
CHAIO: Enabling HPC Applications on Data-Intensive File Systems
Hui Jin, Jiayu Ji, Xian-He Sun
Department of Computer Science
Illinois Institute of Technology

{hjin6, jji3, sun}@iit.edu

Yong Chen
Department of Computer Science

Texas Tech University
yong.chen@ttu.edu

Rajeev Thakur
MCS Division

Argonne National Laboratory
thakur@mcs.anl.gov

ABSTRACT—The computing paradigm of “HPC in the
Cloud” has gained a surging interest in recent years, due to its
merits of cost-efficiency, flexibility, and scalability. Cloud is
designed on top of distributed file systems such as Google file
system (GFS). The capability of running HPC applications on
top of data-intensive file systems is a critical catalyst in
promoting Clouds for HPC. However, the semantic gap
between data-intensive file systems and HPC imposes
numerous challenges. For example, N-1 (N to 1) is a widely
used data access pattern for HPC applications such as
checkpointing, but cannot perform well on data-intensive file
systems.
In this study, we propose the CHunk-Aware I/O (CHAIO)
strategy to enable efficient N-1 data access on data-intensive
distributed file systems. CHAIO reorganizes I/O requests to
favor data-intensive file systems and avoid possible access
contention. It balances the workload distribution and
promotes data locality. We have tested the CHAIO design
over the Kosmos file system (KFS). Experimental results show
that CHAIO achieves a more than two-fold improvement in
I/O bandwidth for both write and read operations.
Experiments in large-scale environment confirm the potential
of CHAIO for small and irregular requests. The aggregator
selection algorithm works well to balance the workload
distribution. CHAIO is a critical and necessary step to enable
HPC in the Cloud.

Keywords-high-perfomrance computing, MapReduce, data-
intensive, distributed file system

I. INTRODUCTION
“HPC in the Cloud” is an emerging computing paradigm

that advocates traditional high performance computing
(HPC) applications in Cloud environments. Such a
computing paradigm enables HPC scientists to run their
applications with the flexible pay-as-you-go pricing model.
Numerous efforts have been elaborated to investigate the
potential of “HPC in the Cloud” computing paradigm [1] [2]
[3] [4].

As HPC applications become more and more data
intensive, data and its management is recognized as one of
the most critical components for scientific computing.
Parallel file systems (PFS) are currently the state-of-art
storage architecture for typical HPC environments.
However, PFS assume dedicated, highly reliable hardware
with fast network connectivity, which makes it unrealistic to
be deployed in the Cloud that is built on top of commodity
hardware.

Data-intensive distributed file systems are storage
systems specially designed to support MapReduce
frameworks that share the same assumptions with Clouds
[5] [6] [7] [8]. As a consequence, data-intensive file systems

are a natural choice for the data manipulation of HPC
applications in the Cloud.

Unfortunately, data-intensive file systems are not
designed with HPC semantics in mind, and few HPC
applications can benefit from them directly even if they are
not consistency constrained. A large body of HPC
applications is either not supported or cannot perform well
on data-intensive distributed file systems.

N-1 (N to 1) is a widely used data access pattern for
parallel applications such as checkpointing and logging [9].
The N processes usually issue requests to different regions
of one shared file, which leads to non-sequential data
access, unbalanced data distribution and violates the data
locality. All these factors make N-1 based HPC applications
not usable on data-intensive file systems.

We have set up an experimental environment to compare
the write performance of N-1 and N-N (N to N) data access
patterns on two data-intensive file systems, Hadoop
distributed file system (HDFS) [7] and Kosmos file system
(KFS) [8]. We added components to the IOR benchmark to
access data-intensive file systems. We utilize the API
provided by libHDFS to access HDFS. However, the N-1
write is not supported by HDFS since libHDFS currently
only allows hdfsseek in read only mode [10]. On the other
hand, KFS, a C++ based data-intensive file system, supports
the N-1 data access by allowing concurrent non-sequential
writes to one chunk [8].

Fig. 1 compares the performance of N-1 and N-N
performance on 16 I/O nodes (chunk servers). The chunk
(block) size is 64MB for both file systems. We have 16
processes in each run to issue strided I/O requests. The N-1
curve presents unstable performance with different request
sizes. Smaller request sizes lead to more contention in the
shared chunk and more performance degradation. The

Fig. 1. Performance Comparison of N-1 and N-N (Write)

2012 41st International Conference on Parallel Processing

0190-3918/12 $26.00 © 2012 IEEE

DOI 10.1109/ICPP.2012.1

369

problem is common for HPC applications as often the
request size is much smaller than the chunk size of data-
intensive file systems (64MB or higher) [11].

In recognition of the semantic gap between HPC
applications and data-intensive file systems, the objective of
this research is to bridge the gap and facilitate efficient
shared data access of HPC applications to data-intensive file
systems.

The contribution of this study is three-fold,
• CHAIO, a chunk-aware I/O strategy to enable

efficient N-1 data access patterns on data-intensive
distributed file systems, is introduced. CHAIO
reorganizes data from different processes to avoid
contention and achieve sequential data access.

• An aggregator selection algorithm is proposed to
decide a process that issues the I/O requests on
behalf of the conflicting processes to balance the
I/O workload distribution and regain the data
locality.

