
A Source-aware Interrupt Scheduling for Modern Parallel I/O Systems

Hongbo Zou , Xian-He Sun , Siyuan Ma , and Xi Duan
 Department of Computer Science

Illinois Institute of Technology
Chicago, IL, USA 60616

Email: {zouhongbao@gmail.com, sun@iit.edu, sma9@iit.edu, xduan@iit.edu}

Abstract—Recent technological advances are putting increased
pressure on CPU scheduling. On one hand, processors have
more cores. On the other hand, I/O systems have become more
complex. Intensive research has been conducted on
multi/many-core scheduling; however, most of the studies
follow the conventional approach and focus on the utilization
and load balance of the cores. In this study, we focus on
increasing data locality by bringing source information from
I/O into the core interrupt scheduling process. The premise is
to group interrupts associated for the same I/O request
together on the same core, and prove that data locality is more
important than core utilization for many applications. Based
on this idea, a source-aware affinity interrupt-scheduling
scheme is introduced and a prototype system, SAIs, is
implemented. Experiment results show that SAIs is feasible
and promising; bandwidth shows a 23.57% improvement in a
3-Gigabit NIC environment and in the optimal case without
the NIC bottleneck, the bandwidth improvement increases to
53.23%.

Keywords-interrupt scheduling; Source-aware; Parallel I/O;

I. INTRODUCTION
The peak throughput of processors has been improving at

a phenomenal rate of 50% to 100% per year during the last
three decades [23]. Since 2004, the emergence of
multi/many-core [7] architectures has changed the landscape
of computing [41] and further accelerated these
improvements. Compared to processor performance
improvements, data access performance (both latency and
bandwidth) has improved a snail’s pace. The memory speed
has only increased by roughly 9% each year. Additionally
disk throughput has only doubled over the past two decades
[23]. This performance gap between processors and I/O,
known as the I/O-wall problem, is predicted to continually
expand in the foresee future [9][23]. This gap has become
the critical issue limiting the sustained performance of
parallel applications. Parallel I/O techniques can help relieve
this problem by creating multiple data paths between
processors and I/O, and is considered by many as the
primary solution to overcome the I/O-wall problem.
However, parallel I/O further complicates the already
complicated multi-core scheduling and simply, ignoring the
fact of parallelism in I/O systems is not an appropriate
approach. In order to reap the full benefits of a parallel I/O
on multi-core system, a reexamination of processor
scheduling is required. Scheduling schemes must be refined
to match the complications of parallelism and adjust to data

intensive applications. In this study, we undertake a
reexamination of interrupt scheduling for parallel I/O on
multi/many-core systems.

Conventionally, interrupt scheduling distributes
interrupts to lightly loaded cores with consideration of only
core utilization, fairness and power consumption [20].
Consequently, the core handling an interrupt is likely not the
core consuming the requested data (i.e. the core running the
application processes did not issue the I/O request). This
results in a transfer of data between the two cores local
caches.

This problem is exacerbated further in parallel I/O. In a
Parallel File Systems (PFS), multiple server nodes are
employed to serve one I/O request in order to improve the
I/O bandwidth. This increased I/O bandwidth, consequently,
incurs more Network Interface Card (NIC) interrupts on the
client side. In a conventional load balanced system,
interrupts are evenly distributed to cores for handling,
whereas these interrupts may come from the same data
request. This inevitably causes data movement among
caches. Under the conventional scheduling approach, parallel
I/O leads to even more frequent data movement on the client
side due to the increased bandwidth of the system. In
addition, when the bandwidth of parallel I/O increases,
returned data often have to be swapped out of the L1/L2
cache. This in turn causes more memory access. The I/O
performance will be more penalized due to this memory
access.

Therefore, core-utilization based interrupt scheduling is
not an appropriate approach for interrupt handling in parallel
I/O systems. To improve this algorithm, interrupts for the
same I/O request, and for concurrent parallel I/O requests,
can be grouped onto the same core to increase data locality.
In this study, a novel source-aware interrupt scheduling
scheme is proposed to optimize I/O performance. This
scheduling scheme is based on the source-aware idea, which
correlates I/O interrupt handlers to their data consuming
process. In source-aware nomenclature, the original I/O
request is called the source, and all the interrupts serving for
the same source are called peer interrupts. In this design and
implementation, a single core is chosen to be the core where
the data request process is running. Although the data request
process could be migrated to another core while it is blocked
upon an I/O operation, it is rare to see such a migration
happen during the I/O blocking, especially in an I/O
intensive system. For this reason, our scheme schedules the
I/O interrupts for the same source process onto the core

2012 IEEE 26th International Parallel and Distributed Processing Symposium

1530-2075/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPS.2012.24

156

2012 IEEE 26th International Parallel and Distributed Processing Symposium

1530-2075/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPS.2012.24

156

which runs the corresponding I/O request. Due to the scarcity
of process migration as mentioned above, the scheme
generally avoids the data movement among the cores. Please
note that source-aware is distinct from processor affinity
[31], which is a data sharing correlation between the core
and the processes, if the remnant cache data/states in the core
could be used by the processes/threads in the future. Then
processor affinity directly describes the candidate cores to
which interrupts could be delivered and executed.

Several challenges exist in the source-aware scheduling
scheme, including:

• How to identify which process an I/O interrupt
belongs to;

• How to inform the I/O interrupt scheduler the
location of the process issuing the requests;

• How to provide a light-weight solution upon current
multi-core system;

These challenges have motivated this research. The main
contribution of this paper is four-fold.

• Conducted a quantitative study to reveal
performance issues of interrupt scheduling in parallel
I/O;

• Designed a source-aware interrupt scheduling
scheme for parallel I/O;

• Implemented a source-aware I/O interrupt scheduler
prototype, named SAIs;

• Performed experimental testing to verify the
feasibility and effectiveness of SAIs;

Several interrupt scheduling schemes have been proposed
and implemented recently to guide the Advanced
Programmable Interrupt Controller (APIC) [3][18] in
optimized interrupt scheduling [3][17][18][20][25].
However, these interrupt scheduling strategies are mainly
focusing on improving cores utilization, rather than data
locality. Therefore, the source-aware I/O interrupt
scheduling is a complement to these existing solutions.

Because there is not a data locality issue associated with
interrupt scheduling in parallel I/O write operations, our
study focuses on parallel I/O read. The rest of this paper is
organized as follows: Section 2 surveys APIC interrupt
management mechanism and I/O Interrupt scheduling on
Multi-core. Section 3 introduces the concept of source-
aware interrupt scheduling and its associated quantitative
analysis. The general source-aware interrupt scheduling
scheme and one specific implementation are proposed in
Section 4. Section 5 and 6 present and analyze the
experimental and simulation results, respectively. In Section
7, we discuss related works. Finally, Section 8 concludes the
paper.

