
Data Collection and Restoration for
Heterogeneous Process Migration *

Kasidit Chanchio Xian-He Sun
Department of Computer Science
Illinois Institute of Technology

Chicago, IL 60616
fkasidit,sung@cs.iit.edu

Abstract

This study presents a practical solution for data collec-
tion and restoration to migrate a process written in high
level stack-based languages such as C and Fortran over
a network of heterogeneous computers. We study a logi-
cal data model which recognizes complex data structures
in process address space. Then, novel methods are devel-
oped to incorporate the model into a process and to collect
and restore data efficiently. We have implemented a proto-
type software and performed experiments on different pro-
grams. Experimental and analytical results show that (1) a
user-level process can be migrated across different comput-
ing platforms, (2) semantic informationof data structures in
the process’s memory space can be correctly collected and
restored, (3) the costs of data collection and restoration de-
pend on the complexity of the logical model representing the
process’s data structures and the amount of data involved,
and (4) the implantation of the data collection and restora-
tion mechanisms into the process is not a decisive factor of
incurring execution overheads; with appropriate program
analysis, we can achieve practically low overhead.

1 Introduction

With recent popularity of network and internet comput-
ing, process migrationhas become a subject of great interest.
It provides the mobility of computing and is useful for many
situations such as load balancing, data access locality, re-
configurable computing, and system administration [4, 5, 6].
The employment of process migration can lead to the im-
provement in application performance and environmental-
wide efficiency. Efficient process migration is recognized

* This work was supported in part by National Science Foundation un-
der NSF grant ASC-9720215 and CCR-9972251, and by IIT under the
ERIF award.

as a critical issue for next generation network environments
[3]. Heterogeneous process migration is the migration of
a process between computers that have different computa-
tion platforms. It adds more flexibility to process mobil-
ity and increases the applicability of process migration in
a distributed environment. However, due to its complexity,
currently no satisfactory solutions exist for efficient hetero-
geneous process migration for traditional stack-based lan-
guages such as C or FORTRAN. Although few research
projects for heterogeneous process migration are presented
[4, 7, 5, 8, 6], none is widely accepted in engineering prac-
tice due to their inherent limitations and immaturity. Het-
erogeneous process migration is still in its infancy. Current
success in mobile computing is the creation of Java. Java is
a good choice for many applications. However, Java’s sta-
tus as a scientific programming language has been continu-
ously under question due to its poor performance on compu-
tational intensive applications and its simplified data struc-
tures. Due to space limitation, more discussions on related
works can be found in [1].

To be able to migrate processes written in C or FOR-
TRAN in heterogeneous environment, a number of funda-
mental issues have to be addressed. First, we have to iden-
tify the subset of language features which do not prevent
process migration. Smith and Hutchinson [5] have identi-
fied the migration-unsafe features of the C language. With
the help of a compiler, most of the migration-unsafe features
can be detected and avoided. Then, we have to define mech-
anisms to capture, transfer, and restore process state. In our
previous works [6], we have proposed a novel methodology
in which procedures and data structures are given for trans-
forming a high-level program into a format capable of het-
erogeneous process migration. Another important mecha-
nism in heterogeneous process migration is the mechanism
to transfer memory state of a process. The memory state
basically contains data structures in process memory space.
Difficulties in transferring the memory state arise due to the

presence of pointer-based data structures and dynamic mem-
ory allocation. In our design, basic steps in transferring
memory state of a process includes collecting program data
structures, encoding them to a machine-independent format,
and restoring them on a destination machine.