• CHAIO is prototyped over the Kosmos file system.
Extensive experiments have been carried out to
verify the benefit of CHAIO and its potential in
fostering scalability.

The rest of this paper is organized as follows. Section II
introduces the background and related work. We present the
design idea and methodology of CHAIO in Section III. The
experimental results are presented in Section IV. We
conclude this study in Section V.

II. BACKGROUND AND RELATED WORK
HPC applications are parallel scientific applications that

rely on low-latency networks for message passing and use
parallel programming paradigms such as MPI to enable
parallelism [12].
A. Parallel File System v.s. Data-Intensive File System: A

Comparison
Parallel file systems currently serve as the de-facto file

systems for the data manipulation of HPC applications.
Representative examples of parallel file systems include
IBM GPFS [13], Oracle Lustre [14] and PVFS [15]. HPC
applications access PFS via either POSIX interface or MPI-
IO, a subset of the MPI-2 specification [16] that enables
performance optimizations such as collective I/O [17].

Data-intensive distributed file systems are specialized
file systems for data-intensive computing frameworks such
as MapReduce [5]. Leading data-intensive file systems
include Google file system (GFS) [6], Hadoop file system
(HDFS) [7], and Kosmos file system (KFS) [8]. Data-
intensive file systems usually come with interfaces to
interact with general HPC applications. For Java_based
HDFS, libHDFS can be used as the programming interface
to support MPI applications [10]. The Kosmos file system
offers a native interface to support HPC applications [8].
POSIX imposes many hard consistency requirements that
are not needed for MapReduce applications and are not
natively supported for data-intensive file systems. MPI-IO
[17] was designed on general-purpose file systems and its

access to data-intensive file system is currently not
supported as well.

Parallel file systems and data-intensive file systems
share similar high-level designs. They are both cluster file
systems that are deployed on a bunch of nodes. Both of
them divide a file into multiple pieces (stripes or
blocks/chunks), which are distributed onto multiple I/O
servers. However, because these two file systems assume
different targeting applications and computing
environments, there are several distinguish differences in
their design:

File Caching. Client-side cache is an effective approach
to improving the bandwidth, especially for small I/O
requests. However, the adoption of cache also threatens the
data consistency. Data-intensive file systems employ cache
for better performance since consistency is not the top
design goal. The client accumulates the write requests in
memory until its size reaches the chunk size (usually 64MB)
or the file is closed, which triggers the write operation to I/O
servers. To guarantee consistency and durability, PVFS
drops client side cache. GPFS and Lustre support file
caching but depends on sophisticated distributed locking
mechanism to assure the consistency [18].

Concurrency and Locking. One data chunk is
exclusively used by one process/task in MapReduce
applications. As such, concurrency is not supported well by
data-intensive file systems. Concurrent write operation to
one shared file is not supported by HDFS. KFS supports
shared file write by placing an exclusive lock on each
chunk. All the processes accessing the same chunk compete
for the lock to perform I/O operations. Parallel file systems
are designed to support POSIX interface and concurrency is
inherently supported. GPFS and Lustre leverage more
complex distributed locking mechanism to mitigate the
impact of caching. For example, GPFS employs a
distributed token-based locking mechanism to maintain
coherent caches across compute nodes [19]. However,
PVFS does not support POSIX semantics for concurrent
writes and relies on applications to handle concurrency.

Data Locality. Parallel file systems are designed for
typical HPC architecture that separates I/O nodes from
compute nodes. File system server processes are deployed
on I/O nodes and client processes are deployed on compute
nodes. Client processes see server processes as symmetric
and data locality is not considered by PFS. On the other
hand, the deployment of data-intensive file systems calls for
the existence of local disk on each compute node. The client
processes of data-intensive file systems should be co-located
with server processes to gain high data locality and better
I/O performance.

Fault Tolerance. Parallel file systems do not have
native fault tolerance support inherently and usually rely on
hardware level mechanism like RAID for fault tolerance.
Failures could occur frequently for data-intensive file
systems that assume commodity hardware at scale. As such,

370

chunk-level replication is adopted to support the fault
tolerance of data-intensive file systems.
B. HPC on Data-Intensive File Systems

VisIO is an I/O library that strives to utilize HDFS as the
storage for large-scale interactive visualization applications
[20]. VisIO provides a mechanism for using non-POSIX
distributed file system to provide linear scaling of I/O
bandwidth. The application targeted by VisIO is N-N read,
which is naturally supported by data-intensive distributed
file systems.

In [11], the authors targeted the scenario of migrating
data from HPC storage system to data-intensive frameworks
such as MapReduce, and proposed MRAP to bridge
semantic gaps. As an extension of MapReduce, MRAP
eliminates multiple scans and reduces the number of pre-
processing MapReduce programs.

In [21], the authors examined both HPC and Hadoop
workloads on PVFS and KFS, and confirmed the
performance degradation of N-1 data access pattern on the
Kosmos file system.

In [22], the authors enhanced PVFS to match the HDFS-
specific optimizations. A non-intrusive shim layer was
proposed such that unmodified Hadoop applications can
store and access data in PVFS. Several optimizations,
including prefetching data, emulating replication and
relaxed consistency, were also implemented to make PVFS
performance comparable to HDFS.