II. BACKGROUND

A. APIC Mechanism
In modern computer system, the Advanced

Programmable Interrupt Controller (APIC) provides interrupt
support on X86 architecture processors, such as Intel 64 and
AMD 64. There are two components in the X86 APIC
systems, the Local APIC and the I/O APIC [3][18].

Typically, each core has a Local APIC, and the system has a
single I/O APIC component shared by the multiple devices
connected on a peripheral bus. The main function of the I/O
APIC is to receive external interrupts events from its
associated I/O devices (e.g. NIC, Hard disk etc.) and route
them to one or more Local APICs as interrupt messages. The
Local APIC primarily accepts interrupts message sent from
I/O APIC and delivers them to the associated core for further
handling. In general, I/O APIC routes the interrupts to the
local APICs based on the interrupt redirection table. This
table identifies which cores could handle the interrupts for
the specific device [33]. The I/O APIC extracts the available
cores information from the table and puts it into the interrupt
message as the destination address. The actual handling of
I/O interrupts takes place in the softirq interrupt thread [12],
which is mostly performed on the core that received the
interrupt. To maximize multi-core utilization and power
consumption, some interrupt scheduling schemes, such as
irqbalance [20], have been developed and applied to
dynamically change interrupt scheduling policy. However,
this balance scheduling may harm the parallel I/O when
interrupts are scattered to the multiple lightly loaded cores
rather than the cores requesting data [10][12]. When the
interrupt handling and the application are executed on
different cores, the system overhead will increase as more
I/O data access would be required due to the increased
amount of inter-core data movements.

B. I/O Interrupt Scheduling on Multi-core

In general, interrupt scheduling schemes can be classified

into three types (shown in Figure 1) with or without the
source-aware feature [16]. In Figure 1, (a) describes round-
robin modes, in which the incoming interrupts are handled
by cores in turn. This mode is good for core utilization or
load balancing, but it damages the peer interrupt source-
aware described earlier. This mode is the default interrupt
scheduling configuration for the Linux with Intel processor.
(b) shows dedicated modes, in which there is a special core
to handle all the incoming interrupts. This mode also ignores
source-aware of peer interrupts. For example, with an AMD
processor, the Linux default interrupt scheduling is
configured to operate in lowest priority mode, this causes the
incoming interrupts to be handled only on core 7. The
schemes described in (a) and (b) make it difficult to maintain
source-aware on current multi-core systems. Scheme (c)
illustrates the proposed source-aware interrupt scheduling
mode, where source-aware scheduling arranges interrupts

Figure 1. The data location with Different I/O Interrupt Scheduling.

157157

from the same application process onto the same target core.
This mode guarantees that the interrupted data are processed
and consumed on the same cores, which improves the cache
affectivity and reduces inter-core data movement.

III. SOURCE-AWARE INTERRUPT SCHEDULING
To increase data locality in parallel I/O, a source-aware

interrupt scheduling scheme (called source-aware scheme) is
proposed. It instructs the I/O APIC to deliver the interrupt
requests to the core where the data request application
process is running (named data consuming core). The
underlying assumption is every core has a dedicated private
cache, which is generally true with current and foreseeable
multi-core microprocessors. Figure 2 shows a simple case to
explain the basic idea of the source-aware scheme. In this
case, there is one I/O client and n I/O server nodes (I/O
server 1 to n). On the I/O client, there are n computing cores
(Core 1 to Core n) sharing one NIC and one I/O APIC. The
application processes (APs, from AP A to AP N) are
executing on the n cores concurrently. If AP A, AP B, and
AP C request the data block from the PFS concurrently, the
PFS will return the data block A, block B, and block C to the
requested AP, respectively.

On the I/O client, if the received data strips sequence is

(A1, A2, A3, …, An), (B1, B2, B3, …, Bn), and (C1, C2, C3, …,
Cn), there are two ways for interrupts to be delivered. By
default, the I/O APIC is instructed to use a balance scheme,
hence the interrupts are spread to all the cores based on their
load information. In this case, data strips within the same
data request could be handled on totally different cores. This
fact will lead to inevitable data migration from the core
handling the interrupt, to the core consuming the data. In
Figure 2, the small arrow on the side of data strips shows the
data migration path among the cores. These migrations are
mitigated if the APIC adopts the source-aware scheme. Here
the data strip will be handled directly by the core that hosts
the AP and consumes the data. The red frame at the side of
the core stands for the result of the source-aware scheduling.

With the addition of the source-aware concept, there are
four possible scheduling polices: (i) select the core that
generated the request, (ii) select the core which runs the
process that produced the I/O request (maybe different than
(i) if a rescheduling may occurred during I/O blocking), (iii)
select the least-loaded core, or (iv) select a specific dedicated
I/O core. The last two policies are the conventional (source-
unaware) scheduling approaches. The second is a source-
aware policy should be more efficient than the first.
However, since the process migration rarely happens during
a blocking I/O, the expected performance difference between
the first two polices is trivial. As a topic for future study, the
four presented policies could be integrated and the second
source-aware policy could be implemented.

To clarify the advantage of source-aware scheduling
scheme, a quantitative analysis is included as following.

A. Assumptions for Analysis
In a general PFS, there are NC I/O client cores and NS I/O

server nodes. A data Block X will be split into NS data strips
(X1, X2, …, XNS) over the NS I/O server nodes. When an
application requests Block X , the I/O server i needs to return
the data strips Xi. For simplicity, we assume NC can exactly
divide NS, and all data strip Xi have the same size. Hence we
can use P to represent the processing time of one data strip,
and M to represent its migration time from one processor
core to another. Experiments in latter sections show that data
migration is much more expensive than interrupt handling
with a high speed multi-core processor. Therefore, we can
deem M >> P. For further analysis, let Tp be the total
processing time of data strips on each core; TM be the total
strip migration time between the cores; TR be the rest time
spent on network and server side. Both Tp and TM could be
calculated in terms of P and M.

Notice that interrupt scheduling can affect Tp and TM, but
have no influence over TR, because TR is a variable only
related to the time of network transmission and server
response. It can then be estimated that TR is equal under
different interrupt scheduling policy. Additionally, data strip
processing and data strip migration can happen
simultaneously. This overlapped part, referred as TO, is under
the impact of many factors besides the scheduling policy,
hence hard to evaluate. However, as the processing and
migration time becomes shorter, it is less probable that they
will happen concurrently. So if our interest lays only in the
interrupt scheduling, as what appear in this paper, we can
assume that TO is proportional to Min(Tp, TM).

By the above assumptions, the total time of an I/O
request can be decomposed into four parts by equation (1).
For various interrupt scheduling policy, TR is a constant; Tp
and TM are variables; and TO is proportional to the minimum
of Tp and TM.

R P M OT T T T T= + + − (1)

It is still difficult to express Tp with P, partly due to the
possible concurrency of multiple strip processing. With NC
cores and NS strips, Tp could be at most NS × P if all the
strips are handled by one core, or at least P × (NS/NC) if strip

Figure 2. Source-aware Interrupt Scheduling Design.