Data collection and restoration in a heterogeneous envi-
ronment is a challenging issue. We introduced the basic idea
of the Memory Space Representation (MSR) model, a logi-
cal model representing the process memory space in 1998
[2]. In this study, we present the extended model of the
memory representation and provide a full exploration of im-
plementation design and performance analysis. We have de-
signed and implemented the data collection and restoration
mechanisms for heterogeneous process migration, and de-
veloped a prototype run-time library to support process mi-
gration of migration-safe C code in a heterogeneous envi-
ronment. Experimental measurements of C programs with
different dynamic data structures and execution behaviors
are performed. Experimental results are very encouraging.
They confirm that (1) a user-level process can be migrated
across different computing platforms, (2) semantic informa-
tion of data structures in the process’s memory space can be
correctly collected and restored, (3) the costs of data collec-
tion and restoration depend on the complexity of the data
structures involved, and (4) with appropriate program analy-
sis, we can achieve practically low overhead throughout the
program execution. Although runtime overheads occur due
to the implantation of data collection and restoration mech-
anisms to the original source codes, we have made a num-
ber of observations on the sources of the overheads and how
they might be avoided.

2 Process Migration Environment

In our design, a program must be transformed into a “mi-
gratable” format. As introduced in our previous work [6],
we apply source code annotation to insure the program is
migration capable. In the annotation process, we first select
a number of locations in the source code on which process
migration can be performed. We call such a location a “poll-
point”. At each poll-point, a label statement and a specific
macro containing migration operations are inserted. Every
time when the process execution reaches the poll-point, the
macro will check whether a migration request has been sent
to the process. If so, the migration operation is executed.
Otherwise, the process continues normal execution. We re-
fer to the poll-point where the migration occurs as the “mi-
gration point”. The migration operations include the opera-
tions to collect execution state and live data of the migrating
process and the operations to restore them on the memory
space of a process on another machine. Poll-points can be
inserted to various functions in the source code so that pro-
cess migration can occur in a nested function call. The se-

lection of poll-points as well as the macro insertion are per-
formed automatically by a source-to-source transformation
software (or a pre-compiler). Users can also select their pre-
ferred poll-points if they know suitable migration locations
in their source codes.

At every poll-point, the pre-compiler defines live vari-
ables whose data values are needed for computation be-
yond the poll-point. To collect and restore live data, spe-
cial purpose interfaces are applied to collect and restore
values of live variables. We have developed the fol-
lowing four interface routines. The Save pointer and
Restore pointer routines are developed to collect and re-
store contents of pointer variables, while the Save variable

and Restore variable routines are employed for non-
pointer cases. These routines are placed inside the inserted
migration macros.

In process migration environment, we assume that the
source program (in the “migratable” format) has been pre-
distributed and compiled on potential destination machines.
We model a distributed environment to have a scheduler
which performs process management and sends a migration
request to a process. The scheduler conducts process migra-
tion directly via a remote invocation and network data trans-
fers. First, the process on the destination machine is invoked
to wait for execution and memory states of the migrating
process. Then, the migrating process collects those informa-
tion and sends them to the waiting process. After successful
transmission, the migrating process terminates. At the same
time, the new process restores the transmitted execution and
memory states, and resumes execution from the point where
process migration occurred.

3 Memory Space Representation

The data collectionand restoration mechanisms are based
on the MSR model. In the MSR, we model a snapshot of
a program memory space as a graph G, defined by G =

(V;E) where V and E are the set of vertices and edges,
respectively. We use it as a logical representation of pro-
gram data structures. Each vertex in the graph represents a
memory block, whereas each edge represents a relationship
between two memory blocks when one of them contains a
pointer, which is an address that refers to a memory loca-
tion of any memory block node in V . More details about
the MSR model are provided in [2].

3.1 Data Collection and Restoration

In our design, the software components which support
data collection and restoration mechanisms are the MSRLT
data structure, the Type Information (TI) table, and the data
collection and restoration library.

};

1:

 float data;

 int a, *b;

{

 int i;

 for (i = 0; i < 10; i++){

 a = 1;

 b = &a ;

 foo (parray + i, &b);

 first->link = last;

 last = parray[i];

 if(i > 0)

 first = parray[0];

(a)

}

}

 parray[i]->link = parray[i-1];

 (*p)->data = 10.0 ;

 (**q) ++ ;

}

2:

3:

4:

main()6:

5:

10:

8:

7:

9:

11:

12:

13:

14:

15:

16:

17:

18:

20:

19:

21:

22:

struct node {

 struct node * link;

struct node *first, *last;

 struct node *parray[10];

foo(struct node **p, int **q){

 *p = (struct node *)

 malloc (sizeof(struct node));

e3

e4

e5

e6

e8

e7

v1(first)

v2(last)

v3(i)

v4(a)

v5(b)

v6(parray)

v7(addr1)

v8(addr2)

v9(addr3)

v10(addr4)

e1e2

e9
e10

e11

e12

v11(p)

v12(q)

(b)

Global Data Segment

Heap Data Segment

Local of foo function

Local of Main function

Figure 1. An example program and MSR model.