Nevertheless, all these existing works acknowledged the
concurrency issue on data-intensive file systems but did
little to overcome it. This research is motivated by the
observation that some HPC applications with concurrent I/O
access cannot perform well even they are not consistency
constrained. This work extends the scope of HPC
applications supported by data-intensive file systems, and
improves the overall I/O performance of HPC systems as a
consequence.
C. N-1 Data Access and its Handling

Modern PFS either leverages distributed locking
protocols to achieve consistency for N-1 shared data access
(GPFS and Lustre), or does not support POSIX semantics
for concurrent writes and relies applications to solve
conflicting operations (PVFS). The lock-based solution
imposes considerable overhead and several works have been
conducted to address this concern.

Collective I/O merges the requests of different processes
with interleaved data access patterns and forms a contiguous
file region, which is further divided evenly into non-
overlapping, contiguous sub-regions denoted as file domains
[17]. Each file domain is assigned an aggregator process
that issues the I/O requests on behalf of the rest of the
processes in that file domain. Collective I/O does not take
underlying file system into consideration when deciding file
domains and cannot eliminate the conflict chunks. It is still
possible that two aggregator processes concurrently access
one shared chunk in collective I/O. Users can customize the

collective buffer size on each aggregator process by setting
parameter cb_buffer_size but that does not solve the
problem.

In [18], the authors proposed to partition files based on
the underlying locking protocols such that the file domains
are aligned to locking boundaries. Data shipping was
introduced by GPFS to bind each file block to a single I/O
agent that acts as the delegator [23].

PLFS is a virtual parallel log structured file system that
sits between parallel file systems and applications and
transforms the N-1 data access into N-N pattern [9]. PLFS
currently supports parallel file systems such as GPFS and
PanFS. Extra efforts need to be taken to adapt PLFS to
support data-intensive file systems because the underlying
N-N data access potentially imposes more overhead to the
metadata management, which is unwanted for data-intensive
file systems due to the centralized metadata server.

In [24], the authors presented Blobseer, a storage system
that supports efficient, fine-grain access under heavy
concurrency. They also demonstrated the potential of
BlobSeer in substituting HDFS to support efficient
MapReduce applications. BlobSeer adopts versioning
instead of locking protocols to handle the concurrency issue.

While demonstrating their success on the N-1 data
access of PFS, the ideas of these works can also be applied
to data-intensive file systems to alleviate the problem.
However, unique features of data-intensive file systems
require additional efforts for a complete solution. The
selection of the aggregator process is actually a key factor in
determining the overall performance of N-1 access on data-
intensive file system, especially when the requests from
different processes are irregular with varied sizes. However,
the selection of aggregator process is not covered by
existing PFS optimization techniques since the client
processes are usually independent of server processes.

III. CHUNK-AWARE I/O DESIGN AND
METHODOLOGIES

A. Data Access Patterns
The data access patterns in HPC applications like

checkpointing can be classified as either N-N or N-1 [9]. In
N-N data access pattern, each process accesses an
independent file with no interference with other processes.
Fig. 2(a) demonstrates N-N data access pattern and how it is
handled by data-intensive file systems. We assume the
chunk size and request size as 64MB and 40MB,
respectively, which means a chunk is composed of 1.6
requests. Each compute node has one process, and we have
four nodes host the data-intensive file system.

Each process issues three I/O requests, which are
marked by logical block number (LB#) to reflect its position
in the file. The file view layer in the figure shows the
mapping between the requests and their positions in the file.
Based on the data access information and chunk size, the
requests are translated into chunks by the data-intensive file

371

system, which are distributed onto the nodes with the
consideration of data locality.

(a) N-N

(b) N-1 Segmented

(c) N-1 Strided

Fig. 2. Data Access Patterns and the Handling of Data-
Intensive File Systems

In the N-N data access case of Fig. 2(a), each process
accesses an individual file and does not incur contention.
The I/O workload is evenly distributed such that each node
holds two chunks. The downside of the N-N data access
pattern, however, is that it involves more files and requires
extra cost in metadata management, which is unwanted for
data-intensive file systems because of the centralized
metadata management.

N-N data access pattern is the ideal case to avoid
contention. However, most HPC applications have the
processes cooperate with each other and adopt N-1 data
access pattern in practice. The processes access different
regions of one shared file in N-1 data access. Depending on
the layout of regions, N-1 data access can be further

classified into two categories: N-1 segmented and N-1
strided [9].

In N-1 segmented data access pattern, each process
accesses a contiguous region of the shared file. Fig. 2(b)
illustrates N-1 segmented data access pattern and how it is
handled by the data-intensive file system. The request size is
determined by HPC applications and does not match the
chunk size well. The requests from multiple processes could
be allocated to one chunk and lead to contention. We term a
chunk as conflict chunk if it is accessed by multiple
requests. In Fig. 2(b) we have three conflict chunks with id
1, 3 and 5.

Conflict chunks degrade the I/O performance because of
the following reasons:

• First, the file system alternates among different
requests on the conflict chunk, which violates the
sequential data access assumption of data-intensive
file systems.