158158

processing take the advantage of all NC cores. TM is much
easier to calculate. In most CPU design, only one strip
migration can happen at any time. So we can obtain TM by:

#MT M migration= × (2)

In the rest of this section, we are going to compare two
different interrupt scheduling policies, balanced and source-
aware. For simplicity, assume that the number of I/O servers
is the multiple of the number of cores, hence NS = � × NC ,
where � is a positive integer.

B. Single I/O Request
For balanced scheduling, interrupt will be distributed

evenly across different cores. So if all the interrupts are
invoked closely, we will have Tp = P × (NS/NC) = P × �. But
it is too optimistic. The time gap between each interrupt
could be large. So Tp >= P × �. The faster the network and
storage server is; the closer Tp to its bottom boundary is.

The disadvantage of balanced scheduling is the number
of incurred strip migration. Since at the end of a request, all
the strips will be moved to a single core, the cost of load
balance is high. The migration cost is TM = M × (NS ×(NC -
1)/NC). Meanwhile, notice that TO = Min(TP, TM) and M >> P,
we can deduce TO <= Tp.

According to above analysis, inequality (3) evaluates the
efficiency of balanced scheduling.

(1)Balance R CT T M Nα≥ + × × − (3)

For source-aware interrupt scheduling, it has a higher
strip handling cost. By processing all the strips on only one
core, we have Tp = P × NS. On the other hand, there is no
strip migration cost, since all the strips are scheduled to the
same core at the very beginning. Consequently, the total time
can be expressed as:

Source aware R ST T P N− = + × (4)

Though NS is slightly larger than (NC - 1) × �, we can still
draw the conclusion that TBalanced - TR >> TSource-aware - TR
because M >> P.

C. Multiple I/O Request
Let NR be the number of I/O requests submitted by the

client. Even in a light loaded system, NR is generally larger
than NS,

When several I/O requests on one client are divided into
smaller requests on the servers, there is no migration cost for
source-aware scheduling, and Tp increases to P × NS × NR.
So, the evaluation becomes:

Source aware R S RT T P N N− = + × × (5)

Similar to the analysis of source-aware scheduling, the
variable part of balanced scheduling is increased by a factor
of NR , where NR is given by inequality (6). For this reason,
we still have TBalanced - TR >> TSource-aware- TR.

(1)Balance R C RT T M N Nα≥ + × × − × (6)

Note that the time difference of the two methods is now
subject to NR, the number of I/O requests. Since NS = � × NC
, the difference between NS and � × (NC - 1) is negligible.
The time difference is proportional to three factors: the
number of servers (NS), the extra time consumption of data
strip migration over strip processing (M-P), and the number
of requests (NR). Factor (M-P) is entirely determined by
hardware, hence fails to gain our interests. So the other two
factors are those affecting the potential performance
improvements of the source-aware scheduling.

Although it seems sensible to enlarge the performance
gain by simply increasing NS, an implicit connection between
these two factors invalidates such behavior. Let Sizereq
represents the size of an I/O request, and then we can build a
coarse relationship between NR and NS in (7). When the client
bandwidth is large enough, an increase of NS allows the
client to exploit more benefits from source-aware scheduling.
When the bandwidth becomes a bottleneck, increasing NS
implies the decrease of NR in (7), which will in turn reduce
the advantage of source-aware scheduling.

ClientreqSR BandwidthSizeNN ≤×× (7)

D. Multiple Programs on One Client
Now consider the case when more than one program runs

on the client. Assume the number of programs is NP, and
NR/NP is the number of requests issued by a single program.
The analysis of balanced scheduling can largely follow the
inequality (6). While source-aware scheduling is different.
Depending on the relation of NP and NC, there are two
different scenarios.

1) NC >= NP

For this case, only NP cores will get used during the
interrupt handling. If the workload is heavy, interrupts will
be handled concurrently. So Tp could be as low as P × NS ×
NR/NP. It is implying a shorter time cost compared to (5):

/R S R Source aware R S R PT P N N T T P N N N−+ × × ≥ ≥ + × × (8)

2) NC < NP

In this situation, all the cores will be busy processing
interrupts from different programs. For simplicity, it is
assumed NP is a multiple of NC. Each core will hold NP / NC
programs for execution. So the lower boundary of Tp
becomes P × NS × NR / NC for both scheduling methods. The
balanced scheduling can almost always reach this boundary,
while the Tp of source-aware scheduling varies according to
the workload. At the worst case, where no two cores are
handling interrupts simultaneously, Tp can be as large as P ×
NS × NR.

)()1(PMNNTT RCawareSourceBalance −×××−≥− − α (9)

As to the strip migration cost of balanced scheduling, the
analysis in section 3.3 still works. Additionally, the number
of programs doesn't affect the total migration cost, because
all the requests from one program will eventually be
transferred to the same core. Therefore, we can express the

159159

performance difference of two scheduling as inequality (9).
Accordingly, as M >> P, the source-aware scheduling will
still have better performance.

The above analysis gives us an intuition of how our
approach affects the overall performance. As we can see, the
source-aware method generally shortens the response time.
And it is most effective under the heavy workload scenario
where a client runs NC programs simultaneously. Its
effectiveness, however, does rely on the proportion of TR in
the whole I/O request handling. If network peak bandwidth
is a limitation, more efficient interrupt scheduling will not
make much of a difference on the overall performance. In
fact, more efficient interrupt handling can move the
performance bottleneck from interrupt handling to network.
For this reason, to explore the full potential of source-aware
interrupt handling, we adopt a combined implementation and
simulation testing in the experiment section.

IV. SAIS INTERRUPT SCHEDULER

With the above quantitative analysis, we propose a novel

source-aware interrupt scheduling (SAIs) for parallel I/O
interrupts in this section. A general SAIs system design
under Parallel Virtual File System (PVFS) [29] is presented
herein. PVFS is a choice of implementation. The design can
be extended to other parallel file systems as well.

A. System Design

SAIs dynamically directs incoming interrupts to the
affinitive core based on the affinitive core ID (aff_core_id)
information. The aff_core_id is the identifier of the core that
the application is running on and the I/O request has been
sent out from. The aff_core_id could be put into each I/O
request and guide interrupt scheduling when the data returns.
SAIs consists of three core components on the client side:
HintMessager, SrcParser, and IMComposer as shown in
Figure 3.

• HintMessager – encapsulates the aff_core_id into
data request (for example, we can use PVFS_hint to
convey aff_core_id in PVFS).

• SrcParser – analyzes the IP packet header and
retrieves the aff_core_id that interrupt should be
delivered.

• IMComposer – guides the I/O APIC/MSI to
compose interrupt message with the aff_core_id

which describes the destination address of the local
APIC.

And, there is a core component on I/O server to put
aff_core_id into the return I/O data packets (this is an
optional component for different implementations).

• Hintcapsuler – encapsulates the aff_core_id into
every return data packet on the I/O server.