At runtime, the MSRLT data structure is created in pro-
cess memory space to keep track of memory blocks. It also
provides machine-independent identification to the memory
blocks and supports memory block search during data col-
lection and restoration operations. The MSRLT works as a
mapping table which supports address translation between
the machine-specific and machine-independent memory ad-
dress.

The TI and data collection and restoration library are
linked to the process when the executable is generated.
The TI contains type information of every memory block
in a process including type-specific functions to transform
data of each type between machine-specific and machine-
independent formats. We call these functions the memory
block saving and restoring functions.

The saving and restoring functions have different struc-
tures for different kinds of memory blocks. For a memory
block that does not contain any pointers, we can apply XDR
techniques to save and restore. For a memory block contains
pointers, the function Save pointer and Restore pointer

are used to collect and restore the pointer values, respec-
tively. Save pointer initiates a depth-first traversal through
connected components of the MSR graph. It examines
memory blocks that are referred to by pointers and then in-
vokes type-specific saving functions to save their contents.
During the traversal, visited memory blocks are marked so
that they are not saved again. At the destination machine,
the function Restore pointer is called recursively to re-
build memory blocks in memory space from the output of
Save pointer.

The Save pointer, Restore pointer, Save variable,

and Restore variable functions are implemented in our
data collection and restoration library. There are two differ-
ent situations for the functions, especially theSave pointer

and Restore pointer to be applied. First, they are used to
collect and restore live variables in source codes. Another
application is that they are used in the saving and restoring
functions as discussed above.

3.2 An Illustrative Example

This section gives an illustrative example of the MSR
model and explains how the data collection and restora-
tion are performed on the MSR nodes and links. The em-
phasis is on mechanisms that work with the MSR in high-
level. More details on mechanisms to convert the MSR
components as well as memory blocks’ data values between
machine-specific and machine-independent formats can be
found in [2].

Given a sample program in Figure 1(a), Figure 1(b)
shows all memory blocks in the snapshot of the program
memory space right before the execution of the memory al-
location instruction at line 20 of function foo. We assume
that the for loop at line 12 in the main function had been ex-
ecuted four times before the snapshot was taken. Each mem-
ory block in Figure 1(b) is represented by a vertex vi, where
1 � i � 12. The associated variable name for each mem-
ory block is shown in parenthesis. Let addr be an address in
the program memory space, addri where 1 � i � 4 are ad-
dresses of a dynamically allocated memory blocks created
at runtime. We also use addri as a memory block’s name in
this example. As shown in Figure 1(b), the memory blocks

can reside in different segments (global, heap, and stack) in
program memory space.

Figure 1(b) also shows the MSR graph. The edges ei

where 1 � i � 12 represent the relationships between
the pointer variables and the addresses of their reference
memory blocks. To save a pointer value for heterogeneous
process migration, the value have to be converted into the
machine-independent format in form of pointer header and
offset [2]. Supposed that a pointer value refers to a data
element inside a memory block. The pointer header is the
logical identification (in the MSRLT) of the memory block
where the pointer value refers to. The offset is the ordering
number of the data elements inside the memory block.

Based on the example, we describe the data collection
and restoration as follows. Supposed that the migration
point is set right before the execution of the instruction at
line 20 when the for loop at line 12 had been executed
for four times. According to the mechanism to transfer
execution state in [6], the live data of function foo have
to be saved, following by that of function main. For
brevity, we only discuss the collection and restoration of
the variables p (or v11) in foo and first (or v1) in main.
In data collection, the statement Save pointer(p) would
be executed at the migration point in foo, and the state-
ment Save variable(&first) would be called at a loca-
tion in main where foo returns. Likewise, the statements
p = Restore pointer() and Restore variable(&first)

are operated the same locations in foo and main, respec-
tively, for data restoration.