• Furthermore, the conflict chunk is composed of
requests from multiple compute nodes and only one
node is selected to host the chunk. Data locality is
not achieved for the requests from other compute
nodes. For example, for chunk 3 of Fig. 2(b), the
request from p1 (LB# 5) is not a local data access.

• The chunk placement is decided by the first request
with the consideration of data locality. This
mechanism results in unbalanced data distribution.
In Fig. 2(b) we can observe that three chunks (3, 4,
and 5) are allocated onto node 2 while node 1 only
has one chunk. It is more critical for data-intensive
file systems to balance the chunk distribution since
the chunk size is normally sized 64MB or higher,
which is magnitudes higher than the strip size
(usually 64KB) of PFS.

In the N-1 strided data access pattern, each process
issues I/O requests to the file system in an interleaved
manner. As illustrated in Fig. 2(c), strided data access has a
higher probability to incur conflict chunks and has greater
impact in degrading the performance. Actually, all the 8
chunks have contention in the case shown in Fig. 2(c). The
data locality and balanced data distribution will be further
deteriorated as well. Fig. 2(c) demonstrates the worst case
that node 2 has 4 chunks, while no chunk is allocated to
node 1.

In practice, N-1 strided is a more common data access
pattern than N-1 segmented for HPC applications such as
checkpointing [9].

This study is motivated by the performance issues with
the N-1 data access on data-intensive file systems. As
demonstrated in the following subsections, the proposed
new CHAIO strategy rearranges the I/O requests to
eliminate conflict chunks, achieve data locality and balance
data distribution.
B. CHAIO Design, Methodology and Analysis

1) CHAIO Design

372

The basic idea of CHAIO is to reorganize the I/O
requests such that each chunk is accessed by one process to
eliminate contention. Fig. 3 shows how CHAIO handles the
scenario shown in Fig. 2(c).

We add a communication phase to exchange data among
processes. One process is selected as an aggregator process
for each conflict chunk. The aggregator collects data from
the non-aggregator processes accessing the same conflict
chunk, and issues the I/O requests to the file system. From
the perspective of data-intensive file systems, each chunk is
accessed by the aggregator process only. Even though
CHAIO introduces slight message passing overhead, it
improves the performance significantly by removing the
contention and marshaling the I/O requests.

With CHAIO, each chunk has only one aggregator
process that acts as the file system client to issue the I/O
request, as shown in the I/O phase of Fig. 3. The data
locality is assured since the file system by default allocates
the chunk to the node where the aggregator process resides.

The N-1 read of CHAIO is performed in the reverse
order. The aggregator first gets data from the file system and
distributes the data to the corresponding processes.

2) Aggregator Selection Algorithm
In this subsection we introduce the aggregator selection

algorithm that balances the chunk distribution among the
nodes.

The aggregator selection algorithm takes the data access
pattern, chunk size and process distribution as input. The
output of the algorithm is the decision of the aggregator
process for each chunk.

The pseudo code of the aggregator selection algorithm is
listed in Algorithm 1. The node with less conflict chunks
has higher priority to be selected to host the aggregator
process. If multiple chunks are serviced by the selected
node, the chunk with the least service nodes is selected. The
algorithm is a greedy algorithm that is biased toward the
node or chunk with least matching options.

The algorithm sets a threshold to limit the aggregator
processes on each node and guarantee balanced I/O

workload distribution. A node will not be selected to run
more aggregator processes if it is already fully loaded with
the threshold number of aggregator processes. The threshold
value will be increased if there is no eligible node but not all
the chunks have been allocated yet.

Multiple processes from the selected node may access
the same conflict chunk in a multicore architecture. The
process with the largest I/O request size to minimize the
message passing overhead will be selected in this case. Fig.
3 shows an example where each node has two chunks with
the assistance of the aggregator selection algorithm.

Algorithm 1. Aggregator Selection Algorithm

Fig. 3. N-1 Strided write with CHAIO

Definition:
 A chunk is allocated if its aggregator process has been decided.
 Chunk c is serviced by node s if there is at least one I/O request
from s to c.
Terminology:
C is the collection of the unallocated chunks.
a(s) is the number of chunks that have been allocated to node s.
n(s) is the number of unallocated chunks that are served by
node s.
g(c) is the number of nodes that service chunk c.
p is the number of conflict chunks.
q is the number of nodes.
f(c)=s means we select a process on node s as the aggregator
process for chunk c.
Algorithm:
Initialize C, n(s), g(c), p and q based on the data access info,
chunk size and the process distribution.
a(s)=0

threshold= � �/p q

while (size(C)>0)
 find the node s with min(a(s)+n(s)) and satisfies
a(s)�threshold.
 if s=null
 increase threshold by 1
 continue
 end if
 for each chunk serviced by node s, find the chunk c with
min(g(c)).
 f(c) =s
 a(s)=a(s)+1
 for each node that services c,
 remove c from its chunk list
 set n(s)=n(s)-1
 end for
 remove c from C.
 end while

373

3) CHAIO Implementation
CHAIO can be implemented either inside the application

code or in the I/O middle-ware layer such as MPI-IO.
CHAIO takes the data access information, chunk size and
the process distribution information as input. The data
access information can be obtained from the application or
from MPI primitives, i.e., MPI_File_get_view. The data-
intensive file system needs to expose the chunk size
information to CHAIO, which is trivial to implement. We
also need to know the process distribution information that
indicates the mapping between processes and nodes, usually
in a round-robin or interleaved manner. We can obtain this
information easily from the job scheduler.

