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ABSTRACT—The computing paradigm of “HPC in the 
Cloud” has gained a surging interest in recent years, due to its 
merits of cost-efficiency, flexibility, and scalability. Cloud is 
designed on top of distributed file systems such as Google file 
system (GFS). The capability of running HPC applications on 
top of data-intensive file systems is a critical catalyst in 
promoting Clouds for HPC. However, the semantic gap 
between data-intensive file systems and HPC imposes 
numerous challenges. For example, N-1 (N to 1) is a widely 
used data access pattern for HPC applications such as 
checkpointing, but cannot perform well on data-intensive file 
systems. 
In this study, we propose the CHunk-Aware I/O (CHAIO) 
strategy to enable efficient N-1 data access on data-intensive 
distributed file systems. CHAIO reorganizes I/O requests to 
favor data-intensive file systems and avoid possible access 
contention. It balances the workload distribution and 
promotes data locality. We have tested the CHAIO design 
over the Kosmos file system (KFS). Experimental results show 
that CHAIO achieves a more than two-fold improvement in 
I/O bandwidth for both write and read operations. 
Experiments in large-scale environment confirm the potential 
of CHAIO for small and irregular requests. The aggregator 
selection algorithm works well to balance the workload 
distribution. CHAIO is a critical and necessary step to enable 
HPC in the Cloud. 

Keywords-high-perfomrance computing, MapReduce, data-
intensive, distributed file system 

I. INTRODUCTION 
“HPC in the Cloud” is an emerging computing paradigm 

that advocates traditional high performance computing 
(HPC) applications in Cloud environments. Such a 
computing paradigm enables HPC scientists to run their 
applications with the flexible pay-as-you-go pricing model. 
Numerous efforts have been elaborated to investigate the 
potential of “HPC in the Cloud” computing paradigm [1] [2] 
[3] [4].  

As HPC applications become more and more data 
intensive, data and its management is recognized as one of 
the most critical components for scientific computing. 
Parallel file systems (PFS) are currently the state-of-art 
storage architecture for typical HPC environments. 
However, PFS assume dedicated, highly reliable hardware 
with fast network connectivity, which makes it unrealistic to 
be deployed in the Cloud that is built on top of commodity 
hardware. 

Data-intensive distributed file systems are storage 
systems specially designed to support MapReduce 
frameworks that share the same assumptions with Clouds 
[5] [6] [7] [8]. As a consequence, data-intensive file systems 

are a natural choice for the data manipulation of HPC 
applications in the Cloud. 

Unfortunately, data-intensive file systems are not 
designed with HPC semantics in mind, and few HPC 
applications can benefit from them directly even if they are 
not consistency constrained. A large body of HPC 
applications is either not supported or cannot perform well 
on data-intensive distributed file systems. 

N-1 (N to 1) is a widely used data access pattern for 
parallel applications such as checkpointing and logging [9]. 
The N processes usually issue requests to different regions 
of one shared file, which leads to non-sequential data 
access, unbalanced data distribution and violates the data 
locality. All these factors make N-1 based HPC applications 
not usable on data-intensive file systems. 

We have set up an experimental environment to compare 
the write performance of N-1 and N-N (N to N) data access 
patterns on two data-intensive file systems, Hadoop 
distributed file system (HDFS) [7] and Kosmos file system 
(KFS) [8]. We added components to the IOR benchmark to 
access data-intensive file systems. We utilize the API 
provided by libHDFS to access HDFS. However, the N-1 
write is not supported by HDFS since libHDFS currently 
only allows hdfsseek in read only mode [10].  On the other 
hand, KFS, a C++ based data-intensive file system, supports 
the N-1 data access by allowing concurrent non-sequential 
writes to one chunk [8].  

Fig. 1 compares the performance of N-1 and N-N 
performance on 16 I/O nodes (chunk servers). The chunk 
(block) size is 64MB for both file systems. We have 16 
processes in each run to issue strided I/O requests. The N-1 
curve presents unstable performance with different request 
sizes. Smaller request sizes lead to more contention in the 
shared chunk and more performance degradation. The 

Fig. 1. Performance Comparison of N-1 and N-N (Write) 
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problem is common for HPC applications as often the 
request size is much smaller than the chunk size of data-
intensive file systems (64MB or higher) [11]. 

In recognition of the semantic gap between HPC 
applications and data-intensive file systems, the objective of 
this research is to bridge the gap and facilitate efficient 
shared data access of HPC applications to data-intensive file 
systems.  