Because the depth-first traversal, the collection of v11

would result in the values of v11, e8, v6, e6 and v10 to be
saved first. Then, the algorithm would backtrack to collect
e5; v9; e12; v8; e11; v7 and e10 before backtracking again to
save e4 and e3. After the collection process finishes in foo,
the data collection operation in main will start. Taken v1

as an example, only the values of v1 and e1 are collected
for the first variable. This is because the node v7 and its
subsequent links and nodes have already been visited. The
collected data is encoded and put into a buffer before being
transmitted to a destination machine.

In the restorationprocess, the MSRLT data structure is re-
built to provide the mapping mechanism between machine-
independent and machine-specific memory block identifi-
cations. To extract memory blocks’ information from the
buffer, functions Restore pointer or Restore variable

are applied. These functions extract the type information
and contents of the memory block from the buffer and in-
voke an appropriate type-specific restoring function to con-
vert memory block contents to a machine-specific format.
The functions consult the MSRLT data structures for ap-
propriate memory locations and restore the memory block
contents there. Note that if the contents contain pointers,
Restore pointer would be recursively invoked to restore

them.
For the given example, the variables in function foo

and main are restored in the same sequence they are col-
lected. The restoration functions willbe invoked recursively
on the destination process. The functions use the MSRLT
data structure to translate the graphical notations (nodes and
links) as well as their values back to the machine-specific
format.

4 Implementation and Experimental Results

Software for heterogeneous data transfer can be classified
into four layers. The first layer relies on basic data commu-
nication utilities. Migration information can be sent to the
destination machine using either TCP protocol, shared file
systems, or remote file transfer. In the second layer, XDR
routines are used to translate primitive data values such as
‘char’, ‘int’, ‘float’ of a specific architecture into a machine-
independent format. In the third layer, the MSR Manip-
ulation (MSRM) library routines are employed to trans-
late complex data structures such as user-defined types and
pointers into a stream of machine-independent migration in-
formation. The MSRM library provides routines such as
Save pointer and Restore pointer and those for manipu-
lating the MSRLT data structures. These routines are called
by macros annotated to source programs to support a migra-
tion event. Finally, the annotated source code is linked to the
TI table as well as the saving and restoring functions to gen-
erate a migratable process in the application layer. The TI
table as well as the saving and restoring functions are also
used by the MSRM library routines.

4.1 Heterogeneity

We have conducted experimental testing on various
programs to verify our heterogeneous process migration
model. The experimental results of three programs, namely,
test pointer, linpack benchmark, and bitonic sort program,
which represent different classes of applications, are se-
lected to be presented here. The test pointer is a synthe-
sis program which contains various data structures, includ-
ing a tree structure, a pointer to integer, a pointer to array
of 10 integers, a pointer to array of 10 pointers to integers,
and a tree-like data structure. The linpack benchmark from
netlib repository at ORNL is a computational intensive pro-
gram with arrays of double and arrays of integer data struc-
tures. The benchmark solves a system of linear equations,
Ax = b. Finally, the bitonic sort program was tested. In
this program, a binary tree is used to store randomly gener-
ated integer numbers. The program manipulates the tree so
that the numbers are sorted when the tree is traversed. The
program demonstrates extensive memory allocations and re-
cursions.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06

T
im

e
(S

ec
on

ds
)

Data Size (Bytes)

Data Collection
Data Restoration

0

0.2

0.4

0.6

0.8

1

1.2

5000 10000 15000 20000 25000 30000

T
im

e
(S

ec
on

ds
)

Number Sorted

Data Collection
Data Restoration

Figure 2. Data collection and restoration time of the (a) linpack and (b) bitonic sort programs.