Each process first captures the aforementioned input and
carries out the aggregator selection algorithm. The output of
the algorithm is organized in a hash table data structure
which stores the chunk id and the corresponding rank id for
the aggregator process.

When a process carries out an I/O request, it first
calculates the chunk id of the I/O request and checks the
hash table derived from the aggregator selection algorithm.
If the chunk id of the I/O request matches one entry in the
hash table, it means the I/O request is involved in a conflict
chunk and we need to take action. If the rank id of the
process matches the aggregator process id from the hash
table, the process will receive data from other processes and
then issue the I/O request of the entire chunk to the file
system. If the process is not selected as the aggregator, it
simply sends the data to the aggregator process.

We use nonblocking send for the non-aggregator
processes so that the following I/O requests are not blocked
by the message passing. Blocked receive is adopted by the
aggregator to guarantee that the process is carrying out one
I/O request at a time.

4) CHAIO Analysis
There are potential alternative solutions to the problem

of N-1 data access besides the CHAIO approach. The
straightforward solution is to adopt methodologies such that
one I/O request generates one individual chunk in the data-
intensive file systems. To implement the idea, we can adapt
the chunk size to the I/O request size in the file system.

The primary concern with this approach is that the
metadata management overhead it introduces to the file
system. The number of chunks is equal to the number of I/O
requests, which could be significant considering small
request sizes from HPC applications [11]. On the other
hand, the file system namespace and file Blockmap of the
data-intensive file system is kept in the memory of the
centralized metadata server (Namenode). A large number of
chunks could overwhelm the centralized metadata
management of the data-intensive file system and degrade
I/O performance.

CHAIO aggregates multiple I/O requests of one chunk
to form sequential data access and does not increase the
metadata management overhead to the file system. CHAIO

is implemented at either the application level or I/O middle-
ware level and does not introduce complexity to the data-
intensive file system.

Data-intensive applications usually adopt multiple
replicas of one chunk to achieve fault tolerance. The data
locality and balanced data distribution are not concerned by
non-primary replicas since they select nodes randomly to
store the data. Multiple replicas do not obscure the
advantages of CHAIO for read operations. The I/O request
returns after reading one replica from the file system and
CHAIO does help to alleviate contention in this scenario.
Furthermore, the performance of the primary (first) replica
is improved by CHAIO for write operations. The
performance of the first replica is usually more critical than
others since it concerns the application elapsed time. It is a
widely used optimization technique for replica_based file
systems to return to the application after the first replica is
completed and process the rest of the replicas in parallel
with the applications [25].

IV. EXPERIMENTAL RESULTS AND
ANALYSIS

A. Experiment Setup
We have carried out experiments on a cluster of 65 Sun

Fire Linux-based cluster test bed. Each node is equipped
with dual 2.7GHz Opteron quad-core processors, 8GB
memory and 250GB SATA hard drive. All the nodes are
connected with 1 Gigabit NICs in a fat tree topology. One
node dedicated as the job submission node and the metadata
server of the Kosmos file system. The experiments were
tested with Open MPI v1.4 on Ubuntu 9.04 with kernel
2.6.28.10.

KFS is utilized as the underlying data-intensive file
system in the experiments. We use IOR-2.10.2 from
Lawrence Livermore National Laboratory as the benchmark
to evaluate the performance [26]. We have added a KFS
interface to the IOR benchmark to enable data access to the
Kosmos file system. The KFS interface was implemented
with the methodology similar to other interfaces of IOR
such as POSIX. We implement CHAIO in IOR benchmark
and compare its performance with the original IOR
benchmark. We set the chunk size at 64MB in the
experiments and each chunk has one replica by default.
B. Performance with Different Request Sizes

We keep the number of nodes fixed at 32 in Fig. 4 and
study the performance with different I/O request sizes. We
fix the size of the shared file at 32GB and each process
issues 16 interleaved I/O requests to implement N-1 strided
data access. The number of processes is varied accordingly
with different request sizes. We run each setting 10 times in
the experiments, get the mean and standard deviation of the
aggregated bandwidth and plot them in the figure. The
standard deviation is reflected by the error bars.

The write performance is illustrated in Fig. 4(a). A
smaller size of I/O requests means more contention in
conflict chunks and leaves more opportunity for
performance improvement in CHAIO. Actually, when the

374

request size is 4MB, it is not possible to hav
data access by the existing approach
overwhelming contention on the conflict ch
able to get successful data access for reque
but the performance was still very poo
CHAIO achieved a write bandwidth of 9
16MB request size, which is three times hi
MB/s, the bandwidth achieved by the existin

When the request size is 64MB, CHAIO
advantage in bandwidth performance. Since
is equal to the chunk size, there is no co
chunks and the benefit of CHAIO cannot be

When the request size is 4MB, CHA
bandwidth than in the case with larger requ
are possibly two factors leading to th
degradation. First, a smaller request size n
exchange in the communication phase. Furth
core node is overloaded with 16 processes w
size is 4MB and could considerably harm
performance. Our later analysis in subsecti
that the impact of the small request si
overhead and we can attribute the performa
to the second factor.