The contribution of this study is three-fold, 
• CHAIO, a chunk-aware I/O strategy to enable 

efficient N-1 data access patterns on data-intensive 
distributed file systems, is introduced. CHAIO 
reorganizes data from different processes to avoid 
contention and achieve sequential data access.  

• An aggregator selection algorithm is proposed to 
decide a process that issues the I/O requests on 
behalf of the conflicting processes to balance the 
I/O workload distribution and regain the data 
locality.  

• CHAIO is prototyped over the Kosmos file system. 
Extensive experiments have been carried out to 
verify the benefit of CHAIO and its potential in 
fostering scalability.  

The rest of this paper is organized as follows. Section II 
introduces the background and related work. We present the 
design idea and methodology of CHAIO in Section III. The 
experimental results are presented in Section IV. We 
conclude this study in Section V. 

II. BACKGROUND AND RELATED WORK 
HPC applications are parallel scientific applications that 

rely on low-latency networks for message passing and use 
parallel programming paradigms such as MPI to enable 
parallelism [12].  
A. Parallel File System v.s. Data-Intensive File System: A 

Comparison 
Parallel file systems currently serve as the de-facto file 

systems for the data manipulation of HPC applications. 
Representative examples of parallel file systems include 
IBM GPFS [13], Oracle Lustre [14] and PVFS [15]. HPC 
applications access PFS via either POSIX interface or MPI-
IO, a subset of the MPI-2 specification [16] that enables 
performance optimizations such as collective I/O [17].  

Data-intensive distributed file systems are specialized 
file systems for data-intensive computing frameworks such 
as MapReduce [5]. Leading data-intensive file systems 
include Google file system (GFS) [6], Hadoop file system 
(HDFS) [7], and Kosmos file system (KFS) [8]. Data-
intensive file systems usually come with interfaces to 
interact with general HPC applications. For Java_based 
HDFS, libHDFS can be used as the programming interface 
to support MPI applications [10]. The Kosmos file system 
offers a native interface to support HPC applications [8]. 
POSIX imposes many hard consistency requirements that 
are not needed for MapReduce applications and are not 
natively supported for data-intensive file systems. MPI-IO 
[17] was designed on general-purpose file systems and its 

access to data-intensive file system is currently not 
supported as well. 

Parallel file systems and data-intensive file systems 
share similar high-level designs. They are both cluster file 
systems that are deployed on a bunch of nodes. Both of 
them divide a file into multiple pieces (stripes or 
blocks/chunks), which are distributed onto multiple I/O 
servers. However, because these two file systems assume 
different targeting applications and computing 
environments, there are several distinguish differences in 
their design: 

File Caching. Client-side cache is an effective approach 
to improving the bandwidth, especially for small I/O 
requests. However, the adoption of cache also threatens the 
data consistency. Data-intensive file systems employ cache 
for better performance since consistency is not the top 
design goal. The client accumulates the write requests in 
memory until its size reaches the chunk size (usually 64MB) 
or the file is closed, which triggers the write operation to I/O 
servers. To guarantee consistency and durability, PVFS 
drops client side cache. GPFS and Lustre support file 
caching but depends on sophisticated distributed locking 
mechanism to assure the consistency [18]. 

Concurrency and Locking. One data chunk is 
exclusively used by one process/task in MapReduce 
applications. As such, concurrency is not supported well by 
data-intensive file systems. Concurrent write operation to 
one shared file is not supported by HDFS. KFS supports 
shared file write by placing an exclusive lock on each 
chunk. All the processes accessing the same chunk compete 
for the lock to perform I/O operations. Parallel file systems 
are designed to support POSIX interface and concurrency is 
inherently supported. GPFS and Lustre leverage more 
complex distributed locking mechanism to mitigate the 
impact of caching. For example, GPFS employs a 
distributed token-based locking mechanism to maintain 
coherent caches across compute nodes [19]. However, 
PVFS does not support POSIX semantics for concurrent 
writes and relies on applications to handle concurrency.  

Data Locality. Parallel file systems are designed for 
typical HPC architecture that separates I/O nodes from 
compute nodes. File system server processes are deployed 
on I/O nodes and client processes are deployed on compute 
nodes. Client processes see server processes as symmetric 
and data locality is not considered by PFS. On the other 
hand, the deployment of data-intensive file systems calls for 
the existence of local disk on each compute node. The client 
processes of data-intensive file systems should be co-located 
with server processes to gain high data locality and better 
I/O performance. 