In each experiment, we originally run the test program
on a DEC 5000/120 workstation running Ultrix and then mi-
grate the processes to a SUN Sparc 20 workstation running
Solaris 2.5, so the migration is truly heterogeneous. It is
truly heterogeneous because both systems use different en-
dianness. Both machines are connected via a 10 Mbit/s Eth-
ernet network. All the test programs are compiled with op-
timization using gcc on the Sparc 20 workstation and using
cc on the DEC workstation. Output results indicate all appli-
cations run correctly under different testing circumstances.
We inspected all data structures and their contents and found
them to be consistent before and after process migration. In
the bitonic sort and test pointer programs, despite multiple
references to MSR’s significant nodes, all memory blocks
and pointers are collected and restored without duplication.
For the linpack benchmark, large floating-pointdata are cor-
rectly transferred. The data collection and restoration pro-
cess preserves the high-order floating point accuracy.

4.2 Complexity

Table 1 shows the performance of process migration in
a homogeneous environment where the linpack benchmark
and the bitonic sort program are migrated from an Ultra 5
machine to another via a 100Mb/Sec Ethernet. We define
process migration time as the total of data collection (Col-
lect), transmission (Tx), and restoration (Restore) time. By
Table 1 the migration time of the linpack and bitonic pro-
grams are 2.096 and 0.526 second, respectively.

Programs Collect Tx Restore
Linpack 1000x1000 0.657 0.790 0.649
bitonic 8192 0.275 0.037 0.214

Table 1. Timing results (in seconds)

The complexity of data collection and restoration is ap-
plication dependent. For example, the linpack program has

a small number of MSR nodes; yet, each node occupies
substantial amount of memory space. Therefore, most of
data collection time is spent on encoding data in memory
blocks and copying data to a output buffer. Likewise, the
data restoration would mostly involve decoding the trans-
mitted data and copying the results to the memory space.
On the other hand, the bitonic sort program contains a large
number of small memory blocks. Thus, in data collection,
we not only encode and copy data to the output buffer, but
also search for live memory blocks in memory space. For
data restoration, we do not have to search memory blocks,
but a large number of memory allocations has to be consid-
ered.

Based on the data collection algorithm, we can define the
collection complexity as Collect = MSRLT Search +

Encode and Copy; where the MSRLT Search time is
the time for searching the MSRLT data structure. Suppose
that there are n fully-connected MSR nodes in the program
memory space and each node has Di bytes where 1 � i �

n, then the MSRLT Search time depends on n and has
the upper bound complexity of O(nlogn), while the encod-
ing and copying time depends on the size of live data to
be migrated,

Pn

i=1
Di. The complexity is O(

Pn

i=1
Di).

For the data restoration algorithm, we define Restore =

MSRLT update + Decode and Copy: Since the logi-
cal location of every migrated memory block is attached to
its data, the data restoration algorithm only spends constant
time to restore the items according to the MSRLT data struc-
ture. Thus, theMSRLT update time takesO(n) time com-
plexity, and theDecode and Copy time takesO(

P
n

i=1
Di).

Figure 2(a) compares data collection and restoration time
of the linpack program. In this experiment, we measure the
performance of matrices with size 400 � 400, 600 � 600,
800� 800, and 1000� 1000, respectively. All experiments
are performed on two Ultra 5 SUN workstations connected
via a 100Mb/Sec network. Data collection and restoration
time are shown together as a function of migration data
(
Pn

i=1
Di). In the linpack benchmark, memory spaces for

matrices are allocated as local variables at the beginning of

the main() function and are referenced by other functions
throughout program lifetime. The program is computation
intensive and contains no dynamic memory allocation. The
increase of problem size effects directly to the size of mem-
ory blocks that hold the input matrices. Since the number of
MSR nodes does not increase when the problem size scales
up, the MSRLT search time and MSRLT update time
are held constant. As the results shown, the data collection
and restoration complexities scale linearly with the size of
live data to be transmitted during a migration. The timing
differences between data collection and restoration are also
a constant for all transmitted data sizes.