Fig. 4(b) compares the read bandwidth
the existing approach. It is easy to observe t
CHAIO over the existing approach. The ban

 (a) Writes

(b) Reads
Fig. 4. Performance with Different

ve successful N-1
h due to the
hunks. We were
est size of 8MB
or (22.92MB/s).
83.52 MB/s for
igher than 270.6
ng approach.
O does not show
e the request size
ontention on the

observed.

AIO shows less
uest sizes. There
he performance
needs more data
hermore, each 8-
when the request

m the overall I/O
ion IV- F shows
ize incurs little
ance degradation

 of CHAIO and
the advantage of
ndwidth of reads

more than doubles the existing ap
size is 16MB or less.
C. Performance with Two Re

We set the number of replicas a
performance with different request
and the results are shown in Fig. 5.

Though the advantage of CHA
more replicas, as discussed in s
presents satisfactory write perfor
shown in Fig. 5(a). CHAIO achiev
685.7 MB/s, which doubled the e
MB/s.

(a) Wri

(b) Read
Fig. 5. Performance w

We also observe that both C
approach have bandwidth degradat
the one replica case of Fig. 4(a
contention-free case with 64MB
bandwidth of two replicas is ab
considerably lower than the 1300
case of one replica. A detailed
performance degradation is due t
When the number of replicas increa
node not only services the first chu
copies will also compete for the n
contention. This study focuses
contention problem caused by N-1
level contention problem is on
studies.

Request Sizes

proach when the request

eplicas
as two and demonstrate its
t sizes in this set of tests,

AIO is less significant for
subsection IV-B, it still
rmance improvement as
ved a write bandwidth of
existing approach, 328.9

ites

ds
ith Two Replicas

CHAIO and the existing
tion for two replicas than
a). For example, in the

request size, the write
bout 700MB/s, which is
0MB/s bandwidth in the

study reveals that the
to node-level contention.
ases to two or more, each
unk, but the non-primary
ode and incur node-level
s on the chunk-level
1 data access. The node-
our roadmap for future

375

As illustrated in Fig. 5(b), read perf
impacted by multiple replicas and CHAIO
existing approach consistently.
D. Performance with Different Numbe

In Fig. 6 we vary the number of data nod
and observe its impact on the performance
we spawn 4 MPI processes to carry out th
Each process issues 16 interleaved I/O r
shared file to implement N-1 strided writes.
size is kept at 16MB.

The write bandwidth is presented in
bandwidth of CHAIO is two-fold higher t
existing approach.

The existing approach also exhibits m
bandwidth than CHAIO, which is caused by
chunk distribution. In the existing approa
chunk selects the node based on the first I/O
into the file system, which results in unc
chunk distribution and a large variance in ba

Fig. 6(b) compares the read bandwidth
approach with the existing approach an
advantage of CHAIO as well. CHAIO achie
two times higher than the existing approach
E. Scalability Analysis

We use the performance with 4 nodes
and plot the speedup for each scenario in
performs well in terms of scalability for bot
operations, which is close to the ideal speed
observe that the existing approach achiev

(a) Writes

(b) Reads
Fig. 6. Performance with Different Num

formance is not
outperforms the

er of Nodes
des from 4 to 64

e. For each node
he I/O requests.
requests to one
 The I/O request

Fig. 6(a). The
than that of the

more variance in
y the unbalanced
ach, the conflict
O request coming
certainties in the
andwidth.
h of the CHAIO
nd confirms the
ved a bandwidth
for all cases.

 as the baseline
Fig. 7. CHAIO

th write and read
dup case. We can
ved speedup as

well; however, it is not stable. F
much improvement between 16 no
existing approach. A detailed stud
uneven chunk distribution, a sm
constantly selected as the chunk
scalability. The CHAIO approa
contention and regains the access
requests, and achieves better and sta
F. Overhead Analysis in L
Environment

We have shown the perform
CHAIO in terms of both bandw
previous subsections. We have per
the potential of CHAIO in
environment as well. To achieve th
communication phase cost of C
machine at Argonne National Labo
system is composed of 972 nodes
with 6 cores and 4GB memory. Th
is 1300 MB/s with a novel netw
graph” [28].

Fig. 7. Scalabilit

Data exchange cost is the prima
introduced by CHAIO and is used
CHAIO overhead. 1 Fig. 8 rep
exchange cost of one conflict chun
sizes and number of processes. It
data exchange cost is kept less tha
which is a minor overhead. The da
increased by 0.15 seconds when r
from 8MB to 16KB, which is still t
I/O performance CHAIO hel
experimental tests confirm that C
bandwidth considerably with on
communication overhead.