Fault Tolerance. Parallel file systems do not have 
native fault tolerance support inherently and usually rely on 
hardware level mechanism like RAID for fault tolerance. 
Failures could occur frequently for data-intensive file 
systems that assume commodity hardware at scale. As such, 
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chunk-level replication is adopted to support the fault 
tolerance of data-intensive file systems. 
B. HPC on Data-Intensive File Systems 

VisIO is an I/O library that strives to utilize HDFS as the 
storage for large-scale interactive visualization applications 
[20]. VisIO provides a mechanism for using non-POSIX 
distributed file system to provide linear scaling of I/O 
bandwidth. The application targeted by VisIO is N-N read, 
which is naturally supported by data-intensive distributed 
file systems.  

In [11], the authors targeted the scenario of migrating 
data from HPC storage system to data-intensive frameworks 
such as MapReduce, and proposed MRAP to bridge 
semantic gaps. As an extension of MapReduce, MRAP 
eliminates multiple scans and reduces the number of pre-
processing MapReduce programs.  

In [21], the authors examined both HPC and Hadoop 
workloads on PVFS and KFS, and confirmed the 
performance degradation of N-1 data access pattern on the 
Kosmos file system.   

In [22], the authors enhanced PVFS to match the HDFS-
specific optimizations. A non-intrusive shim layer was 
proposed such that unmodified Hadoop applications can 
store and access data in PVFS. Several optimizations, 
including prefetching data, emulating replication and 
relaxed consistency, were also implemented to make PVFS 
performance comparable to HDFS.  

Nevertheless, all these existing works acknowledged the 
concurrency issue on data-intensive file systems but did 
little to overcome it. This research is motivated by the 
observation that some HPC applications with concurrent I/O 
access cannot perform well even they are not consistency 
constrained. This work extends the scope of HPC 
applications supported by data-intensive file systems, and 
improves the overall I/O performance of HPC systems as a 
consequence. 
C. N-1 Data Access and its Handling 

Modern PFS either leverages distributed locking 
protocols to achieve consistency for N-1 shared data access 
(GPFS and Lustre), or does not support POSIX semantics 
for concurrent writes and relies applications to solve 
conflicting operations (PVFS). The lock-based solution 
imposes considerable overhead and several works have been 
conducted to address this concern.  

Collective I/O merges the requests of different processes 
with interleaved data access patterns and forms a contiguous 
file region, which is further divided evenly into non-
overlapping, contiguous sub-regions denoted as file domains 
[17]. Each file domain is assigned an aggregator process 
that issues the I/O requests on behalf of the rest of the 
processes in that file domain. Collective I/O does not take 
underlying file system into consideration when deciding file 
domains and cannot eliminate the conflict chunks. It is still 
possible that two aggregator processes concurrently access 
one shared chunk in collective I/O. Users can customize the 

collective buffer size on each aggregator process by setting 
parameter cb_buffer_size but that does not solve the 
problem. 

In [18], the authors proposed to partition files based on 
the underlying locking protocols such that the file domains 
are aligned to locking boundaries. Data shipping was 
introduced by GPFS to bind each file block to a single I/O 
agent that acts as the delegator [23].  

PLFS is a virtual parallel log structured file system that 
sits between parallel file systems and applications and 
transforms the N-1 data access into N-N pattern [9].  PLFS 
currently supports parallel file systems such as GPFS and 
PanFS. Extra efforts need to be taken to adapt PLFS to 
support data-intensive file systems because the underlying 
N-N data access potentially imposes more overhead to the 
metadata management, which is unwanted for data-intensive 
file systems due to the centralized metadata server.  

In [24], the authors presented Blobseer, a storage system 
that supports efficient, fine-grain access under heavy 
concurrency.  They also demonstrated the potential of 
BlobSeer in substituting HDFS to support efficient 
MapReduce applications. BlobSeer adopts versioning 
instead of locking protocols to handle the concurrency issue.  

While demonstrating their success on the N-1 data 
access of PFS, the ideas of these works can also be applied 
to data-intensive file systems to alleviate the problem. 
However, unique features of data-intensive file systems 
require additional efforts for a complete solution. The 
selection of the aggregator process is actually a key factor in 
determining the overall performance of N-1 access on data-
intensive file system, especially when the requests from 
different processes are irregular with varied sizes. However, 
the selection of aggregator process is not covered by 
existing PFS optimization techniques since the client 
processes are usually independent of server processes.  