Because SAIs uses the application level information
(aff_core_id) to instruct system level interrupt scheduling,
the implementation of SAIs includes some modifications to
the networking protocol, system interrupt scheduling, and
parallel file system. The modifications on I/O server side
could be involved into SAIs, depending on the
implementation method. In our prototype, because PVFS is
employed to serve application I/O requests, PVFS_hint
message can convey aff_core_id information. We only make
some minor modifications on the I/O server side in our
prototype.

B. Implementation Mechanism

The detailed implementation mechanism of SAIs under

PVFS is shown in Figure 3. When an application process, for
example App A, needs to request data from PVFS, the
aff_core_id will be packed into data request by
HintMessager as a hint parameter (which is described by
step 1 and 2). After that, App A sleeps to wait for the arrival
of return data. When the data request is received by I/O
server, HintCapsuler puts aff_core_id into all the return data
packets (step 3). Because PVFS uses TCP/IP to transfer I/O
data between client side and I/O server nodes, aff_core_id
could be encapsulated into a network packet to return to the
client side. To avoid the extra cost on network protocol
design, the options field of the IP level will be reserved to
convey aff_core_id. An options field is an additional header
field with maximum size of 32-bit word which may follow
the destination address field [24]. The options field also may
be an 8-bit simple options field which could be terminated
with an EOL (0x00) option. In addition, options field of the
IP packet head could be parsed by NIC device driver on the
client side before the interrupt is generated. The detailed
description is shown in Figure 4. The 8-bit simple options
field consists of three sub-fields: copied, option class, and
option number. The value of 1-bit Copied field and 2-bit
option class field are both set to 1 following TCP/IP protocol
description. With 5-bit option number field describing the

Figure 4. IP Packet Structure with Aff_core_id.

Figure 3. SAIs System Architecture.

160160

affinitive core, a maximum 25 = 32 cores could be identified
by SAIs.

On the client side, the NIC device driver analyzes the
incoming MAC frames and composes them as IP packets.
When the IP packet is ready to deliver to system IP module,
SrcParser parses the IP packet header to extract aff_core_id
from options field in the NIC device driver. After the
aff_core_id extract operation, the NIC device driver issues
one softirq interrupt message, in which aff_core_id has been
added as the destination address of the local APIC by
IMComposer (described by step 4 and 5). The interrupt
message is then delivered to the affinitive core for processing
(step 6). When the according core completes interrupt
handling and packet processing, inter-core signals are sent to
wake the application process. To avoid the application
process being migrated to another core when the data returns,
SAIs enforces that the application process should be bundled
on the core which requested data before data return. In a
nutshell, a data request causes multiple return packets from
multiple sever nodes at the same time, but SAIs guides all
the interrupts to the cores corresponding to the aff_core_id
encapsulated in the packets.

V. EXPERIMENTAL EVALUATION
The SAIs scheduler has been integrated into the client

side kernel and NIC drivers to verify its benefit for parallel
I/O application. Our performance evaluation is based on the
analysis and compares the four commonly used metrics:
bandwidth, cache miss rate, processor utilization, and,
cpu_clk_unhalted.

A. Experimental Setup
Our experiments were conducted on a 49-node Sun-Fire

Linux-based cluster. This cluster is composed of one Sun-
Fire 4240 head node and 48 Sun-Fire 2200 compute nodes.
The head node is configured with two Quad-Core 2.7 GHz
AMD Opteron Series 2384 processors (512KB dedicated L2
cache per core), 8 GB memory and three 1 Gigabit Ethernet
Ports with BCM5715C controller. Every compute node is
configured with two Quad-Core 2.3 GHz AMD Opteron
Series 2376 processors (512KB dedicated L2 cache per
core), 8 GB memory and three 1 Gigabit Ethernet Ports with
BCM5715C controller. The head node has 4X 146GB 10K-
RPM SAS hard drives. Each compute node has a 250GB
7.2K-RPM SATA-II hard drive. The cluster has been
connected by the Cisco Catalyst 4948 10/100/1000BASE-T
switch. In our testing, PVFS 2.8.1[29] was set up as parallel
file system which is accessed by the I/O client node. PVFS
was configured with one metadata server node and variable
I/O server nodes (from 8 to 16, 32, 48 nodes) with a 64KB
strip size. The I/O client is configured on the head node.
Because parallel I/O read is the most frequent operations and
TCP is the most widely used transport protocol in PVFS, our
experiments mainly focused on parallel file system read with
a TCP configuration.

B. Experimental Description
The performance of SAIs and Irqbalance are evaluated

and compared in our experiments with the running of

Interleaved or Random Benchmark (IOR) [4]. IOR is a
parallel file system benchmark which is developed by
Lawrence Livermore National Laboratory to test the
performance of various parallel I/O patterns. Because IOR
includes general parallel I/O operations and various real
parallel I/O patterns, it is widely accepted as a benchmark for
parallel I/O test. Each I/O operation in IOR writes or reads a
contiguous block of buffer (transfer size up to the entire
memory available) to/from the parallel file system. Because
every IOR request (the size is configured as transfer size)
involves parallel I/O, the return data generates multiple
concurrent I/O interrupts. Based on the conventional load
balance core scheduling scheme data needs to be merged on
every IOR request. Therefore, IOR is an ideal benchmark for
the SAIs performance evaluation. To make the experiment
match general application situations, we have added some
computing tasks into IOR. These computing tasks encrypt
the data collected by every IOR request. IOR is available
with three APIs: MPI-IO, POSIX, and HDF5. In the
experiment, MPI-IO tests are conducted on the client side
parallel accessing PVFS with different transfer sizes from
128KB, 512KB, 1 MB, to 2 MB. The number of PVFS I/O
server nodes number varies from 8, 16, 32, to 48. The strip
size of every I/O server node is 64KB. In the experiments,
the client side executes an IOR process to read a 10GB size
file from PVFS. The performance has been measured by
Oprofile [28] and Linux inbuilt “sar” system monitor tool
[26]. Consistent results are obtained across repeated runs. All
results presented in the paper are averaged with at least three
runs. Since no data locality issue has been observed at the
core interrupt scheduling level in parallel I/O write, our
experiments mainly focus on parallel I/O read.

C. Bandwidth Comparison
The bandwidth comparison experiments have been

conducted with 1 Gigabit and 3 Gigabit NIC (combined three
1 Gigabit NICs). On the 1 Gigabit NIC, SAIs employs
multiple IOR processes and 1 Gigabit NIC to parallel access
PVFS. Although SAIs shows better performance than
Irqbalance on I/O bandwidth with 1 Gigabit NIC, the limited
network bandwidth is a major bottleneck and reduces the
potential performance improvement of the application.
Therefore, SAIs has moderately improved IOR I/O
bandwidth with 1 Gigabit NIC. The bandwidth peak speed-
up ratio is 6.05%.