We keep the number of proc
request size from 1MB to 32MB, a
exchange overhead in Fig. 9. In th

1 We eliminated the I/O phase in the

only measured the communication
analysis. The lack of local disk
SiCortex make it impractical, if n
Kosmos file system on SiCortex.

mber of Nodes

For example, there is no
odes and 32 nodes for the
dy reveals that due to the
mall set of the nodes is
k servers and hurts the
ach reduces the access
s locality by rearranging
able scalability.
Large-Scale Computing

mance improvement of
width and scalability in
rformed tests to evaluate

large-scale computing
hat, we have measured the
HAIO on the SiCortex
ratory [27]. The SiCortex
s, each node is equipped

he interconnect bandwidth
work topology of “Kautz

ty Analysis
ary, if not only, overhead
as the metric to study the

ports the measure data
nk with different request
can be observed that the
an 1 second for all cases
ata exchange overhead is
reducing the request size
trivial compared with the
lps to improve. The

CAHIO improves the I/O
ly introducing a minor

cesses at 2048, vary the
and demonstrate the data
is set of experiments, we

e SiCortex experiments and
n phase cost for overhead
and the job scheduler of
not impossible, to deploy

376

have irregular request sizes that cannot di
block size of 64MB perfectly, e.g., 3MB, 5M
Such irregular sized requests result in ir
patterns and impose challenges to the aggr
algorithm. As reported in Fig. 9, we do no
performance deviation of irregular request
to the regular ones. This infers that CHAIO
various request sizes with trivial data exchan

Fig. 8. Data Exchange Overhead (1 C

G. Load Balance Evaluation
The primary objective of the aggre

algorithm is load balance. CHAIO shou
number of chunks allocated to each data no
parallelism and performance. As such, we e
balance of CHAIO and compare it wi
approach. We first calculate the ideal d
conflict chunks are evenly distributed to
data nodes. The data layout of CHAIO a
approach are also calculated. We nex
Manhattan distances between the ideal data
two scenarios (with/without CHAIO), whic
metrics of unbalance [24]. Fig. 10 report
unbalance by varying request size from 1MB
2048 processes on SiCortex. CHAIO perfor
better in balancing the workload among each
the existing approach. In particular, we obse
balance (0 in y-axis) for 17 out of the 32 sam
11 irregular requests that cannot divide 64M

Fig. 9. Data Exchange Overhead with 20

ivide the default
MB, 10MB, etc.
rregular conflict
regator selection
ot observe much

sizes compared
O is applicable to
nge cost.

Conflict Chunk)

egator selection
uld balance the
de to gain better

evaluate the load
ith the existing
data layout that
all the involved
and the existing
xt compute the
a layout and the
ch is used as the
ts the degree of
B to 32MB with
rms significantly
h data node than
erve perfect load
mples, including

MB perfectly.

Fig. 10. Load Balance Evaluation

V. CONCLUSIONS A
There is a surging interest in m

framework with MapReduce from
Motivated by the “HPC in the Clou
this paper strives to promote
applications on top of MapReduce f

N-1 data access is a widely
applications. Unfortunately, it is n
exiting data-intensive file systems
propose a systematic approach to en
access on data-intensive file system

We have identified three fa
performance of N-1 data access
systems: non-sequential data
distribution, and the violation of
aware I/O (CHAIO) strategy was p
issues and overcome the challenge
an aggregator process that colle
processes and issues the I/O reque
achieve sequential data access
aggregator selection algorithm is
chunk distribution among nod
implemented at either the applic
middle-ware level and does not int
underlying file systems.

We have prototyped the CHA
experiments with the IOR benchm
system. Experimental results show
both the write and read perform
overhead analysis shows that C
overhead for small request sizes an
large-scale computing environmen
of CHAIO is robust to differ
aggregator selection algorithm wo
balance.

In the future, we plan to enable
data-intensive file systems and pr
HPC I/O operations in the Cloud.

ACKNOWLEDGEM
This research was supported in

Foundation under NSF grant CCF-
CNS-0751200, and in part by th
Scientific Computing Research, O

048 Procs

n (2048 Procs)

AND FUTURE WORK
merging traditional HPC

m different perspectives.
ud” computing paradigm,
the adaption of HPC

file systems.
used pattern for HPC

not supported well by the
s. In this research, we
nabling efficient N-1 data

ms.
actors that degrade the
s on data-intensive file
access, uneven chunk
data locality. A chunk-

proposed to address these
e. The CHAIO introduces
ects data from multiple
ests to the file system to
and data locality. An
proposed to balance the
des. CHAIO can be
cation level or the I/O
troduce complexity to the

AIO idea, and conducted
ark over the Kosmos file

w that CHAIO improves
mance significantly. The
CHAIO introduces little
nd has a real potential for
nt. The performance gain
ent requests size. The
orks efficiently for load

e MPI-IO to interact with
ovide support to general

MENTS
part by National Science

-0621435, CCF-0937877,
he Office of Advanced
Office of Science, U.S.

377

Department of Energy, under contract DE-AC02-
06CH11357. We are thankful to Dr. Ioan Raicu of Illinois
Institute of Technology and the MCS department at
Argonne National Lab for the support to run large-scale
simulations on the SiCortex computing system.

REFERENCES
[1] Magellan Project: A Cloud for Science. [Online].

http://magellan.alcf.anl.gov/

[2] Edward Walker, "Benchmarking Amazon EC2 for High-
Performance Scientific Computing," in Usenix Login, 2008.