The bitonic sort program exhibits a different behavior.
Figure 2(b) shows the data collection and restoration per-
formance of the bitonic program for different data sizes.
Let n be the number of the MSR nodes in the program
and
P

n

i=1
Di be the size of all the data. As the input data

of the bitonic sort program scales, both n and
P

n

i=1
Di

also increase. As a result, the effect of MSRLT search

time (O(nlogn)) contributes noticeable higher collection
time than that of the MSRLT update time (O(n)) for data
restoration, when the number of data to be sorted scales up.

4.3 Execution Overhead

Source code annotation may remove certain code opti-
mizations and bring some overhead to the execution. The
overhead is application-specific and may come from many
factors. Without considering the external factors such as in-
teraction with the operating system or I/O contention, expe-
riences show that the overhead of process migrationdepends
mostly on two factors: the placement of migration points
and the number of memory allocations. The overhead could
be high if poll-points are placed in a kernel function which
performs only few operations but being invoked so many
times. For memory allocation, the overhead could be high if
many small memory blocks are repeatedly allocated, caus-
ing large MSRLT. However, the overhead occurred is rea-
sonable and mostly can be avoided. In a practical situation,
there is no need to insert poll-points inside of a small kernel.
Smart memory allocation policies may be employed to the
applications to avoid the memory overheads.

5 Conclusion and Future Works

In this study, a fundamental technique for heterogeneous
process migration, low-level mechanisms for data collec-
tion and restoration, is presented. A graph model, the Mem-
ory Space Representation (MSR) model, is used to iden-
tify needed data in memory space. The Type Information
(TI) table is constructed to store properties of every data
type to be used during program execution. The develop-
ment of functions to save and restore contents of memory

blocks is also a part of the TI table construction. The MSR
Lookup Table (MSRLT) data structure is also proposed to
keep track of memory blocks in the program memory space.
The MSRLT data structures also provides a logical scheme
to identify memory blocks during process migration. An il-
lustrative example is given to explain the data collection and
restoration mechanisms. Finally, the proposed design is im-
plemented in the form of C library routines. Three C pro-
grams with different data structures and execution behaviors
have been transformed to the migratable format and tested.
Analytical and experimental results show that the proposed
data collection and restoration method is correct, efficient,
and general. While our software is developed for C pro-
grams, the migration pointconcept, memory allocationanal-
ysis, and migration technique introduced in this study are in-
dependent of C and can be extended to other languages as
well.

Data collection and restoration is a basic component of
network process migration. Work remains to be done to de-
velop a distributed system which can support network pro-
cess migration dynamically, transparently, and efficiently.
This includes the development of a scheduler which can
make optimal decisions on when and where to migrate, the
requirement of a precompiler which can make migration
transparent to the user, and the establishment of a well de-
fined virtual machine environment which can be integrated
with the scheduler, the precompiler, and the proposed basic
migration mechanism seemlessly.

References

[1] K. Chanchio and X.-H. Sun. Data collection and restoration
for heterogeneous network process migration,. Tech rep 97-
17, Louisiana State University, 1997.

[2] K. Chanchio and X.-H. Sun. Memory space representation for
heterogeneous networked process migration. In 12th Interna-
tional Parallel Processing Symposium, Mar. 1998.

[3] I. Foster and C. Kesselman. The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, 1999.

[4] D. S. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler, and
S. Zhou. Process Migration. Tech rep, Hewlett-Packard, Dec.
1998.

[5] P. Smith and N. Hutchinson. Heterogeneous process migra-
tion : The TUI system. Tech rep 96-04, University of British
Columbia, Feb. 1996.

[6] X.-H. Sun, V. K. Niak, and K. Chanchio. A Coordinated
Approach for Process Migration in Heterogeneous Environ-
ments. In 1999 SIAM Parallel Processing Conference,1999.

[7] M. H. Theimer and B. Hayes. Heterogeneous process migra-
tion by recompilation. In Proceedingof the 11th IEEE Interna-
tional Conference on Distributed Computing Systems, pages
18–25, June 1991.

[8] D. von Bank, C. M. Shub, and R. W. Sebesta. A unified model
of pointwise equivalence of procedural computations. ACM
Transactions on Programming Languages and Systems, 16,
Nov. 1994.