Figure 5 shows the performance improvement of SAIs
with 3 Gigabit NIC. The IOR processes are executed on the
I/O client side to access data on the PVFS concurrently. Each
process reads a total 10GB data from PVFS. It lists the I/O
bandwidth comparison and speed-up under the two
scheduling schemes with various transfer sizes and number
of I/O servers. As we can see in Figure 5, SAIs improves the
I/O bandwidth in all cases. Especially, when the number of
I/O servers is increased to 48, the speed-up reached a
maximum of 23.57%. Note the maximum bandwidth in
Figure 5 doesn't exceed 3 Gigabit. Hence this result complies
with the analysis in section 3.3. The analysis states that the
performance advantage of SAIs can rise with the number of
servers, if the bandwidth doesn't become a bottleneck.

161161

D. Cache Miss Rate Analysis

Figure 6 shows the ratio of L2 cache miss rates (# cache
misses / # accesses) of the two interrupt scheduling schemes
with a 1 Gigabit NIC. The experimental results expose the
major cause of the bandwidth improvement. As we discussed
in the second paragraph of the Introduction Section, a cache
miss leads to an extra data movement between the two cores.
So reducing the number of cache misses caused by an I/O
interrupt means a reduction of data movement. However,
increasing the number of I/O servers leads to more interrupts
and higher I/O throughput on the client side. Therefore, even
with a lower cache miss rate, the 48 server’s configuration
does cause more cache misses, which may lead to more data
movement too. Figure 6 shows that our method works well
when the number of I/O server’s increases, since the cache
miss rate is smaller than that of the Irqbalance scheduling.

In Figure 7, the L2 cache miss rates have been compared

using a 3-Gigabit NIC. The results show that the cache miss

rates have increased with the increase of the network
bandwidth, leaving a big improvement space for SAIs. In
this experiment, the L2 miss rate is reduced almost 40% by
SAIs.

E. CPU Utilization Analysis
Although SAIs improves the I/O bandwidth noticeably in

comparison to Irqbalance, the improvement is less than its
potential as shown in our analysis. To further explore the
possible reasons, the CPU total utilizations has been
displayed in Figure 8.

In Figure 8, the CPU utilization is collected under a

single application running with a 1 Gigabit NIC. The CPU
exposes its low utilization with the maximum of 15.13%,
whatever the interrupt scheduling scheme is selected. This is
because that the bandwidth of a 1 Gigabit NIC is lower than
the processing capacity of CPUs, even with only one core
(2.7GHz). When the processor is processing faster than NIC
receiving speed, the NIC will be the main bottleneck in
parallel I/O access. Therefore, there are many more CPU
cycles idling to wait for the NIC to receive data. Therefore,
while the SAIs scheduling still shows a better bandwidth
than that of Irqbalance with 1Gigabit NIC, the improvement
is small. This observation also supports the rational of
assumptions for equation (1), and rules out the possibility
that the parallel interrupt handling for core utilization could
offset the data movement cost.

In Figure 9, the CPU utilization has been listed with 3-

Gigabit NIC. The results show that the Irqbalance employs
more CPU cycles on data movement. Although 3 Gigabit
networking bandwidth still cannot saturate all core

5.00%

9.00%

13.00%

17.00%

12
8K

51
2K 1M 2M

12
8K

51
2K 1M 2M

12
8K

51
2K 1M 2M

12
8K

51
2K 1M 2M

8 nodes 16 nodes 32 nodes 48 nodes

C
PU

 U
ti

liz
at

io
n

 (%
)

Number of I/O Server Nodes

Irqbalance
SAIs

Figure 8. CPU Utilization Comparison with 1 Gigabit NIC.

12.00%

17.00%

22.00%

27.00%

12
8K

51
2K 1M 2M

12
8K

51
2K 1M 2M

12
8K

51
2K 1M 2M

12
8K

51
2K 1M 2M

8 nodes 16 nodes 32 nodes 48 nodes

C
P

U
 U

ti
liz

at
io

n
 (%

)

Number of I/O Server Nodes

Irqbalance
SAIs

Figure 9. CPU Utilization Comparison with 3-Gigabit NIC.

0.00%

4.00%

8.00%

12.00%

16.00%

20.00%

8
no

de
s

16
 n

od
es

32
 n

od
es

48
 n

od
es

8
no

de
s

16
 n

od
es

32
 n

od
es

48
 n

od
es

8
no

de
s

16
 n

od
es

32
 n

od
es

48
 n

od
es

8
no

de
s

16
 n

od
es

32
 n

od
es

48
 n

od
es

128K 512K 1M 2M

L2
 C

ac
he

 M
is

s R
at

e
(%

)

Transfer Size

Irqbalance
SAIs

Figure 7. L2 Cache Miss Rate Comparison with 3-Gigabit NIC.

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

8
no

de
s

16
 n

od
es

32
 n

od
es

48
 n

od
es

8
no

de
s

16
 n

od
es

32
 n

od
es

48
 n

od
es

8
no

de
s

16
 n

od
es

32
 n

od
es

48
 n

od
es

8
no

de
s

16
 n

od
es

32
 n

od
es

48
 n

od
es

128K 512K 1M 2M

L2
 C

ac
h

e
M

is
s R

at
e

(%
)

Transfer Size

Irqbalance
SAIs

Figure 6. L2 Cache Miss Rate Comparison with 1 Gigabit NIC.

9.00%

11.00%

13.00%

15.00%

17.00%

19.00%

21.00%

23.00%

150

170

190

210

230

250

270

8
no

de
s

16
 n

od
es

32
 n

od
es

48
 n

od
es

8
no

de
s

16
 n

od
es

32
 n

od
es

48
 n

od
es

8
no

de
s

16
 n

od
es

32
 n

od
es

48
 n

od
es

8
no

de
s

16
 n

od
es

32
 n

od
es

48
 n

od
es

128K 512K 1M 2M

Sp
ee

d-
up

(%
)

Ba
nd

w
id

th
(M

B
/s

)

Transfer Size

Speed-up
SAIs
Irqbalance

Figure 5. Bandwidth Comparison with 3-Gigabit NIC.

162162

computing capacity, the increasing CPU utilization shows a
possible linear relation between CPU capacity and network
speed. We will further verify this linear relation by
conducting a simulation in Section 6.

F. CPU Waiting I/O Time Analysis

To further analyze the CPU utilization for I/O handling,

the CPU_CLK_UNHALTED event has been collected with
mask 0x00 by Oprofile in the experiments. This event
provides the number of clocks that the CPU is not in a halted
state [30]. In our experiments, we collect this event to
analyze the halted time that CPU waits on I/O data. For the 1
Gigabit NIC experiment, the results are shown in Figure 10,
SAIs has a maximum of 27.14% improvement on
CPU_CLK_UNHALTED time. When a data-intensive
parallel application, such as IOR, reads data from the PVFS,
the CPU halted cycles are mainly contributed by two parts:
1. the time that the I/O core (in which I/O interrupts are
handled) is halted and waited for data to be received by the
NIC; 2. the time that application core (in which IOR is
running) is halted and waited for data when data misses in
the cache. Obviously, SAIs scheduling the I/O interrupt to its
affinitive application core removes the time cost of part 2.
Therefore, SAIs obtains a larger CPU unhalted time.