[3] Q. He, S. Zhou, B. Kobler, D. Duffy, T. McGlynn, "Case
Study for Running HPC Applications in Public Clouds," in
Proc. of 1st Workshop on Scientific Cloud Computing
(ScienceCloud), colocated with HPDC, 2010.

[4] HPC in the Cloud. [Online]. http://www.hpcinthecloud.com/

[5] J. Dean and S. Ghemawat, "MapReduce: Simplified Data
Processing on Large Clusters," Communications of the ACM
- 50th anniversary issue: 1958-2008, vol. 51, no. 1, 2008.

[6] S. Ghemawat, H. Gobioff, and S.-T. Leung., "The Google
File System," in Proc. of ACM Symposium on Operating
System Principles, SOSP, 2003.

[7] Hadoop Distribute Filesystem Website. [Online].
http://hadoop.apache.org/hdfs/

[8] Kosmos Distributed Filesystem (CloudStore) website.
[Online]. http://code.google.com/p/kosmosfs/

[9] J. Bent, G. Gibson, G. Grider, B. McClelland, P.
Nowoczynski, J. Nunez, M. Polte, and M. Wingate, "PLFS: a
Checkpoint Filesystem for Parallel Applications.," in Proc.
of the International Conference for High Performance
Computing, Networks, Storage and Analaysis
(Supercomputing), 2009.

[10] libHDFS source code. [Online].
https://github.com/apache/hadoop-
hdfs/blob/trunk/src/c++/libhdfs/hdfs.h

[11] S. Sehrish, G. Mackey, J. Wang and J. Bent, "MRAP: A
Novel MapReduce-based Framework to Support HPC
Analytics Applications with Access Patterns," in Proc. of the
19th ACM International Symposium on High Performance
Distributed Computing (HPDC), 2010.

[12] MPI Website. [Online].
http://www.mcs.anl.gov/research/projects/mpi/

[13] F. Schmuck and R. Haskin. , "GPFS: A Shared-Disk File
System for Large Computing Clusters," in Proc. of the 1st
USENIX Conference on File and Storage Technologies
(FAST), 2002.

[14] Lustre File System Website. [Online]. http://www.lustre.org

[15] PVFS2 Website. [Online]. http://www.pvfs.org/

[16] MPI-2: Extensions to the Message-Passing Interface.
[Online]. http://www.mpi-forum.org/docs/mpi-20-
html/mpi2-report.html

[17] R. Thakur, W. Gropp and E. Lusk, "Data Sieving and
Collective I/O in ROMIO," in Proc. of the 7th Symposium on
the Frontiers of Massively Parallel Computation, 1999.

[18] Wei-keng Liao, Choudhary, A., "Dynamically adapting file
domain partitioning methods for collective I/O based on
underlying parallel file system locking protocols," in Proc.
Supercomputing, 2008.

[19] Jean-Pierre Prost, Richard Treumann, Richard Hedges, Alice
Koniges and Alison White, "Towards a High-Performance
Implementation of MPI-IO on Top of GPFS," in Proc. of 6th
International Euro-Par Conference on Parallel Processing
(Euro-Par), 2000.

[20] C. Mitchell, J. Ahrens, and J. Wang, "VisIO: Enabling
Interactive Visualization of Ultra-Scale, Time Series Data via
High-Bandwidth Distirburted I/O Systems," in Proc. of 25th
IEEE International Parallel & Distributed Symposium
(IPDPS), 2011.

[21] E. Molina-Estolano, M. Gokhale, C. Maltzahn, J. May, J.
Bent and S. Brandt, "Mixing Hadoop and HPC workloads,"
in Proc. of Parallel Data Storage Workshop (PDSW), 2009.

[22] W. Tantisiriroj, S. Patil, G. Gibson, S. W. Son, S. Lang and
R. Ross, "On the Duality of Data-intensive File System
Design:Reconciling HDFS and PVFS," in Proc. of the
International Conference for High Performance Computing,
Networks, Storage and Analysis (Supercomputing), 2011.

[23] Jean-Pierre Prost, Richard Treumann, Richard Hedges, Bin
Jia and Alice Koniges, "MPI-IO/GPFS, an Optimized
Implemetation of MPI-IO on top of GPFS," in Proc. of
Supercomputing, 2001.

[24] Nicolae, B., Moise, D., Antoniu, G., Bouge, L., Dorier, M. ,
"BlobSeer: Bringing high throughput under heavy
concurrency to Hadoop Map-Reduce applications," in Proc.
of IEEE International Symposium on Parallel & Distributed
Processing (IPDPS), 2010.

[25] S. Al-Kiswany, M. Ripeanu, S. S. Vazhkudai, and A.
Gharaibeh, "stdchk: A Checkpoint Storage System for
Desktop Grid Computing," in Proc. of The 28th International
Conference on Distributed Computing Systems (ICDCS),
2008.

[26] IOR Benchmark Website. [Online].
http://sourceforge.net/projects/ior-sio/

[27] SiCortex at Argonne National Laboratory. [Online].
http://www.mcs.anl.gov/hs/hardware/sicortex.php

[28] Kautz Graph Wiki. [Online].
http://en.wikipedia.org/wiki/Kautz_graph

378

