute nodes. 
The head node is configured with two Quad-Core 2.7 GHz 
AMD Opteron Series 2384 processors (512KB dedicated L2 
cache per core), 8 GB memory and three 1 Gigabit Ethernet 
Ports with BCM5715C controller. Every compute node is 
configured with two Quad-Core 2.3 GHz AMD Opteron 
Series 2376 processors (512KB dedicated L2 cache per 
core), 8 GB memory and three 1 Gigabit Ethernet Ports with 
BCM5715C controller. The head node has 4X 146GB 10K-
RPM SAS hard drives. Each compute node has a 250GB 
7.2K-RPM SATA-II hard drive. The cluster has been 
connected by the Cisco Catalyst 4948 10/100/1000BASE-T 
switch. In our testing, PVFS 2.8.1[29] was set up as parallel 
file system which is accessed by the I/O client node. PVFS 
was configured with one metadata server node and variable 
I/O server nodes (from 8 to 16, 32, 48 nodes) with a 64KB 
strip size. The I/O client is configured on the head node. 
Because parallel I/O read is the most frequent operations and 
TCP is the most widely used transport protocol in PVFS, our 
experiments mainly focused on parallel file system read with 
a TCP configuration. 

B. Experimental Description 
The performance of SAIs and Irqbalance are evaluated 

and compared in our experiments with the running of 

Interleaved or Random Benchmark (IOR) [4]. IOR is a 
parallel file system benchmark which is developed by 
Lawrence Livermore National Laboratory to test the 
performance of various parallel I/O patterns. Because IOR 
includes general parallel I/O operations and various real 
parallel I/O patterns, it is widely accepted as a benchmark for 
parallel I/O test. Each I/O operation in IOR writes or reads a 
contiguous block of buffer (transfer size up to the entire 
memory available) to/from the parallel file system. Because 
every IOR request (the size is configured as transfer size) 
involves parallel I/O, the return data generates multiple 
concurrent I/O interrupts. Based on the conventional load 
balance core scheduling scheme data needs to be merged on 
every IOR request. Therefore, IOR is an ideal benchmark for 
the SAIs performance evaluation. To make the experiment 
match general application situations, we have added some 
computing tasks into IOR. These computing tasks encrypt 
the data collected by every IOR request. IOR is available 
with three APIs: MPI-IO, POSIX, and HDF5. In the 
experiment, MPI-IO tests are conducted on the client side 
parallel accessing PVFS with different transfer sizes from 
128KB, 512KB, 1 MB, to 2 MB. The number of PVFS I/O 
server nodes number varies from 8, 16, 32, to 48. The strip 
size of every I/O server node is 64KB. In the experiments, 
the client side executes an IOR process to read a 10GB size 
file from PVFS. The performance has been measured by 
Oprofile [28] and Linux inbuilt “sar” system monitor tool 
[26]. Consistent results are obtained across repeated runs. All 
results presented in the paper are averaged with at least three 
runs. Since no data locality issue has been observed at the 
core interrupt scheduling level in parallel I/O write, our 
experiments mainly focus on parallel I/O read. 

C. Bandwidth Comparison 
The bandwidth comparison experiments have been 

conducted with 1 Gigabit and 3 Gigabit NIC (combined three 
1 Gigabit NICs). On the 1 Gigabit NIC, SAIs employs 
multiple IOR processes and 1 Gigabit NIC to parallel access 
PVFS. Although SAIs shows better performance than 
Irqbalance on I/O bandwidth with 1 Gigabit NIC, the limited 
network bandwidth is a major bottleneck and reduces the 
potential performance improvement of the application. 
Therefore, SAIs has moderately improved IOR I/O 
bandwidth with 1 Gigabit NIC. The bandwidth peak speed-
up ratio is 6.05%. 

Figure 5 shows the performance improvement of SAIs 
with 3 Gigabit NIC. The IOR processes are executed on the 
I/O client side to access data on the PVFS concurrently. Each 
process reads a total 10GB data from PVFS. It lists the I/O 
bandwidth comparison and speed-up under the two 
scheduling schemes with various transfer sizes and number 
of I/O servers. As we can see in Figure 5, SAIs improves the 
I/O bandwidth in all cases. Especially, when the number of 
I/O servers is increased to 48, the speed-up reached a 
maximum of 23.57%. Note the maximum bandwidth in 
Figure 5 doesn't exceed 3 Gigabit. Hence this result complies 
with the analysis in section 3.3. The analysis states that the 
performance advantage of SAIs can rise with the number of 
servers, if the bandwidth doesn't become a bottleneck. 
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D. Cache Miss Rate Analysis 

Figure 6 shows the ratio of L2 cache miss rates (# cache 
misses / # accesses) of the two interrupt scheduling schemes 
with a 1 Gigabit NIC. The experimental results expose the 
major cause of the bandwidth improvement. As we discussed 
in the second paragraph of the Introduction Section, a cache 
miss leads to an extra data movement between the two cores. 
So reducing the number of cache misses caused by an I/O 
interrupt means a reduction of data movement. However, 
increasing the number of I/O servers leads to more interrupts 
and higher I/O throughput on the client side. Therefore, even 
with a lower cache miss rate, the 48 server’s configuration 
does cause more cache misses, which may lead to more data 
movement too. Figure 6 shows that our method works well 
when the number of I/O server’s increases, since the cache 
miss rate is smaller than that of the Irqbalance scheduling. 