Figure 11 presents the CPU_CLK_UNHALTED events

to compare the application’s waiting time for I/O read with
3-Gigabit NIC. SAIs has a maximum of 48.57%
improvement on CPU_CLK_UNHALTED time. The results
verify that SAIs reduces the I/O waiting time for each read
and increases the total I/O bandwidth.

G. Multiple Clients I/O Bandwidth Testing
Because the source-aware interrupts scheduling mainly

optimizes parallel I/O performance on the client side,
multiple client performance testing has been conducted and
analyzed in this subsection to evaluate scalability. The
experiment configured 8 I/O server nodes and a variable
number of client nodes (from 4, 8, 16 nodes to 56 nodes)
with a 3 Gigabit NIC connection. Every client node ran
multiple IOR application processes (transfer size = 1M). The
I/O bandwidth with the different interrupt scheduling
schemes has been collected and compared in Figure 12 (The
bandwidth is a summary of the whole clients).

Figure 12 shows that SAIs has improved parallel I/O

bandwidth. When the number of clients is 8, the
improvement is up to 20.46%. With the further increase in
number of clients, the I/O bandwidth decreases slowly.
Therefore, 20.46% is the maximal improvement for 8 I/O
server nodes in our experiment. Because the bandwidth of 8
I/O server nodes is saturated by 8 clients, the increasing
client nodes over 8 will gradually reduce the bandwidth on a
single client. The drop in bandwidth implies a drop in NR, the
number of requests. According to formula (5) and (6) in
Section III, this in turn will reduce the difference in
effectiveness between SAIs and irqbalance scheduling as
shown in Figure 12. When the number of client nodes is
greater than 32, 8 I/O nodes are not enough to serve the
increased parallel I/O requests. In these overloaded worst
cases, SAIs still improves application performance slightly.
The experimental results verify that source-aware interrupt
scheduling improves or maintains the parallel I/O
performance on the multiple clients’ situation. However, the
peak network bandwidth of the I/O servers will eventually
limit the performance benefits of SAIs. To understand the
potential performance improvement of SAIs, simulation is
conducted in the following section in order to remove the
physical network constraint.

VI. CACHE DATA MIGRATION COST SIMULATION
Because the speed of NIC generating I/O interrupts is

much slower than the speed of processors handling I/O
interrupts on the client side in our experiments, the
experiments do not demonstrate the full potential of our
interrupts scheduling scheme. To detect the possible
performance improvement brought by source-aware

14.82%

20.46%

16.23%

8.72%

5.38%

3.16%
1.39%

0.00%

4.00%

8.00%

12.00%

16.00%

20.00%

900

1100

1300

1500

1700

1900

2100

2300

4 clients 8 clients 16
clients

24
clients

32
clients

48
clients

56
clients

Sp
ee

d-
up

 (%
)

I/
O

 B
an

dw
id

th
 (

M
B/

s)

Speed-up
SAIs
Irqbalance

Figure 12. Multiple Clients I/O Bandwidth Comparison.

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

12
8K

51
2K 1M 2M

12
8K

51
2K 1M 2M

12
8K

51
2K 1M 2M

12
8K

51
2K 1M 2M

8 nodes 16 nodes 32 nodes 48 nodesC
P

U
_C

LK
_U

N
H

A
LT

ED
 (1

e4
 c

yc
le

s)

Number of I/O Server Nodes

Irqbalance

SAIs

Figure 11. CPU I/O Wait Comparison with 3-Gigabit NIC.

0

500000

1000000

1500000

2000000

2500000

3000000

12
8K

51
2K 1M 2M

12
8K

51
2K 1M 2M

12
8K

51
2K 1M 2M

12
8K

51
2K 1M 2M

8 nodes 16 nodes 32 nodes 48 nodes

C
P

U
_C

LK
_U

N
H

A
LT

ED
 (1

e4
 c

yc
le

s)

Number of I/O Server Nodes

Irqbalance
SAIs

Figure 10. CPU I/O Wait Comparison with 1Gigabit NIC.

163163

scheduling, we conduct a simulation in memory to evaluate
data movement cost. In our simulation node (the head node
of the Sun-Fire Linux-based cluster), the system configures
4X 2GB DDR2-667 Single Rank Memory, which could
provide 5333 MB/s (about 41.66 Gigabit/s) peak bandwidth
[22] for the parallel I/O access. Because the main
contribution of SAIs is removing the extra data movement
cost incurred by interrupts scheduling, our simulation
focused on keeping source-aware to avoid cache misses and
reduce data movement. In addition, the interrupt handling
cost depends on the interrupt processing routine rather than
scheduling scheme, thus the interrupt handling cost is a
constant cost to any interrupt scheduling. The data
processing method of SAIs is simulated by a pair of threads
(named Si-SAIs), in which one thread parallel read data
strips from multiple different files on a RAM disk [34] in the
memory and the other one combines the returned data strips
together into the requested data. Si-SAIs employs the system
resource sharing feature of the threads to keep it source-
aware. We use two independent processes (named Si-
Irqbalance) to simulate the Irqbalance data processing
method completing the same job as Si-SAIs. The
independent processes are possible to be scheduled and
executed on separated cores. The major performance issue,
extra data movement, has been reproduced by our simulation
(shown in Figure 13). The multiple I/O nodes are simulated
with different files stored in memory. Each I/O thread or
process read includes 64KB data strip from every file. The
transfer size is 1M, which has been verified to be the best
buffer size in our previous testing. The simulation results are
obtained across repeated runs. All results are averaged with
at least three runs.

Figure 14 shows the testing results of the simulation. In

Figure 14, the bandwidth reaches up to 3576.58 MB/s (about
27.94 Gigabit/s) when the CPU utilization is 49.47%. And,
the corresponding speed-up is up to 53.23%. The L2 cache
miss rate has reduced 51.37% on this peak bandwidth
improvement. When the application number equals the
number of cores, the CPU capacity is saturated by
applications and utilization reaches 99.47%. After the CPU
keeping 100% utilization, Si-SAIs and Si-Irqbalance sustain
almost the same performance (about 2500MB/s or 19.53
Gigabit/s) for the parallel I/O for the all case. With the
results of simulation, we conclude that two Quad-Core 2.7
GHz AMD Opteron Series 2384 processors (head node

processor configuration) could handle parallel I/O bandwidth
up to 27.94 Gigabit/s and 19.53 Gigabit/s on average.

Analysis and experimental results show that SAIs is very

promising. It has its merit. On the other hand, SAIs has its
limitations. SAIs is designed for parallel I/O systems. It is
not a general interrupt scheduling. Its effectiveness depends
on the assumption that the underlying system is I/O intensive
and that the system has plenty of network bandwidth. SAIs
may serve well as a complement of existing processor
scheduling schemes for datacenters with high-speed
networks connections and for data intensive applications. But
in general, extending the source-aware concept and
integrating source-aware scheduling with existing interrupts
scheduling mechanisms is a subject of future study.