III. CHUNK-AWARE I/O DESIGN AND 
METHODOLOGIES 

A. Data Access Patterns  
The data access patterns in HPC applications like 

checkpointing can be classified as either N-N or N-1 [9]. In 
N-N data access pattern, each process accesses an 
independent file with no interference with other processes. 
Fig. 2(a) demonstrates N-N data access pattern and how it is 
handled by data-intensive file systems. We assume the 
chunk size and request size as 64MB and 40MB, 
respectively, which means a chunk is composed of 1.6 
requests. Each compute node has one process, and we have 
four nodes host the data-intensive file system. 

Each process issues three I/O requests, which are 
marked by logical block number (LB#) to reflect its position 
in the file. The file view layer in the figure shows the 
mapping between the requests and their positions in the file. 
Based on the data access information and chunk size, the 
requests are translated into chunks by the data-intensive file 
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system, which are distributed onto the nodes with the 
consideration of data locality. 

 
(a)  N-N 

 
(b) N-1 Segmented 

 
(c) N-1 Strided 

Fig. 2. Data Access Patterns and the Handling of Data-
Intensive File Systems 

In the N-N data access case of Fig. 2(a), each process 
accesses an individual file and does not incur contention. 
The I/O workload is evenly distributed such that each node 
holds two chunks. The downside of the N-N data access 
pattern, however, is that it involves more files and requires 
extra cost in metadata management, which is unwanted for 
data-intensive file systems because of the centralized 
metadata management.  

N-N data access pattern is the ideal case to avoid 
contention. However, most HPC applications have the 
processes cooperate with each other and adopt N-1 data 
access pattern in practice. The processes access different 
regions of one shared file in N-1 data access. Depending on 
the layout of regions, N-1 data access can be further 

classified into two categories: N-1 segmented and N-1 
strided [9]. 

In N-1 segmented data access pattern, each process 
accesses a contiguous region of the shared file. Fig. 2(b) 
illustrates N-1 segmented data access pattern and how it is 
handled by the data-intensive file system. The request size is 
determined by HPC applications and does not match the 
chunk size well. The requests from multiple processes could 
be allocated to one chunk and lead to contention. We term a 
chunk as conflict chunk if it is accessed by multiple 
requests. In Fig. 2(b) we have three conflict chunks with id 
1, 3 and 5. 

Conflict chunks degrade the I/O performance because of 
the following reasons: 

• First, the file system alternates among different 
requests on the conflict chunk, which violates the 
sequential data access assumption of data-intensive 
file systems. 

• Furthermore, the conflict chunk is composed of 
requests from multiple compute nodes and only one 
node is selected to host the chunk. Data locality is 
not achieved for the requests from other compute 
nodes. For example, for chunk 3 of Fig. 2(b), the 
request from p1 (LB# 5) is not a local data access. 

• The chunk placement is decided by the first request 
with the consideration of data locality. This 
mechanism results in unbalanced data distribution. 
In Fig. 2(b) we can observe that three chunks (3, 4, 
and 5) are allocated onto node 2 while node 1 only 
has one chunk. It is more critical for data-intensive 
file systems to balance the chunk distribution since 
the chunk size is normally sized 64MB or higher, 
which is magnitudes higher than the strip size 
(usually 64KB) of PFS. 

In the N-1 strided data access pattern, each process 
issues I/O requests to the file system in an interleaved 
manner. As illustrated in Fig. 2(c), strided data access has a 
higher probability to incur conflict chunks and has greater 
impact in degrading the performance.  Actually, all the 8 
chunks have contention in the case shown in Fig. 2(c). The 
data locality and balanced data distribution will be further 
deteriorated as well. Fig. 2(c) demonstrates the worst case 
that node 2 has 4 chunks, while no chunk is allocated to 
node 1. 

In practice, N-1 strided is a more common data access 
pattern than N-1 segmented for HPC applications such as 
checkpointing [9].  

This study is motivated by the performance issues with 
the N-1 data access on data-intensive file systems. As 
demonstrated in the following subsections, the proposed 
new CHAIO strategy rearranges the I/O requests to 
eliminate conflict chunks, achieve data locality and balance 
data distribution. 
B. CHAIO Design, Methodology and Analysis 

1) CHAIO Design 
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The basic idea of CHAIO is to reorganize the I/O 
requests such that each chunk is accessed by one process to 
eliminate contention. Fig. 3 shows how CHAIO handles the 
scenario shown in Fig. 2(c).  