 
 
 
 

 
In Figure 7, the L2 cache miss rates have been compared 

using a 3-Gigabit NIC. The results show that the cache miss 

rates have increased with the increase of the network 
bandwidth, leaving a big improvement space for SAIs. In 
this experiment, the L2 miss rate is reduced almost 40% by 
SAIs. 

E. CPU Utilization Analysis 
Although SAIs improves the I/O bandwidth noticeably in 

comparison to Irqbalance, the improvement is less than its 
potential as shown in our analysis. To further explore the 
possible reasons, the CPU total utilizations has been 
displayed in Figure 8. 

 
In Figure 8, the CPU utilization is collected under a 

single application running with a 1 Gigabit NIC. The CPU 
exposes its low utilization with the maximum of 15.13%, 
whatever the interrupt scheduling scheme is selected. This is 
because that the bandwidth of a 1 Gigabit NIC is lower than 
the processing capacity of CPUs, even with only one core 
(2.7GHz). When the processor is processing faster than NIC 
receiving speed, the NIC will be the main bottleneck in 
parallel I/O access. Therefore, there are many more CPU 
cycles idling to wait for the NIC to receive data. Therefore, 
while the SAIs scheduling still shows a better bandwidth 
than that of Irqbalance with 1Gigabit NIC, the improvement 
is small. This observation also supports the rational of 
assumptions for equation (1), and rules out the possibility 
that the parallel interrupt handling for core utilization could 
offset the data movement cost. 
 

 
In Figure 9, the CPU utilization has been listed with 3-

Gigabit NIC. The results show that the Irqbalance employs 
more CPU cycles on data movement. Although 3 Gigabit 
networking bandwidth still cannot saturate all core 
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computing capacity, the increasing CPU utilization shows a 
possible linear relation between CPU capacity and network 
speed. We will further verify this linear relation by 
conducting a simulation in Section 6. 

F. CPU Waiting I/O Time Analysis 

 
To further analyze the CPU utilization for I/O handling, 

the CPU_CLK_UNHALTED event has been collected with 
mask 0x00 by Oprofile in the experiments. This event 
provides the number of clocks that the CPU is not in a halted 
state [30]. In our experiments, we collect this event to 
analyze the halted time that CPU waits on I/O data. For the 1 
Gigabit NIC experiment, the results are shown in Figure 10, 
SAIs has a maximum of 27.14% improvement on 
CPU_CLK_UNHALTED time. When a data-intensive 
parallel application, such as IOR, reads data from the PVFS, 
the CPU halted cycles are mainly contributed by two parts: 
1. the time that the I/O core (in which I/O interrupts are 
handled) is halted and waited for data to be received by the 
NIC; 2. the time that application core (in which IOR is 
running ) is halted and waited for data when data misses in 
the cache. Obviously, SAIs scheduling the I/O interrupt to its 
affinitive application core removes the time cost of part 2. 
Therefore, SAIs obtains a larger CPU unhalted time. 

 
Figure 11 presents the CPU_CLK_UNHALTED events 

to compare the application’s waiting time for I/O read with 
3-Gigabit NIC. SAIs has a maximum of 48.57% 
improvement on CPU_CLK_UNHALTED time. The results 
verify that SAIs reduces the I/O waiting time for each read 
and increases the total I/O bandwidth. 

G. Multiple Clients I/O Bandwidth Testing 
Because the source-aware interrupts scheduling mainly 

optimizes parallel I/O performance on the client side, 
multiple client performance testing has been conducted and 
analyzed in this subsection to evaluate scalability. The 
experiment configured 8 I/O server nodes and a variable 
number of client nodes (from 4, 8, 16 nodes to 56 nodes) 
with a 3 Gigabit NIC connection. Every client node ran 
multiple IOR application processes (transfer size = 1M). The 
I/O bandwidth with the different interrupt scheduling 
schemes has been collected and compared in Figure 12 (The 
bandwidth is a summary of the whole clients). 