VII. RELATED WORKS
The prevalent interrupt scheduling schemes adopted by

current multi-core OSes are round-robin and dedicated
modes. Round-robin mode distributes interrupts from I/O
APIC to local APICs in turn, and, dedicated mode delivers
the incoming interrupts to a fixed core. Irqbalance[20] is a
intelligent interrupt scheduling loadable module, which
makes interrupts scatter on every possible core based on the
cores’ load statistics. Actually, Irqbalance is a variant of
round robin scheduling mode. In addition, a patent of
interrupt load distribution system proposed by Toshikazu
Nakagawa [38] gave anther interrupt scheduling method with
the consideration of processor load balance. While the
existing works have shown good potential on CPU
utilization, uncoordinated attempts to distributed interrupts to
different core can also result in some bad side effects [40].

Several processor data locality research efforts have been
conducted for network performance. These research efforts
partly exploited the potential scenario and cost of data
movement among cores. The impact of the data movement
incurred by parallelization strategies of packet processing on
the general-purpose monolithic OS has been analyzed by
Salehi et al. [21] and Willmann et al. [32]. As for multi-core
systems, Foong et al. [1][2][5] and Narayanaswamy et al.
[10][11] have shown the in-depth analysis of processor data
locality problem, but there analysis has not been considered
for parallel I/O situations. To enable users tuning
applications performance to keep data locality and reduce
data movement above multi-core systems, VTune [19] and
autopin [37] have been developed by Intel and T. Klug et al.

Figure 13. Memory Parallel I/O Access Simulation Design.

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

2000

3000

Sp
ee

d-
up

 (%
)

I/
O

 B
an

dw
id

th
 (

M
B/

s)

Speed-up
Si-SAIs
Si-Irqbalance

Figure 14. Simulation I/O Bandwidth Comparison.

164164

Though these tools suggest an optional data-core mapping,
they cannot detect the application core information and
change the source-aware automatically while processes are
running. In addition, the latest Intel Ethernet Controller
82575/82576 or 82598/82599 [17] allows assigning
interrupts to processor cores manually. But, the assignment is
static, which is too inflexible to meet the change of the data
request source. Effective and adaptive load balancing on
multiprocessor systems has been studied in [6][36][39].
Brecht et al. proposed a dedicated processor core packet
processing solution to improve data locality [36], but this
solution sacrificed the parallelism. Scogland et al. have
suggested a user-level library called SyMMer [39], which
monitors the system loads changing and re-schedules the
MPI application processes running for keeping data locality.
In contrast, our study is distinguished from the previous
researches in the sense that we proposed a novel source-
aware interrupt scheduling scheme, which uses the source
information of parallel-I/O to optimize core interrupt
scheduling. The basic idea is that the interrupts associated for
the same I/O request, even if they come from different file
servers, should be grouped together to one core. This simple
idea carries a long way, since data locality is much more
important in performance than core utilization in modern
computers. The source-aware interrupt scheduling scheme
reduces cache misses and data movements between caches.

There are also research which improve the processor data
locality in intra-node communication [13][14]. However,
these optimizations are good for data exchange among cores
rather than the data locality of interrupt scheduling.
Suggestions of keeping data locality for high-performance
networking has been proposed recently in [7][15][27][35].
These systems can also benefit from SAIs to achieve high
parallel I/O bandwidth with less system modification and
integration.

VIII. CONCLUSION AND FUTURE WORKS
We have proposed a novel source-aware affinity interrupt

scheduling scheme and prototyped it with a new scheduler
called SAIs for parallel I/O systems. SAIs groups interrupts
associated for the same I/O request together to be handled on
the same core. The new scheme ties interrupt processing and
data consumption, to reduce cache miss rate and data
movement on client side. Experimental results show that
SAIs obtains noticeable better I/O bandwidth than that of the
conventional utilization based scheduling mechanisms. SAIs,
which has been integrated into the Linux kernel, has reported
an improvement up to 23.57% in the 3-Gagebit NIC
configuration of our testing environment. To explore the full
potential of the source-aware scheduling, simulations are
also conducted that remove the NIC bottleneck. The
simulation results show that SAIs can improve the I/O
bandwidth up to 53.23% accompanied with 51.37% cache
miss rate reduction. The successful implementation of SAIS
shows that the newly proposed source-aware affinity
mechanism is feasible and effective. The analysis and
experimental results demonstrate the potential of source-
aware interrupt scheduling for data intensive applications
where network bandwidth is not the performance bottleneck.

The proposed source-aware interrupt scheduling is very
promising and leads to a considerable performance
improvement. However, it is just a beginning. To put the
source-aware interrupts scheduling in actual use, we need
more studies. We list four different interrupts handling
policies in Section 3. Our current study is on one policy with
one special application, parallel I/O interrupts, in mind. Our
current result is not a general solution of interrupt scheduling.
It is a complement and alternative. In the future, we plan to
extend the source-aware concept to other applications and to
study the integration of different policies and scheduling
algorithms for a robust, general solution.

IX. ACKNOWLEDGEMENTS
The authors would like to thank Dr. Yong Chen and other

members and former members of the Scalable Computing
Software Laboratory at the Illinois Institute of Technology
for their insightful feedbacks and discussions on this paper.
This research was supported in part by National Science
Foundation under NSF grant CCF-0621435, CNS-0751200,
and CCF-0937877.

REFERENCES
[1] A. Foong, J. Fung, and D. Newell, “An In-Depth Analysis of the

Impact of Processor Affinity on Network Performance,” In
Proceeding of the 12th IEEE International Conference on Networks
(ICON 2004), November 16-19, 2004.

[2] A. Foong, J. Fung, D. Newell, S. Abraham, P. Irelan, and A. Lopez-
Estrada, “Architectural Characterization of Processor Affinity in
Network Processing,” In Proceeding of the IEEE International
Symposium on Performance Analysis of Systems and Software
(ISPASS 2005), May 16, 2005.

[3] AMD, “AMD64 Architecture Programmer’s Manual Volume 2:
System Programming”, AMD Corporation, 2009.

[4] ASC Sequoia Benchmark Codes, IOR summary,
https://asc.llnl.gov/sequoia/benchmarks/#ior.

[5] B. Veal and A. Foong, “Performance Scalability of a Multi-Core Web
Server,” In Proceeding of the ACM/IEEE Symposium on
Architectures for Networking and Communications Systems
(ANCS’07), Dec. 2007.

[6] C. Wang, K. Schwan, V. Talwar, G. Eisenhauer, L. Hu, and M. Wolf,
“A Flexible Architecture Integrating Monitoring and Analytics for
Managing Large-Scale Data Centers,” In Proceedings of the 8th
International Conference on Autonomic Computing (ICAC 2011),
Jun. 2011.

[7] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA
Tesla: A Unified Graphics and Computing Architecture,” In
Proceeding of the 41st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO-41), Nov. 2008.