We add a communication phase to exchange data among 
processes. One process is selected as an aggregator process 
for each conflict chunk. The aggregator collects data from 
the non-aggregator processes accessing the same conflict 
chunk, and issues the I/O requests to the file system. From 
the perspective of data-intensive file systems, each chunk is 
accessed by the aggregator process only. Even though 
CHAIO introduces slight message passing overhead, it 
improves the performance significantly by removing the 
contention and marshaling the I/O requests. 

With CHAIO, each chunk has only one aggregator 
process that acts as the file system client to issue the I/O 
request, as shown in the I/O phase of Fig. 3. The data 
locality is assured since the file system by default allocates 
the chunk to the node where the aggregator process resides. 

The N-1 read of CHAIO is performed in the reverse 
order. The aggregator first gets data from the file system and 
distributes the data to the corresponding processes.  

2) Aggregator Selection Algorithm 
In this subsection we introduce the aggregator selection 

algorithm that balances the chunk distribution among the 
nodes. 

The aggregator selection algorithm takes the data access 
pattern, chunk size and process distribution as input. The 
output of the algorithm is the decision of the aggregator 
process for each chunk. 

The pseudo code of the aggregator selection algorithm is 
listed in Algorithm 1. The node with less conflict chunks 
has higher priority to be selected to host the aggregator 
process. If multiple chunks are serviced by the selected 
node, the chunk with the least service nodes is selected. The 
algorithm is a greedy algorithm that is biased toward the 
node or chunk with least matching options.  

The algorithm sets a threshold to limit the aggregator 
processes on each node and guarantee balanced I/O 

workload distribution. A node will not be selected to run 
more aggregator processes if it is already fully loaded with 
the threshold number of aggregator processes. The threshold 
value will be increased if there is no eligible node but not all 
the chunks have been allocated yet.  

Multiple processes from the selected node may access 
the same conflict chunk in a multicore architecture. The 
process with the largest I/O request size to minimize the 
message passing overhead will be selected in this case. Fig. 
3 shows an example where each node has two chunks with 
the assistance of the aggregator selection algorithm. 

Algorithm 1. Aggregator Selection Algorithm 

Fig. 3. N-1 Strided write with CHAIO  

Definition: 
 A chunk is allocated if its aggregator process has been decided. 
 Chunk c is serviced by node s if there is at least one I/O request 
from s to c. 
Terminology: 
C is the collection of the unallocated chunks. 
a(s) is the number of chunks that have been allocated to node s. 
n(s) is the number of unallocated chunks that are served by 
node s. 
g(c) is the number of nodes that service chunk c. 
p is the number of conflict chunks. 
q is the number of nodes. 
f(c)=s means we select a process on node s as the aggregator 
process for chunk c. 
Algorithm: 
Initialize C, n(s), g(c), p and q based on the data access info, 
chunk size and the process distribution. 
a(s)=0 

threshold= � �/p q  

while (size(C)>0) 
   find the node s with min(a(s)+n(s)) and satisfies 
a(s)�threshold. 
   if s=null 
          increase threshold by 1 
          continue 
   end if 
    for each chunk serviced by node s, find the chunk c with 
min(g(c)). 
     f(c) =s 
    a(s)=a(s)+1 
    for each node that services c,  
             remove c from its chunk list  
             set n(s)=n(s)-1 
    end for 
    remove c from C. 
 end while 
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3) CHAIO Implementation 
CHAIO can be implemented either inside the application 

code or in the I/O middle-ware layer such as MPI-IO. 
CHAIO takes the data access information, chunk size and 
the process distribution information as input. The data 
access information can be obtained from the application or 
from MPI primitives, i.e., MPI_File_get_view. The data-
intensive file system needs to expose the chunk size 
information to CHAIO, which is trivial to implement. We 
also need to know the process distribution information that 
indicates the mapping between processes and nodes, usually 
in a round-robin or interleaved manner. We can obtain this 
information easily from the job scheduler.  

Each process first captures the aforementioned input and 
carries out the aggregator selection algorithm. The output of 
the algorithm is organized in a hash table data structure 
which stores the chunk id and the corresponding rank id for 
the aggregator process.  

When a process carries out an I/O request, it first 
calculates the chunk id of the I/O request and checks the 
hash table derived from the aggregator selection algorithm. 
If the chunk id of the I/O request matches one entry in the 
hash table, it means the I/O request is involved in a conflict 
chunk and we need to take action. If the rank id of the 
process matches the aggregator process id from the hash 
table, the process will receive data from other processes and 
then issue the I/O request of the entire chunk to the file 
system. If the process is not selected as the aggregator, it 
simply sends the data to the aggregator process.  