 
Figure 12 shows that SAIs has improved parallel I/O 

bandwidth. When the number of clients is 8, the 
improvement is up to 20.46%. With the further increase in 
number of clients, the I/O bandwidth decreases slowly. 
Therefore, 20.46% is the maximal improvement for 8 I/O 
server nodes in our experiment. Because the bandwidth of 8 
I/O server nodes is saturated by 8 clients, the increasing 
client nodes over 8 will gradually reduce the bandwidth on a 
single client. The drop in bandwidth implies a drop in NR, the 
number of requests. According to formula (5) and (6) in 
Section III, this in turn will reduce the difference in 
effectiveness between SAIs and irqbalance scheduling as 
shown in Figure 12. When the number of client nodes is 
greater than 32, 8 I/O nodes are not enough to serve the 
increased parallel I/O requests. In these overloaded worst 
cases, SAIs still improves application performance slightly. 
The experimental results verify that source-aware interrupt 
scheduling improves or maintains the parallel I/O 
performance on the multiple clients’ situation. However, the 
peak network bandwidth of the I/O servers will eventually 
limit the performance benefits of SAIs. To understand the 
potential performance improvement of SAIs, simulation is 
conducted in the following section in order to remove the 
physical network constraint. 

VI. CACHE DATA MIGRATION COST SIMULATION 
Because the speed of NIC generating I/O interrupts is 

much slower than the speed of processors handling I/O 
interrupts on the client side in our experiments, the 
experiments do not demonstrate the full potential of our 
interrupts scheduling scheme. To detect the possible 
performance improvement brought by source-aware 
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scheduling, we conduct a simulation in memory to evaluate 
data movement cost. In our simulation node (the head node 
of the Sun-Fire Linux-based cluster), the system configures 
4X 2GB DDR2-667 Single Rank Memory, which could 
provide 5333 MB/s (about 41.66 Gigabit/s) peak bandwidth 
[22] for the parallel I/O access. Because the main 
contribution of SAIs is removing the extra data movement 
cost incurred by interrupts scheduling, our simulation 
focused on keeping source-aware to avoid cache misses and 
reduce data movement. In addition, the interrupt handling 
cost depends on the interrupt processing routine rather than 
scheduling scheme, thus the interrupt handling cost is a 
constant cost to any interrupt scheduling. The data 
processing method of SAIs is simulated by a pair of threads 
(named Si-SAIs), in which one thread parallel read data 
strips from multiple different files on a RAM disk [34] in the 
memory and the other one combines the returned data strips 
together into the requested data. Si-SAIs employs the system 
resource sharing feature of the threads to keep it source-
aware. We use two independent processes (named Si-
Irqbalance) to simulate the Irqbalance data processing 
method completing the same job as Si-SAIs. The 
independent processes are possible to be scheduled and 
executed on separated cores. The major performance issue, 
extra data movement, has been reproduced by our simulation 
(shown in Figure 13). The multiple I/O nodes are simulated 
with different files stored in memory. Each I/O thread or 
process read includes 64KB data strip from every file. The 
transfer size is 1M, which has been verified to be the best 
buffer size in our previous testing. The simulation results are 
obtained across repeated runs. All results are averaged with 
at least three runs. 

 
Figure 14 shows the testing results of the simulation. In 

Figure 14, the bandwidth reaches up to 3576.58 MB/s (about 
27.94 Gigabit/s) when the CPU utilization is 49.47%. And, 
the corresponding speed-up is up to 53.23%. The L2 cache 
miss rate has reduced 51.37% on this peak bandwidth 
improvement. When the application number equals the 
number of cores, the CPU capacity is saturated by 
applications and utilization reaches 99.47%. After the CPU 
keeping 100% utilization, Si-SAIs and Si-Irqbalance sustain 
almost the same performance (about 2500MB/s or 19.53 
Gigabit/s) for the parallel I/O for the all case. With the 
results of simulation, we conclude that two Quad-Core 2.7 
GHz AMD Opteron Series 2384 processors (head node 

processor configuration) could handle parallel I/O bandwidth 
up to 27.94 Gigabit/s and 19.53 Gigabit/s on average. 

 
Analysis and experimental results show that SAIs is very 

promising. It has its merit. On the other hand, SAIs has its 
limitations. SAIs is designed for parallel I/O systems. It is 
not a general interrupt scheduling. Its effectiveness depends 
on the assumption that the underlying system is I/O intensive 
and that the system has plenty of network bandwidth.  SAIs 
may serve well as a complement of existing processor 
scheduling schemes for datacenters with high-speed 
networks connections and for data intensive applications. But 
in general, extending the source-aware concept and 
integrating source-aware scheduling with existing interrupts 
scheduling mechanisms is a subject of future study. 