[8] F. Inoue, H. Ohsaki, Y. Nomoto, and M. Imase, “On Maximizing
iSCSI Throughput using Multiple Connections with Automatic
Parallelism Tuning,” In Proceedings of the 5th IEEE International
Workshop on Storage Network Architecture and Parallel I/Os
(SNAPI), Sep. 2008.

[9] F. Zheng, H. Abbasi, C. Docan, J. Lofstead, S. Klasky, Q. Liu, M.
Parashar, N. Podhorszki, K. Schwan, and M. Wolf, “PreDatA –
Preparatory Data Analytics on Pera-Scale Machines,” In Proceedings
of 24th IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2010), Apr. 2010.

[10] G. Narayanaswamy, P. Balaji, and W. Feng, “An Analysis of 10-
Gigabit Ethernet Protocol Stacks in Multicore Environments,” In
Proceedings of the 15th Annual IEEE Symposium on High-
Performance Interconnects (Hot Interconnects - ’07), August 22-24,
2007.

165165

[11] G. Narayanaswamy, P. Balaji, and W. Feng, “Impact of Network
Sharing in Multi-core Architectures,” In Proceedings of the 17th
International Conference on Computer Comunications and Networks
(ICCCN ’08), Aug. 2-7, 2008.

[12] H.-C. Jang and H.-W. Jin, “MiAMI: Multi-Core Aware Processor
Affinity for TCP/IP over Multiple Network Interfaces,” In
Proceedings of the 17th IEEE Symposium on High Performance
Interconnects (Hot Interconnects - ’09), Aug. 26-27, 2009.

[13] H.-W. Jin, S. Sur, L. Cai, and D. K. Panda, “LiMIC: Support for
High-Performance MPI Intra-Node Communication on Linux
Cluster,” In Proceedings of the 2005 International Conference on
Parallel Processing (ICPP-05), Jun. 2005.

[14] H.-W. Jin, S. Sur, L. Cai, and D. K. Panda, “Lightweight Kernel-
Level Primitives for High-Performance MPI Intra-Node
Communication over Multi-Core Systems,” In Proceeding of IEEE
International Conference on Cluster Computing (Cluster 2007), Sep.
2007.

[15] H. Sivakumar, S. Bailey, and R Grossman, “PSockets: The Case for
Application-level Network Striping for Data Intensive Applications
using High Speed Wide Area Networks,” In Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis (SC 2000), Nov., 2000.

[16] H. Zou, W. Wu, X-H Sun, P. DeMar, M. Crawford, “An Evaluation
of Parallel Optimization for OpenSolaris Network Stack,” In
Proceedings of the 35th IEEE Conference on Local Computer
Networks (LCN 2010), Oct. 11-14, 2010.

[17] Intel, “Assigning Interrupts to Processor Cores using an Intel �R
82575/82576/82598/82599 Ethernet Controller,”
http://download.intel.com/design/network/applnots/319935.pdf , Sep.
2009.

[18] Intel, “Intel 64 and IA-32 Architectures Software Developer’s
Manual Volume 3A: System Programming Guide, Part 1,” Intel
Corporation, Mar., 2010.

[19] Intel, “VTune Performance Analyzer”, http://software.intel.com/en-
us/intel-vtune/.

[20] Irqbalance, http://irqbalance.org/.
[21] J. D. Salehi, J. F. Kurose, and D. Towsley, “The Effectiveness of

Affinity-Based Scheduling in Multiprocessor Network Protocol
Processing”, IEEE/ACM Transactions on Networking, Vol. 4(4),
Aug., 1996.

[22] “JEDEC standard: DDR2 SDRAM Specification,” JESD79-2F, Nov.
2009.

[23] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative
Approach. The 4th edition, Morgan Kaufmann, 2006.

[24] Jon Postel, “Internet Protocol-DARPA Internet Program Protocol
Specification”, RFC 791, Sept. 1981.

[25] Linux Cross Reference, http://lxr.linux.no/.

[26] Linux man page - sar, http://linux.die.net/man/1/sar.
[27] “Lustre File System Networking: High-Performance Features and

Flexible Support for a Wide Array of Networks”, A White Paper from
Lustre File Systems, Jan., 2008.

[28] Oprofile, http://oprofile.sourceforge.net/.
[29] Parallel Virtual File System, http://www.pvfs.org/.
[30] “Performance Monitoring Events - AMD Family 11h

Processors”,http://developer.amd.com/cpu/CodeAnalyst/codeanalystli
nux/Documents/CodeAnalyst-Linux-help/pmes_fam11h.htm.

[31] “Processor Affinity White Paper for Multiple CPU Scheduling,”
TMurgent Technologies, Nov. 3, 2003.

[32] P. Willmann, S. Rixner, and A. Cox, “An Evaluation of Network
Stack Parallelization Strategies in Modern Operating System,” In
Proceedings USENIX Annual Technical Conference, May 30 – June
3, 2006.

[33] R. Love, “Linux Kernel Development, 2nd Edition,” Novell Press,
ISBN-10: 0672327201, 2005.

[34] RAM disk – Linux Kernel Documentation: Using the RAM disk
block device with Linux,
http://www.mjmwired.net/kernel/Documentation/ramdisk.txt/

[35] S. Miura, T. Okamoto, T. Boku, T. Hanawa, and M. Sato, “RI2N:
High-bandwidth and fault-tolerant network with multi-link Ethernet
for PC clusters,” In Proceedings of IEEE International Conference on
Cluster Computing (Cluster 2008), Sep., 2008.

[36] T. Brecht, G. Janakiraman, B. Lynn, V. Saletore, Y. Turner,
“Evaluating Network Processing Efficiency with Processor
Partitioning and Asynchronous I/O,” In Proceedings of the EuroSys
2006, Apr. 18-21, 2006.

[37] T. Klug, M. Ott, J. Weidendorfer, and C. Trinitis, “auto-pin –
Automated Optimization of Thread-to-Core Pinning on Multicore
Systems,” Transactions on High-Performance Embedded
Architectures and Compilers, Vol. 3(4), 2008.

[38] T. Nakagawa, “Interrupt Load Distribution System for Shared Bus
Type Multiprocessor System,” Patent no.: US 6,237,058 B1, May.
2001.

[39] T. Scogland, P. Balaji, W. Feng and G. Narayanaswamy,
“Asymmetric Interactions in Symmetric Multi-core Systems:
Analysis, Enhancements and Evaluation,” In Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis (SC 2008), Nov., 2008.

[40] V. Anand and B. Hartnet. “TCP/ IP Network Stack Performance in
Linux Kernel 2.4 and 2.5,” In Proceedings of the Linux Symposium,
Ottawa June 2002, Jun. 2002.

[41] X.-H. Sun and Y. Chen, “Reevaluating Amdahl's Law in the
Multicore Era,” In Proceedings of Journal of Parallel and Distributed
Computing, vol. 70 (2), Feb., 2010.

166166