We use nonblocking send for the non-aggregator 
processes so that the following I/O requests are not blocked 
by the message passing. Blocked receive is adopted by the 
aggregator to guarantee that the process is carrying out one 
I/O request at a time. 

4) CHAIO Analysis 
There are potential alternative solutions to the problem 

of N-1 data access besides the CHAIO approach. The 
straightforward solution is to adopt methodologies such that 
one I/O request generates one individual chunk in the data-
intensive file systems. To implement the idea, we can adapt 
the chunk size to the I/O request size in the file system.  

The primary concern with this approach is that the 
metadata management overhead it introduces to the file 
system. The number of chunks is equal to the number of I/O 
requests, which could be significant considering small 
request sizes from HPC applications [11]. On the other 
hand, the file system namespace and file Blockmap of the 
data-intensive file system is kept in the memory of the 
centralized metadata server (Namenode).  A large number of 
chunks could overwhelm the centralized metadata 
management of the data-intensive file system and degrade 
I/O performance.  

CHAIO aggregates multiple I/O requests of one chunk 
to form sequential data access and does not increase the 
metadata management overhead to the file system. CHAIO 

is implemented at either the application level or I/O middle-
ware level and does not introduce complexity to the data-
intensive file system. 

Data-intensive applications usually adopt multiple 
replicas of one chunk to achieve fault tolerance. The data 
locality and balanced data distribution are not concerned by 
non-primary replicas since they select nodes randomly to 
store the data. Multiple replicas do not obscure the 
advantages of CHAIO for read operations. The I/O request 
returns after reading one replica from the file system and 
CHAIO does help to alleviate contention in this scenario. 
Furthermore, the performance of the primary (first) replica 
is improved by CHAIO for write operations. The 
performance of the first replica is usually more critical than 
others since it concerns the application elapsed time. It is a 
widely used optimization technique for replica_based file 
systems to return to the application after the first replica is 
completed and process the rest of the replicas in parallel 
with the applications [25].  

IV. EXPERIMENTAL RESULTS AND 
ANALYSIS 

A. Experiment Setup 
We have carried out experiments on a cluster of 65 Sun 

Fire Linux-based cluster test bed. Each node is equipped 
with dual 2.7GHz Opteron quad-core processors, 8GB 
memory and 250GB SATA hard drive. All the nodes are 
connected with 1 Gigabit NICs in a fat tree topology. One 
node dedicated as the job submission node and the metadata 
server of the Kosmos file system. The experiments were 
tested with Open MPI v1.4 on Ubuntu 9.04 with kernel 
2.6.28.10.  

KFS is utilized as the underlying data-intensive file 
system in the experiments. We use IOR-2.10.2 from 
Lawrence Livermore National Laboratory as the benchmark 
to evaluate the performance [26].  We have added a KFS 
interface to the IOR benchmark to enable data access to the 
Kosmos file system. The KFS interface was implemented 
with the methodology similar to other interfaces of IOR 
such as POSIX. We implement CHAIO in IOR benchmark 
and compare its performance with the original IOR 
benchmark. We set the chunk size at 64MB in the 
experiments and each chunk has one replica by default. 
B. Performance with Different Request Sizes 

We keep the number of nodes fixed at 32 in Fig. 4 and 
study the performance with different I/O request sizes. We 
fix the size of the shared file at 32GB and each process 
issues 16 interleaved I/O requests to implement N-1 strided 
data access. The number of processes is varied accordingly 
with different request sizes. We run each setting 10 times in 
the experiments, get the mean and standard deviation of the 
aggregated bandwidth and plot them in the figure. The 
standard deviation is reflected by the error bars.  

The write performance is illustrated in Fig. 4(a). A 
smaller size of I/O requests means more contention in 
conflict chunks and leaves more opportunity for 
performance improvement in CHAIO. Actually, when the 
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have irregular request sizes that cannot di
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algorithm. As reported in Fig. 9, we do no
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number of chunks allocated to each data no
parallelism and performance. As such, we e
balance of CHAIO and compare it wi
approach. We first calculate the ideal d
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V. CONCLUSIONS A
There is a surging interest in m

framework with MapReduce from
Motivated by the “HPC in the Clou
this paper strives to promote 
applications on top of MapReduce f

N-1 data access is a widely 
applications. Unfortunately, it is n
exiting data-intensive file systems
propose a systematic approach to en
access on data-intensive file system
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systems: non-sequential data 
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system. Experimental results show
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overhead analysis shows that C
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of CHAIO is robust to differ
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In the future, we plan to enable
data-intensive file systems and pr
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