VII. RELATED WORKS 
The prevalent interrupt scheduling schemes adopted by 

current multi-core OSes are round-robin and dedicated 
modes. Round-robin mode distributes interrupts from I/O 
APIC to local APICs in turn, and, dedicated mode delivers 
the incoming interrupts to a fixed core. Irqbalance[20] is a 
intelligent interrupt scheduling loadable module, which 
makes interrupts scatter on every possible core based on the 
cores’ load statistics. Actually, Irqbalance is a variant of 
round robin scheduling mode. In addition, a patent of 
interrupt load distribution system proposed by Toshikazu 
Nakagawa [38] gave anther interrupt scheduling method with 
the consideration of processor load balance. While the 
existing works have shown good potential on CPU 
utilization, uncoordinated attempts to distributed interrupts to 
different core can also result in some bad side effects [40].  

Several processor data locality research efforts have been 
conducted for network performance. These research efforts 
partly exploited the potential scenario and cost of data 
movement among cores. The impact of the data movement 
incurred by parallelization strategies of packet processing on 
the general-purpose monolithic OS has been analyzed by 
Salehi et al. [21] and Willmann et al. [32]. As for multi-core 
systems, Foong et al. [1][2][5] and Narayanaswamy et al. 
[10][11] have shown the in-depth analysis of processor data 
locality problem, but there analysis has not been considered 
for parallel I/O situations. To enable users tuning 
applications performance to keep data locality and reduce 
data movement above multi-core systems, VTune [19] and 
autopin [37] have been developed by Intel and T. Klug et al. 

 
 

Figure 13. Memory Parallel I/O Access Simulation Design. 
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Though these tools suggest an optional data-core mapping, 
they cannot detect the application core information and 
change the source-aware automatically while processes are 
running. In addition, the latest Intel Ethernet Controller 
82575/82576 or 82598/82599 [17] allows assigning 
interrupts to processor cores manually. But, the assignment is 
static, which is too inflexible to meet the change of the data 
request source. Effective and adaptive load balancing on 
multiprocessor systems has been studied in [6][36][39]. 
Brecht et al. proposed a dedicated processor core packet 
processing solution to improve data locality [36], but this 
solution sacrificed the parallelism. Scogland et al. have 
suggested a user-level library called SyMMer [39], which 
monitors the system loads changing and re-schedules the 
MPI application processes running for keeping data locality. 
In contrast, our study is distinguished from the previous 
researches in the sense that we proposed a novel source-
aware interrupt scheduling scheme, which uses the source 
information of parallel-I/O to optimize core interrupt 
scheduling. The basic idea is that the interrupts associated for 
the same I/O request, even if they come from different file 
servers, should be grouped together to one core. This simple 
idea carries a long way, since data locality is much more 
important in performance than core utilization in modern 
computers. The source-aware interrupt scheduling scheme 
reduces cache misses and data movements between caches. 

There are also research which improve the processor data 
locality in intra-node communication [13][14]. However, 
these optimizations are good for data exchange among cores 
rather than the data locality of interrupt scheduling. 
Suggestions of keeping data locality for high-performance 
networking has been proposed recently in [7][15][27][35]. 
These systems can also benefit from SAIs to achieve high 
parallel I/O bandwidth with less system modification and 
integration. 

VIII. CONCLUSION AND FUTURE WORKS 
We have proposed a novel source-aware affinity interrupt 

scheduling scheme and prototyped it with a new scheduler 
called SAIs for parallel I/O systems. SAIs groups interrupts 
associated for the same I/O request together to be handled on 
the same core. The new scheme ties interrupt processing and 
data consumption, to reduce cache miss rate and data 
movement on client side. Experimental results show that 
SAIs obtains noticeable better I/O bandwidth than that of the 
conventional utilization based scheduling mechanisms. SAIs, 
which has been integrated into the Linux kernel, has reported 
an improvement up to 23.57% in the 3-Gagebit NIC 
configuration of our testing environment. To explore the full 
potential of the source-aware scheduling, simulations are 
also conducted that remove the NIC bottleneck. The 
simulation results show that SAIs can improve the I/O 
bandwidth up to 53.23% accompanied with 51.37% cache 
miss rate reduction. The successful implementation of SAIS 
shows that the newly proposed source-aware affinity 
mechanism is feasible and effective. The analysis and 
experimental results demonstrate the potential of source-
aware interrupt scheduling for data intensive applications 
where network bandwidth is not the performance bottleneck.  

The proposed source-aware interrupt scheduling is very 
promising and leads to a considerable performance 
improvement. However, it is just a beginning. To put the 
source-aware interrupts scheduling in actual use, we need 
more studies. We list four different interrupts handling 
policies in Section 3. Our current study is on one policy with 
one special application, parallel I/O interrupts, in mind. Our 
current result is not a general solution of interrupt scheduling. 
It is a complement and alternative. In the future, we plan to 
extend the source-aware concept to other applications and to 
study the integration of different policies and scheduling 
algorithms for a robust, general solution. 
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